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In Chapters 4, 5, and 7 we considered strategic-form games and studied the concept of
equilibrium. One of the underlying assumptions of those chapters was that the choices
made by the players were independent. In practice, however, the choices of players may
well depend on factors outside the game, and therefore these choices may be correlated.
Players can even coordinate their actions among themselves.
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Example 4.21 on page 98). The game hag three Te
1. (F, F): the payoff is (2, 1),
2. (C, C): the payolt is (F 2y
1
3. (5(F), §(C)]’2[%(F)’ 2(O))): in this equilibrium,
player plays [5(F), 3(C)] - he chooses F with p
one-third. The column player plays [%( F), %(C)].

equilibria (verify that this is true):

every player uses mixed strategies. The row
robability two-thirds, and T with probability
The expected payoff in this case is (2, 2).
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Figure 8.1 The Battle of the Sexes

The first two equilibria are not symmetric; in each one, one of the players yields to the preference
of the other player. The third equilibrium, in contrast, is symmetric and gives the same ‘pa.yoff to
both players, but that payoff is less than 1, the lower payoff in each of the two pure egulhbna. ;

The players can correlate their actions in the following way. They can toss a fair coin. If the coin
comes up heads, they play (F, F), and if it comes.lfp t.aﬂs, they play (C, C). The expect.ed pa}yoff
is then (11, 11). Since (F, F) and (C, C) are equilibria, the process we have just desc':nbed is an
equilibriurzn inz an extended game, in which the players can toss 2 coin gnd cholose their Stratgflgs
in accordance with the result of the coin toss: after the com toss, neither player can profit by
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Figure 8.3 The game of “Chicken”

The following background story usually accompanies this game. Two drivers are racing directl
tO\Yards each other‘ down a single-lane road. The first to lose his nerve and swerve offgthler?(:)az
before the cars collide 1s'the lqser of the game, the “chicken.” In this case, the utility of the loser is
2, ar.ld‘ the utility of the winner is 7. If neither player drives off the road, the cars collide, both players
are injured, and they each have a utility of 0. If they both swerve off the road simult’ameously the
utility of each of them is 6. ’

The game has three equilibria (check that this is true):

I. The players play (7, R). The payoff is (2, 7).

2. The players play (B, L). The payoffis (7, )

3. The players play ([%(T), %(B)] NE(O) %(R)]). The payoff is (42, 432).
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but the observer does not reveal to either player what
d. The observer chooses between three action vectors,

Consider the following mechanism,
mendation regarding which action to take,

recommendation the other player has receive :
(T.L). (T, R), and (B, L), with equal probability (see Figure 8.4).

Figure 8.4 The distribution that the observer uses © choose the action vector
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Examples 8.1 and 8.3 show that the way to attain a high payoffs for both. players is
to avoid the “worst” payoff (0, 0). This cannot be accomplished if the players implement
independent mixed strategies; it requires correlating the players’ actions. We have made
the following assumptions regarding the extended game:

o The game includes an observer, who recommends strategies to the players.
o The observer chooses his recommendations probabilistically, based on a probability
distribution that is commonly known to the players.

o The recommendations are private, with each player knowing only the recommendation
addressed to him or her.

. Tl}e mechanism is common knowledge' among the players: each player knows that
this mechanism is being used, each player knows that the other players know that this

mechanism is being used, each player knows that the other players know that the othet
players know that this mechanism is being used, and so forth.
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& ame, where N is the set of players,
F-O — Ris player i’s payoff function, where
T €very probability distribution p over the

o An outside observer probabilistically chooses an
probability distribution p.
h ;
o ;1:; 2:108 : (};)lal};erel ehN the ob.serve.r reveals s;, but not s_;. In other words, the observer
player ¢ his coordinate in the action vector that was chosen; to be interpreted
as the recommended action to play. : 4
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o The payoff of each player i is u;(s{, ..., s)).

action vector from S, according to the

This describes an extensive-form game with information sets.

