
VAR PROCESSES

1 Introduction to Vector Processes

Reading on matrices:

Chris Orme, Lecture Notes in Linear Algebra, cost

£1.00, from Room N.4.3, Dover St. building.

Suppose we want to model related time series

1 2 . Define the vector

y =

1

2

...
( × 1)

For example, to analyse monetary policy, might use

rate of interest ( ), the output growth ( ) and the rate

of inflation ( ):

y =

Develop a multivariate time series model for y .



1.1 Vector white noise

The × 1 vector white noise process satisfies

( ) = 0

( 0) =

( 0 ) = 0 6=

Thus:

• each element has mean zero;

• variance-covariance matrix is constant over time;

• elements have zero autocorrelations and zero
cross-correlations over time. For example, = 2 &
= 1, we require

( 0
1) =

·
( 1 1 1) ( 1 2 1)
( 2 1 1) ( 2 2 1)

¸
= 0

Vector white noise has not only ( ) = 0 =
1 2 ,

but also cross-correlations over time,

eg. ( 1 2 ) = ( 2 1 ) = 0 = 1 2 .

Implication:

All past elements of are uncorrelated with

current .



1.2 VAR( ) processes

Vector autoregressive process of order , or VAR( ),

is

y = + 1y 1 + 2y 2 + + y +

where is vector white noise with ( 0) = .

Analogous to AR( ).

Note:

Any interrelations at between captured in ;
All interrelations over time between &

captured by VAR coefficients.

In lag operator notation:

( )y = +

where ( ) is the × matrix polynomial

( ) = I 1 2
2



Example: VAR(1) with = 0 is

y = + y 1 +

For = 2:

·
1

2

¸
=

·
11 12

21 22

¸ ·
1 1

2 1

¸
+

·
1

2

¸

=

·
11 1 1 + 12 2 1 + 1

21 1 1 + 22 2 1 + 2

¸

with

( 0) =

·
( 21 ) ( 1 2 )
( 2 1 ) ( 22 )

¸

= =

·
2
1 12

12
2
2

¸

and

( ) = I2 =

·
1 11 12

21 1 22

¸



Points to note:

• For VAR with 1, an additional subscript (or
superscript) is needed for elements of to indicate

lag , in addition to the two subscripts used in a

VAR(1) for the equation and the variable.

• The VAR( ) treats each of the variables in

the same way: there is no distinction between

endogenous and exogenous variables.

• The VAR focuses on dynamic interrelationships
between the variables.



2 Properties of VAR Processes

2.1 Stationarity

A VAR process is (second-order) stationary if:

(y ) = µ for all

(y µ)(y µ)0 = 0 for all

(y µ)(y µ)0 = for all and any

= (y µ)(y µ)0 is the autocovariance
matrix at lag .

Example: VAR between interest rates & inflation, at

lag = 1 :

1 = (y µ)(y
1

µ)0

=

· ¸ £
1 1

¤

=

·
( )( 1 )
( )( 1 )

( )( 1 )
( )( 1 )

¸

Diagonal elements of are lag autocovariances;

Off-diagonal elements of are lag cross-

covariances.



Assume = 0, and recall that, for nonsingular
matrix A,

A 1 =
1

|A|
[A]

In VAR ( )y = y = 1( ) .

Premultiply by | ( )| :

| ( )|y = [ ( )]

where [ ( )] is adjoint matrix of ( ).

A determinant is scalar, so same AR | ( )|
applies to each variable.

Each variable in y is stationary if all roots of

| ( )| =
¯̄
I 1 2

2
¯̄
= 0

lie outside the unit circle.

This is also the stationarity condition for the VAR.



Examples: VAR(1) with = 2

1. 11 = 1 12 = 6 21 = 5 22 = 7. Then·
1

2

¸
=

·
1 6
5 7

¸ ·
1 1

2 1

¸
+

·
1

2

¸

and

( ) = I2 =

·
1 6
5 1 + 7

¸

| ( )| =

¯̄
¯̄ 1 6

5 1 + 7

¯̄
¯̄

= (1 )(1 + 7 ) + 3 2

= 1 3 7 2 + 3 2

= 1 3 4 2 = (1 8 )(1 + 5 )

Both roots are outside the unit circle and the VAR

is stationary, despite 11 = 1.

2. 11 = 9 12 = 1 21 = 2 22 = 8

| ( )| =

¯̄
¯̄ 1 11 12

21 1 22

¯̄
¯̄ =

¯̄
¯̄ 1 9 1

2 1 8

¯̄
¯̄

= (1 9 )(1 8 ) 02 2

= 1 1 7 + 7 2 = (1 )(1 7 )

System is nonstationary. Due to factor (1 ), both

1 2 (1).



2.2 Mean and Autocovariances

For stationary VAR( ), take expectations in

y = + 1y 1 + 2y 2 + + y +

µ = + 1µ+ 2µ+ + µ

& hence

µ = (I 1 2 ) 1 = 1(1)

This is a generalisation of the AR( ) mean result.

Stationarity ensures | (1)| 6= 0
since | ( )| does not have a unit root

Can also obtain as function of stationary VAR

coefficient matrices 1 .



2.3 Moving Average Representation

Every stationary VAR process has an infinite order

vector moving average (VMA) representation:

y = 1( )[ + ]

= µ + 1( )

= µ+
X

=0

as µ = 1(1) ; note that 0 = I

For VAR(1), 1( ) = (I + + 2 2 + ) so
that

y = µ+(I + + 2 2 + )

= µ+
X

=0

and = .

