VAR PROCESSES

1 Introduction to Vector Processes

Reading on matrices:
Chris Orme, Lecture Notes in Linear Algebra, cost
£1.00, from Room N.4.3, Dover St. building.

Suppose we want to model k related time series
Yit, Yor, ---» Yt DeEfine the_vector

Y1t
yi= | 7 (k x 1)

Ykt

For example, to analyse monetary policy, might use
rate of interest (r;), the output growth (¢;) and the rate
of inflation (Ap;): ] )

Tt

Gt :
| Apy |

Yy

Develop a multivariate time series model for y;.



1.1 Vector white noise

The k x 1 vector white noise process ¢, satisfies
E(e;) =0
E(gi)) = X
E(gie) = 0,5 #1
Thus:
e each element has mean zero;

e variance-covariance matrix is constant over time;

e elements have zero autocorrelations and zero
cross-correlations over time. For example, £ = 2 &
s =1t — 1, we require

E(€1t51t—1) E(€1t€2t—1)
Eleel ) = ! ! = 0.
(&:€11) E(eyeri-1) Elencai—1)

Vector white noise has not only E(cjc;+—;) = 0,7 =
1,2, ...,
but also cross-correlations over time,

€J. E<€1t52,t—j> = E<82t817t_j) = O,] = 1, 2,

Implication:
All past elements of €;_; are uncorrelated with
current &;.



1.2 VAR(P) processes

Vector autoregressive process of order P, or VAR(P),
IS
yi = 0+ ®ry; 1+ Poys o+ ... + Ppy; p+ &

where g, is vector white noise with F(g,e}) = X.

Analogous to AR(p).

Note:

Any interrelations at ¢ between y;; captured in X;
All interrelations over time between y;; & yi.;—;
captured by VAR coefficients.

In lag operator notation:
®(L)y; = 6+ &

where ®(L) is the k£ x k matrix polynomial

(L) =1, - L—9,L°— ... — ®pL".



Example: VAR(1) with d =0 is
Y = ) + q)Yt—l + &4.

For k = 2:

Yir | _ b1 i Y1t-1 X Elt

Yot | Pa1 Pao Y2,t—1 Eot
_ [ puyri—1 + Proyai1 + e
| O91Y1.t-1 T Pool2,t-1 + Ea

0 E(e€]) = E(ef,) E(eucx)
" E(eyen) Eley)
_ oy 0% 012
012 O'%
and

o [1-6uL —énL
L) =L-2L ‘[ —omL 1—¢22L]



Points to note:

e For VAR with P > 1, an additional subscript (or
superscript) is needed for elements of ®; to indicate
lag 7, in addition to the two subscripts used in a
VAR(1) for the equation and the variable.

e The VAR(P) treats each of the k£ variables in
the same way: there is no distinction between
endogenous and exogenous variables.

e The VAR focuses on dynamic interrelationships
between the variables.



2 Properties of VAR Processes

2.1 Stationarity

A VAR process is (second-order) stationary if:
E(y:) = pforallt
E(y: — p)(y, — ) = Ty forall ¢
E(y: — p)(y;_; — m) = T;foralltand any j

I'; = E(y: — p)(y,_;, — p)" is the autocovariance
matrix at lag j.

Example: VAR between interest rates & inflation, at

lag j =1
Iy = Ely: — p)(y;-1 — 1)

/

Tt — [
= r i1 — Apy_1 —
[Apt_,uAp] [ t—1 — Ky 2Pt-1 MAp]
_ [ E<Tt _ Nr)(rt—l _ :u?“)
E<Apt - MAp) <Tt—1 - Mr)
E(” T Nr)(Apt—l — NAp)
E(Apr — pipap) (Ape-1 — piny)

Diagonal elements of I'; are lag j autocovariances;
Off-diagonal elements of I'; are lag j cross-
covariances.



Assume J = 0, and recall that, for nonsingular

matrix A, .

Al=
Al

adj|Al

In VAR @(L)Yt =& =y = ¢_1(L>€t.
Premultiply by |®(L)| :
=

[®(L)|y: = adj[®(L)]e;
where adj[®(L)| is adjoint matrix of ®(L).

A determinant is scalar, so same AR |®(L)|
applies to each variable.
=

Each variable in y; is stationary if all roots of

®(2)] = | — ®12 — Bp2® — ... — @p2"| =0

lie outside the unit circle.

