MATEMATICA GENERALE CLEMIF

Prof.ssa M. Elisabetta Tessitore

Sessione Invernale, I Appello , 15/1/2014, A.A. 2013/2014, Compito A
Cognome
1) (9 p.ti) Studiare la funzione $f(x) = \frac{e^x}{x^2-4}$
a] Dominio e segno
b] Limiti
c] Determinazione punti critici (ovvero stazionari)
d] Studio massimi e minimi

e] Grafico (lo studio di eventuali flessi é opzionale).

2) (5 p.ti) Calcolare le primitive di $f(x) = -xe^{-x^2-1} + 3x$.

3) (7 p.ti) Studiare al variare del parametro $k \in \mathbb{R}$ le soluzioni del sistema e trovarle:

$$\begin{cases} 2y + 3kz &= 1+k \\ y - z &= k \\ -kx + z &= 3 \end{cases}$$

Individuare la risposta corretta nelle seguenti domande a risposta multipla. Ogni risposta esatta vale 2 punti, ogni risposta sbagliata -1 punto, risposta non data 0 punti. L'ultima domanda vale 2 punti

- 4) Data la serie $\sum_{n=1}^{\infty} \left(\frac{-1}{\sqrt{2}}\right)^n$
 - 1. converge;
 - 2. é indeterminata;
 - 3. diverge negativamente.
- 5) (2 p.ti) Il dominio della funzione $f(x) = \log_x 3$, é
 - 1. $(0, +\infty)$;
 - $2. \mathbb{R};$
 - 3. $(0,1) \cup (1,+\infty)$.
- 6) (2 p.ti) L'estremo superiore di un insieme é sempre un punto di accumulazione per l'insieme. \Box Vero \Box Falso
- 7) (2 p.ti) Determinare $a, b \in \mathbb{R}$ in modo che la funzione

$$f(x) = \begin{cases} x^2 & x \le c \\ ax + b & x > c \end{cases}$$

sia continua e derivabile in c.

- 1. non esistono
- 2. $a = 2c e b = -c^2$
- 3. $a = -2c e b = c^2$
- 8) (2 p.ti) Enunciare e dimostrare il Teorema di Torricelli–Barrow.