The Title

The Author

The Date

Contents

1	Elei	menti di Teoria delle Funzioni	2
	1.1	Elementi di Topologia di \mathbb{R}^n	7
	1.2	Limiti di Funzioni	7
	1.3	Funzioni Continue	7
	1.4	Funzioni Derivabili	7

Chapter 1

Elementi di Teoria delle Funzioni

Siano dati due insiemi non vuoti, X, Y.

Definizione Con il termine funzione, o applicazione, di X in Y intendiamo ogni regola f che consente di associare ad **ogni** elemento di X **uno ed un solo** elemento di Y.

Notazione Per denotare una funzione di X in Y caratterizzata dalla regola f adopereremo il simbolo $f: X \to Y$.

Definizione Chiameremo gli insiemi X ed Y rispettivamente dominio e codominio della funzione. Inoltre, comunque considerato un elemento $x \in X$ chiameremo immagine di x mediante f, o valore di f in x, e lo denoteremo con il simbolo f(x), l'unico elemento $y \in Y$ associato ad x mediante la regola f.

Definizione (Grafico di Funzione) Chiamiamo grafico della funzione l'insieme

$$\Gamma_f \equiv \{(x, y) \in X \times Y \mid y = f(x)\}.$$

È importante notare che gli elementi costitutivi di una funzione sono sia la regola associativa f che gli insiemi di riferimento X ed Y. Pertanto modificando uno qualsiasi di tali elementi si ottiene una funzione differente.

Esempio (Funzione Generatrice dei Numeri Pari) Siano $X=Y=\mathbb{N}$ e sia f la regola definita ponendo

$$f(n) \stackrel{\text{def}}{=} 2n, \quad \forall n \in \mathbb{N}.$$

Tale regola consente di definire una funzione $f: \mathbb{N} \to \mathbb{N}$, la cosiddetta funzione generatrice dei numeri pari.

Esempio (Funzione Generatrice dei Numeri Dispari) Siano $X=Y=\mathbb{N}$ e sia f la regola definita ponendo

$$f(n) \stackrel{\text{def}}{=} 2n + 1, \quad \forall n \in \mathbb{N}.$$

Tale regola consente di definire una funzione $f: \mathbb{N} \to \mathbb{N}$, la cosiddetta funzione generatrice dei numeri dispari.

Esempio Siano $X = Y = \mathbb{N}$ e sia f la regola definita ponendo

$$f(n) \stackrel{\text{def}}{=} \sqrt{n}, \quad \forall n \in \mathbb{N}.$$

Tale regola non consente di definire una funzione $f: \mathbb{N} \to \mathbb{N}$.

Esempio Siano $X = \mathbb{N}, Y = \mathbb{R}$ e sia f la regola definita ponendo

$$f(n) \stackrel{\text{def}}{=} \sqrt{n}, \quad \forall n \in \mathbb{N}.$$

Tale regola consente di definire una funzione $f: \mathbb{N} \to \mathbb{R}$.

Esempio Siano $X = \mathbb{R}$, $Y = \mathbb{R}$ e sia f la regola definita ponendo

$$f(x) \stackrel{\text{def}}{=} \sqrt{x}, \quad \forall x \in \mathbb{R}.$$

Tale regola non consente di definire una funzione $f: \mathbb{N} \to \mathbb{R}$.

Esempio Siano $X=\mathbb{R}_+,\,Y=\mathbb{R}$ e sia f la regola definita ponendo

$$f(x) \stackrel{\text{def}}{=} \sqrt{x}, \quad \forall x \in \mathbb{R}_+.$$

Tale regola consente di definire una funzione $f: \mathbb{R}_+ \to \mathbb{R}$.

Esempio Siano $a \in \mathbb{R}_{-}, X = Y = \mathbb{R},$ e sia f la regola definita ponendo

$$f(x) \stackrel{\text{def}}{=} a^x, \quad \forall x \in \mathbb{R}.$$

Tale regola non consente di definire una funzione $f: \mathbb{R} \to \mathbb{R}$.