This is also the stationarity condition for the VAR.



Examples: VAR(1) with £ = 2

Loy = 1,019 = —.6,09 = .5, 099 = —.7. Then
yie | _ | L =6 |y L | Eu
Yo D =7 | Y21 Eat

[1—-L 6L

| —.5L 1+.7L

and
b(L)=1,—PL =

1—2 .6z
—.0z 14.72
= (1 —2)(1+.72) + .32

= 1— .32 —.72% + .32°

= 1— 3z — 42° = (1 — 82)(1 + .52)

()| - |

Both roots are outside the unit circle and the VAR
Is stationary, despite ¢,; = 1.

2.011 = 9,019 = 1,09 = 2,099 = .8,
o 1 — ¢112 _¢12Z 1 — 92 —.1z
’¢(2>| - —¢21Z 1 — ¢22Z —22 1 — 8Z

= (1 —.92)(1 — .82) — .022°
= 1-172+ .72 = (1 —2)(1 — .72).

System is nonstationary. Due to factor (1 — z), both
yie, Yor ~ 1(1).



2.2 Mean and Autocovariances

For stationary VAR(P), take expectations in

yi =0+ Py, 1+ Poyr o+ ... + Ppyi_p + &
=

p=0+®,u+Pu+.. +®ppu
& hence

p=>0;-® —®—..—Pp) 15 =3(1)6.
This is a generalisation of the AR(p) mean result.

Stationarity ensures |®(1)| # 0,
since |®(z)| does not have a unit root.

Can also obtain I''; as function of stationary VAR
coefficient matrices @4, ..., Pp.



2.3 Moving Average Representation

Every stationary VAR process has an infinite order
vector moving average (VMA) representation:

y, = ®1(L)[6 + &
= pu+® (L

= U+ Z \Ifgé‘t_g.
(=0

as u = ®1(1)4; note that ¥, = I,.

For VAR(1), ® (L) = (I + ®L+P°L? + ...), so
that
v = pt(I, + PL+B2L% + . )e

= M+ Z q)ié't_i.
1=0

and ¥, = &

For general VAR(P), ¥, is a function of the VAR
coefficient matrices @4, ..., Pp.



3 Interpreting VARs

There are many coefficients in a VAR. Say P = 4
with £ = 3; each VAR equation involves 3 x 4 = 12
coefficients plus intercept

= 3 x 13 = 39 coefficients in the system.

With, Kk = 6and P = 4,6 x (6 x4+ 1) = 150
coefficients!

Dynamic interrelationships in the VAR can be
complex.
Say VAR(1) in g, Ap; and ry:
Apy = 01+ ¢11Ap—1 + G191 + P137-1 + Ept
Gt = 02 + Po1 Apr1 + G901 + PosTi-1 + Egt
rt = 03 + Q31 Apt-1 + P399t-1 + Pg3Tt—1 + Ert

What is the effect of r on future Ap?

e Rate of interest directly affects future inflation
through @951 1.

e Also indirect effect through ¢; (r;_1 influences ¢; and
g;—1 appears in Ap, equation).

e Both ¢,_; & Ap;_, affect r;, leading to a feedback
effect through r;.

Impulse response functions used for VAR inter-
pretation.



3.1 Impulse Response Functions

Impulse response function is the dynamic effect of a
disturbance ¢ ;.

For monetary policy VAR, an interest rate
disturbance ¢,; affects each of g, Ap & r.
For k variables there are k? impulse response
functions, one for each of k£ disturbances on k
variables.

VMA representation implies

ALY,
= P
Oe} ‘
so that
a?gi,tM _ @ij
€t

where v is (i, j)th element of ®,.



= impulse response function for y; on y; is

Wt ¢ =0,1,2, ...

177

As ¥, =1,

Ay [ 1 ifi =
ey | O ifi#7
This is response to €; = 1.

Can set ¢;; = a; and show impulse responses as
ajby; (0=0,1,2,...).

Shock a; often taken as estimated standard
deviation of ¢;.



3.2 Orthogonalised Impulse Response Functions

Impulse response functions above do not take
account of disturbance covariance matrix X..

Effectively take €;; = aj,ei4 = 0,7 # j
despite E<5it5jt) = 0y 7é 0.