A presentation of the extensive-form game corresponding to the game of “Chicken,”
with the addition of the correlation mechanism described above, is shown in Figure 8.5.
Near every chance move in the figure, we have noted the respective recommendation of
the observer for that choice. The actions 7} and 7; in the figure correspond to the action T
in the strategic-form game: 7; represents the possible action T when the observer’s recom-
mendation is T; T represents the possible action T when the observer’s recommendation

is B. Actions B; and B, similarly correspond to action B, and so forth.

The information revealed by the observer to player i will be termed a recommendation:
the observer recommends that player i play the action s; in the original game. The' player
is not obligated to follow the recommendation he receiYes, and is free to play a different
action (or to use a mixed action, i.e., to conduct a lottery in order to chgose betvyeen seve.:ral
actions). A player’s pure strategy in an extensive-form game with information sets is a

function that maps each of that player’s information sets to 2 possible'action. s o

information set in the SAMEHEGH is associated with a recommend.at.lon of the observer,

and tha 10:1 f possible actions ion set of player i is Si, we obtain the
e set@

at each informati
. *
following definition of a pure strategy in [ ()

ame T*(p) is a function T; Si — Si

Jayeri inthe g
of play an action Ti(si) € Si-

s te
Definition 8.4 A (pure) Stra o of the observer 10

mapping every recommendation Si : .

j ion s:. This fact enables

that player? play the action ;.

Suppose (HECE P recommel:rig:lg ths recommendations that the other players
g 1eg

player i to deduce the followin



Correlated equilibria

LD

ey

have received: since the probability that player i receives recommendation i

Z i),

;€S ;
the conditional probability that the observer has chosen the action vector s

Deplin) e — PO
Zt_,-es_,. p(si ;)

: Tl%e conditional probability in Equation (8.3) is defined when the denomis
tive, i.e., when the probability that player i receives recommendation s; is |
ries., PGiy 1-1) =0, the probability that player i receives recommendati
anc(l) in this case the conditional probability p(s_; | s;) is undefined
ne strategy available to player  is to follow th, : ek
: ¢ observer’ nend:
playeri € N, define a strategy t* by: e S



receives, -
that diffe
has under




308 ' Correlated equilibria

at each player chooses with positive ;

* ions th
o* the actions that the other players imple,

2 ilibrium :
Under a Nash equ 1 maximal payoffs g1ver

are only those that give hit

strategy vector @S
* /
u;(si, 0) = ui(s;, ats Vs; € supp(o; ), Vs; € S5t
Wiy V/ — —
m (whose proof is left to the reader in Exercig

This leads to the following theore
h equilibrium o*, the probability distribution p,. js a
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As Theorem 8.7 indicates, correlated equilibriu '
equilibrium concept. When we relate to a Nash equilibrium o™ as a correlated
we mean the probability distribution py+ given by Equation (8.10). For examp
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Since every finite normal-form game has a Nash equilibrium, we deduce the fo]

corollary.

Corollary 8.8 Every finite strategic-form game has a correlated equilibrium.
Theorem 8.9 The set of correlated equilibria of a finite game is convex and co

Proof: Recall that a half-s in R™ j
pace in R™ is defined by a vect s
B € R, by the following equation: YR

and compact set.
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.of a general set see Definition 23
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Fi 8.8 The set of possible payoffs, the set of correlated equilibrium payoffs, and
igure 8. ayof
equilibrium payoffs of the game In Figure 8.1

Example 8.3 ,h thegamemthls examp le

Player I1
L R
6,6 S i
Player [
1.2 0,0

Figure 8.9 The game of “Chicken”

A probability distribution over the set of action vectors
[e(T, L), B(T, R), y(B, L), §(B, R)] (see Figure 8.10).

Player I1
L R
T r -
Player I p

Figure 8.10 Graphic depiction of the probability distribution p
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