Esempio Siano $a \in \mathbb{R}_+$, $X = Y = \mathbb{R}$, e sia f la regola definita ponendo

$$f(x) \stackrel{\text{def}}{=} a^x, \quad \forall x \in \mathbb{R}.$$

Tale regola consente di definire una funzione $f:\mathbb{R}\to\mathbb{R}$, la cosiddetta funzione esponenziale in base a, denotata anche con il simbolo $\exp_a:\mathbb{R}\to\mathbb{R}$.

Esempio Siano $a \in \mathbb{R}_+$, $X = Y = \mathbb{R}$, e sia f la regola definita ponendo

$$f(x) \stackrel{\mathrm{def}}{=} \log_a(x), \quad \forall x \in \mathbb{R}.$$

Tale regola non consente di definire una funzione $f: \mathbb{R} \to \mathbb{R}$

Esempio Siano $a \in \mathbb{R}_+ - \{1\}$, $X = \mathbb{R}_+$, $Y = \mathbb{R}$, e sia f la regola definita ponendo

$$f(x) \stackrel{\text{def}}{=} \log_a(x), \quad \forall x \in \mathbb{R}_+.$$

Tale regola consente di definire una funzione $f: \mathbb{R} \to \mathbb{R}$, la cosiddetta funzione logaritmo in base a, denotata anche con il simbolo $\log_a : \mathbb{R}_+ \to \mathbb{R}$.

Esempio Ricordiamo che, comunque considerati $m, n \in \mathbb{N}$, diciamo che m è un divisore di n se esiste $k \in \mathbb{N}$ tale che

$$n = k \cdot m$$

Ogni $n \in \mathbb{N}$ possiede almeno due divisori, cosiddetti banali, il numero n stesso ed 1. Diciamo che m è un divisore non banale di n se m è un divisore di n ed $m \notin \{1, n\}$. Consideriamo adesso la regola f che associa ad ogni $n \in \mathbb{N}$ i suoi divisori non banali. Secondo tale regola i numeri 1, 2, 3, 5, 7, 11, 13, ... non hanno nessun corrispondente. Sono infatti i cosiddetti numeri primi, caratterizzati proprio dal non avere divisori non banali. Tale regola non si presta pertanto a definire una funzione $f: \mathbb{N} \to \mathbb{N}$. Consideriamo allora la stessa regola che associa ad ogni $n \in \mathbb{N} - \{1, 2, 3, 5, 7, 11, 13, ...\}$ i suoi divisori non banali. In questo caso ogni elemento di $\mathbb{N} - \{1, 2, 3, 5, 7, 11, 13, ...\}$ viene associato ad almeno un elemento di \mathbb{N} . Tuttavia ci sono elementi di $\mathbb{N} - \{1, 2, 3, 5, 7, 11, 13, ...\}$ che vengono associati a più di un elemento. Ad esempio il numero 0 viene associato ad ogni altro numero naturale, in quanto ogni numero naturale è un divisore di 0, il numero 6 viene associato a 2 e 3, e così via. In altri termini, la regola considerata non si presta neanche a definire una funzione $f: \mathbb{N} - \{1, 2, 3, 5, 7, 11, 13, ...\} \to \mathbb{N}.$

Sia $f: X \to Y$ una funzione di X in Y.

Definizione (Insieme Immagine) Considerato un sottoinsieme A di X chiamiamo immagine di A mediante f, e lo denotiamo con il simbolo f(A), l'insieme

$$f(A) \equiv \{ y \in Y \mid y = f(x), \ x \in A \}.$$

In particolare, quando A=X, l'insieme $f\left(X\right)$ è chiamato insieme dei valori di f.

Osservazione Comunque considerati $A_1, A_2 \subseteq X$ risulta:

- 1. $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$;
- **2.** $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$;

Esercizio Mostrare che non è in generale vero che comunque considerati $A_1, A_2 \subseteq X$ risulta $f(A_1 \cap A_2) = f(A_1) \cap f(A_2)$.

Esercizio Esiste una qualche relazione tra $f(A_X^c)$ ed $f(A)_Y^c$?