Therefore, transform ¢;; to u;; that are mutually
orthogonal,
that is, E(uituﬁ) = O,Z 7& j

Define u; by
u; = CEJt

where C is lower triangular and nonsingular (k x k),
with diagonal elements of unity and

E(uu;) = D, D diagonal.

This is the Cholesky decomposition.

Due to orthogonality, no disturbance u;; provides
information about another u;,(i # 7);
therefore u;; affects no y;(¢ # j).



As g; = Clu;,, VMAis

yi = pt Yy ¥,Clu
/=0

Oy 40 1
- ¥,C L.
ou! {

The orthogonalised impulse response function is for
y; on y; is:
ayi,t+€

¢ =0,1,2, ..
aujt VA

which is the (i, j) element of ¥,C 1,

In practice, computed with u;; = a;
& all other u;; = 0.

a; typically equal to estimated standard deviation
of th.



It is important to understand that lower triangular
C implies a causal order:

® C1t — &t
® C1t,E2t — E3t,
® C1tyE2y ey Ek—1t — Ekt-

That is, within ¢, variables ordered first may cause
later ones, but not vice versa.

Ordering of variables can have a substantial im-
pact on orthogonalised impulse response functions.

Some econometricians and statisticans are
sceptical about them.

VAR itself gives no information about causal
ordering and hence it depends on a priori economic
beliefs.



Example: Consider again the monetary policy VAR,
with variables are ordered as: _
Apy
Yt = | Gt
Tt

Orthogonalised impluse response functions here
implicitly assume:
e current inflation may influence current growth;

e current inflation & growth may influence current
interest rates;

e current interest rates & growth do not affect inflation
In period t;

e interest rates at ¢t do not affect current growth.



Estimated VAR(4) model for UK inflation, GDP
growth and interest rates.

Variable order 1: Inflation, growth, interest rates
Variable order 2: Growth, inflation, interest rates
> Same VAR coefficients

Orthogonalised Impulse Responses to one SE
shock to GROWTH
Effect on INFLATION

Rl i b i b b b b b b i i i b i i A i i i i i b i i b i i i i i i i i b i i i i i b i

Horizon Variable Variable
Order 1 Order 2

0 0.00 —-.15842
1 .09203 .01082
2 .00937 .07926
3 .09854 .05633
4 .16212 .09323
5 12177 .00113
6 .09203 .03498
7 .07004 .02097
8 .06767 .01070
9 .06448 .01914
10 .05878 .01655
11 .05008 .01104
12 .04518 .00893

R e i b b b b i b b b i i b i i i b A i i i i i i i i i i i i i i i i i i i i i i ¢



4 Modelling Issues

4.1 Estimation and Inference

Estimation of a VAR(P) process is by OLS, separately
for each equation.

Although E(e;e;) = X (not necessarily diagonal),
OLS is optimal.

Comment: Assumes unrestricted VAR (ie, same
explanatory variables in each equation and no
restrictions between coefficients).

Hypothesis tests for individual coefficients use
usual t-ratios.

A test of, say ®p = 0, requires a system test, as
coefficients in all £ equations are involved.

These are based on
T
~ 1 /
Xp = T P;etet.
with residuals e; (t = P+ 1, ..., T") from VAR(P).

Note: OLS equation by equation can be shown to
minimise In ‘ﬁp’ .




Usual system test is a likelihood ratio test,
LR=T [m‘f:(}z)( —m‘f:(U)H
where 3(R), £(U) are the restricted and unrestricted

estimated disturbance variance matrices.

When the restrictions are valid, asymptotically
LR ~ X?Zf with df = number of restrictions.

For testing
HQ . q)p =0
unrestricted model is VAR(P);
restricted model is VAR(FP — 1).

Under this Hy, LR ~ x%. [There are k zero
restrictions in each of k equations.]



4.2 VAR Order Specification

As for AR(p), two approaches for specification of P :

1. "Testing down": Start with maximum order P*. Test

HO X (I)p* = 0.
If Hy not rejected, move to order P* — 1 and test
HO . (I)p*_l = 0.

Continue until H is rejected.

2. Use a model specification criterion to select
between orders 0, 1, ..., P*. Most common are

. 2 Pk?
AIC(P) = 1 2|
C(P) n p-I-T_P
and , ( )
-~ PkeIn(T —p
I P:l)z: |
SC() n|2p|+ T p

Select P that minimises criterion.

Note: These are generalisations of criteria for
univariate AR(P), where k = 1.