For general VAR( ), is a function of the VAR

coefficient matrices 1 .



3 Interpreting VARs

There are many coefficients in a VAR. Say = 4
with = 3; each VAR equation involves 3 × 4 = 12
coefficients plus intercept

3× 13 = 39 coefficients in the system.
With, = 6 and = 4, 6 × (6 × 4 + 1) = 150
coefficients!

Dynamic interrelationships in the VAR can be

complex.

Say VAR(1) in and :

= 1 + 11 1 + 12 1 + 13 1 +
= 2 + 21 1 + 22 1 + 23 1 +
= 3 + 31 1 + 32 1 + 33 1 +

What is the effect of on future ?

• Rate of interest directly affects future inflation
through 23 1.

• Also indirect effect through ( 1 influences and

1 appears in equation).

• Both 1 & 1 affect , leading to a feedback

effect through .

Impulse response functions used for VAR inter-

pretation.



3.1 Impulse Response Functions

Impulse response function is the dynamic effect of a

disturbance .

For monetary policy VAR, an interest rate

disturbance affects each of & .

For variables there are 2 impulse response

functions, one for each of disturbances on

variables.

VMA representation implies
y +
0 =

so that
+
=

where is ( ) element of .



impulse response function for on is

= 0 1 2

As 0 = I

=

½
1 if =
0 if 6=

This is response to = 1

Can set = and show impulse responses as

( = 0 1 2 ).

Shock often taken as estimated standard

deviation of .



3.2 Orthogonalised Impulse Response Functions

Impulse response functions above do not take

account of disturbance covariance matrix .

Effectively take = = 0 6=
despite ( ) = 6= 0

Therefore, transform to that are mutually

orthogonal;

that is, ( ) = 0 6= .

Define u by

u = C

where C is lower triangular and nonsingular ( × )
with diagonal elements of unity and

(u u0) = D D diagonal.

This is the Cholesky decomposition.

Due to orthogonality, no disturbance provides

information about another ( 6= );
therefore affects no ( 6= ).



As = C 1u , VMA is

y = µ+
X

=0

C 1u

y +

u0
= C 1

The orthogonalised impulse response function is for

on is:

+
= 0 1 2

which is the ( ) element of C 1.

In practice, computed with =
& all other = 0.

typically equal to estimated standard deviation

of .



It is important to understand that lower triangular

C implies a causal order:

• 1 2 ;

• 1 2 3 ;

• 1 2 1

That is, within , variables ordered first may cause

later ones, but not vice versa.

Ordering of variables can have a substantial im-

pact on orthogonalised impulse response functions.

Some econometricians and statisticans are

sceptical about them.

VAR itself gives no information about causal

ordering and hence it depends on a priori economic

beliefs.



Example: Consider again the monetary policy VAR,

with variables are ordered as:

y =

Orthogonalised impluse response functions here

implicitly assume:

• current inflation may influence current growth;

• current inflation & growth may influence current
interest rates;

• current interest rates & growth do not affect inflation
in period ;

• interest rates at do not affect current growth.



Estimated VAR(4) model for UK inflation, GDP 

growth and interest rates.

Variable order 1: Inflation, growth, interest rates 

Variable order 2: Growth, inflation, interest rates

Same VAR coefficients

Orthogonalised Impulse Responses to one SE 

shock to GROWTH 

Effect on INFLATION 

********************************************

    Horizon       Variable     Variable 

                  Order 1      Order 2

       0           0.00         -.15842

       1            .09203       .01082

       2           -.00937      -.07926

       3            .09854       .05633

       4            .16212       .09323

       5           .12177       .06113           

       6            .09203       .03498

       7            .07004       .02097

       8           .06767       .01070           

       9            .06448       .01914

      10            .05878       .01655

      11            .05008      .01104           

      12            .04518       .00893

 ******************************************* 



4 Modelling Issues

4.1 Estimation and Inference

Estimation of a VAR( ) process is by OLS, separately

for each equation.

Although ( 0) = (not necessarily diagonal),

OLS is optimal.

Comment: Assumes unrestricted VAR (ie, same

explanatory variables in each equation and no

restrictions between coefficients).

Hypothesis tests for individual coefficients use

usual -ratios.

A test of, say = 0 requires a system test, as

coefficients in all equations are involved.

These are based on

b =
1 X

=1

e e0

with residuals e ( = + 1 ) from VAR( ).

Note: OLS equation by equation can be shown to

minimise ln
¯̄
¯ b

¯̄
¯



Usual system test is a likelihood ratio test,

=
h
ln
¯̄
¯ b ( )

¯̄
¯ ln

¯̄
¯ b ( )

¯̄
¯
i

where b ( ) b ( ) are the restricted and unrestricted
estimated disturbance variance matrices.

When the restrictions are valid, asymptotically
2 with = number of restrictions.

For testing

0 : = 0

unrestricted model is VAR( );
restricted model is VAR( 1).

Under this 0,
2
2. [There are zero

restrictions in each of equations.]



4.2 VAR Order Specification

As for AR( ), two approaches for specification of :

1. "Testing down": Start with maximum order . Test

0 : = 0

If 0 not rejected, move to order 1 and test

0 : 1 = 0

Continue until 0 is rejected.

2. Use a model specification criterion to select

between orders 0 1 . Most common are

( ) = ln
¯̄
¯ b

¯̄
¯ + 2 2

and

( ) = ln
¯̄
¯ b

¯̄
¯ +

2 ln( )

Select that minimises criterion.

Note: These are generalisations of criteria for

univariate AR( ), where = 1.