Definizione (Insieme Controimmagine) Considerato un sottoinsieme B di Y chiamiamo controimmagine, o immagine inversa, di B mediante f, e lo denotiamo con il simbolo $f^{-1}(B)$, l'insieme

$$f^{-1}(B) \equiv \{x \in X \mid f(x) \in B\}.$$

Osservazione Comunque considerati $B_1, B_2 \subseteq Y$ risulta:

- 1. $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2);$
- **2.** $f^{-1}(B_1 \cap B_2) \subseteq f^{-1}(B_1) \cap f^{-1}(B_2);$
- 3. $f^{-1}(B_Y^c) = f^{-1}(B)_X^c$.
- **Definizione (Funzione Iniettiva)** Diciamo che $f: X \to Y$ è iniettiva se comunque considerati $x_1, x_2 \in X$ tali che $x_1 \neq x_2$, si ha $f(x_1) \neq f(x_2)$. In altri temini, se ad elementi distinti del dominio X vengono associate immagini distinte del codominio Y.
- Osservazione (Funzione Iniettiva) La funzione $f: X \to Y$ è iniettiva se e solo se considerati $x_1, x_2 \in X$ tali che $f(x_1) = f(x_2)$ si ottiene necessariamente che $x_1 = x_2$. Ossia, se due elementi del dominio hanno uguali immagini allora essi stessi sono necessariamente uguali.
- Osservazione (Funzione Iniettiva) La funzione $f: X \to Y$ è iniettiva se e solo se comunque considerato $y \in Y$ l'equazione

$$f(x) = y$$

ha al più una soluzione.

- Osservazione (Funzione Iniettiva) La funzione $f: X \to Y$ è iniettiva se e solo se comunque considerato $y \in Y$ la retta $X \times \{y\}$ del prodotto cartesiano $X \times Y$ interseca il grafico Γ_f della funzione in al più un punto.
- **Definizione (Funzioni Suriettive)** Diciamo che $f: X \to Y$ è suriettiva se comunque considerato $y \in Y$ esiste almeno un $x \in X$ tale che f(x) = y. In altri temini, se ogni elemento del codominio Y è immagine di almeno un elemento del dominio X.
- Osservazione (Funzione Suriettiva) La funzione $f: X \to Y$ è iniettiva se e solo se comunque considerato $y \in Y$ l'equazione

$$f(x) = y$$

ha almeno una soluzione.

Osservazione (Funzione Suriettiva) La funzione $f: X \to Y$ è suriettiva se e solo se comunque considerato $y \in Y$ la retta $X \times \{y\}$ del prodotto cartesiano $X \times Y$ interseca il grafico Γ_f della funzione in **almeno** un punto.

- **Definizione (Funzione Invertibile)** Diciamo che $f: X \to Y$ è invertibile se è sia iniettiva che suriettiva.
- Osservazione (Funzione Invertibile) La funzione $f:X\to Y$ è invertibile se e solo se comunque considerato $y\in Y$ l'equazione

$$f(x) = y$$

ha **una ed una sola** una soluzione.

Osservazione (Funzione Invertibile) La funzione $f: X \to Y$ è invertibile se e solo se comunque considerato $y \in Y$ la retta $X \times \{y\}$ del prodotto cartesiano $X \times Y$ interseca il grafico Γ_f della funzione in **uno ed un solo** un punto.

1.1 Elementi di Topologia di \mathbb{R}^n

Sia X un sottoinsieme non vuoto di \mathbb{R}^n .

Definizione (Disco Aperto)

Definizione (Disco Chiuso)

Definizione (Sfera)

Definizione (Punto Interno)

Definizione (Punto Esterno)

Definizione (Parte Interna)

Definizione (Punto di Accumulazione) à

Definizione (Punto di Chiusura)

Definizione (Chiusura)

Definizione (Punto di Frontiera)

Definizione (Frontiera)

Definizione (Aperto)

Definizione (Chiuso)

Definizione (Compatto)

1.2 Limiti di Funzioni

Theorem 1 (Permanenza del Segno)

1.3 Funzioni Continue

Theorem 2 (Weierstrass)

1.4 Funzioni Derivabili

Sia $f: D_f \to \mathbb{R}$ una funzione reale di variabile reale e sia $x_0 \in \mathring{D}_f$.

Definition 3 Per ogni $\Delta x \in \mathbb{R}$ tale che $x_0 + \Delta x \in D_f$ chiamiamo incremento di f relativo al punto x_0 ed all'incremento Δx della variabile la quantità

$$\Delta f_{x_0,\Delta x} \equiv f(x_0 + \Delta x) - f(x_0).$$

Chiamiamo rapporto incrementale di f
 relativo al punto x_0 ed all'incremento Δx della variabile la quantità

$$\frac{\Delta f_{x_0,\Delta x}}{\Delta x} \equiv \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$$

L'incremento di f relativo al punto x_0 ed all'incremento Δx da una misura della variazione assoluta che subisce il valore della funzione al variare della variabile dal punto x_0 al punto $x_0 + \Delta x$. Il rapporto incrementale di f relativo al punto x_0 ed all'incremento Δx da una misura della variazione relativa che subisce il valore della funzione al variare della variabile dal punto x_0 al punto $x_0 + \Delta x$.

Example 4 Sia M(t) la funzione che esprime il montante (ricavo lordo) al tempo t prodotto dall'investimento al tempo 0 di un capitale C in un'attività economica o finanziaria. Investendo al tempo 0 il capitale C, al tempot $_0$ il montante sarà $M(t_0)$. Variando il tempo d'investimento da t_0 ad $t_0 + \Delta t$, il montante subirà una variazione assoluta pari a $\Delta M_{t_0,\Delta t} \equiv M(t_0 + \Delta t) - M(t_0)$, mentre il tasso di variazione ossia il rapporto tra la variazione del capitale e la variazione del tempo di investimento, sarà dato da $\Delta M_{t_0,\Delta t}/\Delta t$.

Example 5 Con riferimato al precedente Esempio, supponiamo che il montante al tempo t prodotto dall'investimento al tempo 0 di un capitale C in un'attività economica o finanziaria.sia espresso dalla funzione

$$M(t) = C(1 + i_p t)$$

essendo $i_p>0$. In questo caso variando il tempo di investimento da t_0 a $t_0+\Delta t$ il montante subirà una variazione pari a

$$\Delta M_{t_0,\Delta t} = C i_p \Delta t.$$

Tale variazione risulta essere proporzionale alla variazione del tempo di investimento ed al capitale inizialmente investito. il tasso di variazione è allora dato da

$$\frac{\Delta M_{t_0,\Delta t}}{\Delta t} = Ci_p.$$

Essa risulta essere costante nel tempo e misura la rapidità con cui l'attività economica incrementa il capitale inizialmente investito. Inoltre assumendo un capitale iniziale unitario, C=1, otterremo

$$\frac{\Delta M_{t_0,\Delta t}}{\Delta t} = i_p.$$

Dunque i_p rappresenta la rapidità di incremento nell'unità di tempo del capitale unitario, altrimenti noto come il tasso di interesse periodale dell'attività economica.

Example 6 Funzione d'utilità (neutra al rischio, avversa al rischio, favorevole al rischio)

Definition 7 (Funzione Derivabile in un Punto) Diciamo che f è derivabile in x_0 se esiste finito il

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$$

In tal caso chiamiamo il suddetto limite derivata (prima) della funzione f in x_0 e lo denotiamo con uno dei seguenti simboli

$$f'(x_0)$$
, $(Df(x))_{x=x_0}$, $\left(\frac{d}{dx}f(x)\right)_{x=x_0}$, $\left(\frac{df}{dx}\right)_{x_0}$

Sia $f: D_f \to \mathbb{R}$ una funzione reale di variabile reale.

Definition 8 (Massimi e Minimi Locali) Diciamo che un punto sia $x_0 \in D_f$ è un punto di massimo [risp. minimo] locale per f se esiste un intorno I_{x_0} di x_0 tale che

$$f(x) \le f(x_0)$$
 [risp. $f(x) \ge f(x_0)$] $\forall x \in D_f \cap I_{x_0}$.

Theorem 9 (Teorema di Fermat) Sia $x_0 \in \mathring{D}_f$ e sia f derivabile in x_0 se $x_0 \in un$ punto di massimo o di minimo locale per f, risulta

$$f'(x_0) = 0.$$

Proof. Per fissare le idee, supponiamo che x_0 sia un punto di massimo locale per f. Allora esiste un intorno I_{x_0} di x_0 tale che

$$f(x) \le f(x_0) \quad \forall x \in D_f \cap I_{x_0}.$$

Risulta allora per ogni $x \in D_f \cap I_{x_0}$ tale che $x < x_0$

$$\frac{f(x) - f(x_0)}{x - x_0} > 0,$$

e per ogni $x \in D_f \cap I_{x_0}$ tale che $x > x_0$

$$\frac{f(x) - f(x_0)}{x - x_0} < 0.$$

Pertanto avremo

$$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$

e

$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \le 0$$

se i suddetti limiti esistono. D'altra parte, l'ipotesi di derivabilità di f in x_0 garantisce l'esistenza dei suddetti limiti e l'uguaglianza di entrambi a $f'(x_0)$. Dovrà pertanto aversi sia $f'(x_0) \ge 0$ che $f'(x_0) \le 0$ e non rimane che concludere per la tesi del Teorema.

Da notare che la condizione del Teorema di Fermat è necessaria ma non sufficiente.

Example 10 Consideriamo la funzione $f : \mathbb{R} \to \mathbb{R}$ definita ponendo

$$f(x) \stackrel{def}{=} x^3$$
.

E' immediato riconoscere che f'(0) = 0, ma che il punto 0 non è né un punto di massimo né di minimo locale per f.

Example 11 La condizione del teorema di Fermat non vale se $x_0 \notin \mathring{D}_f$.

Sia [a,b] un intervallo chiuso e limitato di $\mathbb R$ e sia $f:[a,b]\to\mathbb R$ continua in [a,b] e derivabile in (a,b).

Theorem 12 (Teorema di Lagrange o del Valore Medio) Esiste almeno un punto $c \in (a,b)$ tale che

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Theorem 13 Proof. Introduciamo la funzione $g:[a,b] \to \mathbb{R}$ definita ponendo

$$g(x) \stackrel{def}{=} f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a), \quad \forall x \in [a, b]. \tag{1.1}$$

Notiamo che g è continua in [a,b], derivabile in (a,b) e risulta

$$g(a) = g(b) = 0. (1.2)$$

Per il teorema di Weierstrass, esistono due punti $c_M, c_m \in [a, b]$ dove la funzione g prende il suo valore massimo, $g(c_M) = M$, ed il suo valore minimo, $g(c_m) = m$. Se i punti c_M e c_m sono gli estremi dell'intervallo [a, b], allora dalla (1.2) si deduce immediatamente che la funzione g è costantemente nulla in [a, b] e pertanto

$$f(x) = f(a) + \frac{f(b) - f(a)}{b - a}(x - a),$$

 $per\ ogni\ x \in [a,b]\ e$

$$f'(x) = \frac{f(b) - f(a)}{b - a}$$

per ogni $x \in (a,b)$. Se altresì almeno uno dei due punti c_M e c_m è interno all'intervallo [a,b], ad esempio c_M , allora deve aversi

$$g'(c_M) = 0$$

e dalla (1.1) otteniamo

$$f'(c_M) = \frac{f(b) - f(a)}{b - a}.$$

Ciò completa la dimostrazione.

Corollary 14 (Teorema di Rolle) Se f(a) = f(b), allora esiste almeno un punto $c \in (a,b)$ tale che

$$f'(c) = 0.$$

Definition 15 (Derivate di ordine Superiore al Primo)

Notation 16 Denotiamo con $\bar{\mathbb{R}}$ l'insieme dei numeri reali \mathbb{R} con l'aggiunta dei simboli $-\infty$ e $+\infty$. Ossia $\bar{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$.

Sia (a,b) un intervallo di \mathbb{R} , siano $f:(a,b)\to\mathbb{R}$ e $g:(a,b)\to\mathbb{R}$ due funzioni derivabili in (a,b) e sia $x_0\in(a,b)$.

Theorem 17 (I Teorema di de L'Hôpital) Supponiamo che:

- $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0;$
- g(x) e g'(x) non nulle in $(a,b) \{x_0\}$;
- esiste il $\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \ell \in \bar{\mathbb{R}}.$

Allora esiste anche il $\lim_{x\to x_0} \frac{f(x)}{g(x)}e$ risulta

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \ell.$$

Theorem 18 (II Teorema di de L'Hôpital) Supponiamo che:

- $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = +\infty$;
- esiste il $\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \ell \in \bar{\mathbb{R}}$.

Allora esiste anche il $\lim_{x\to x_0} \frac{f(x)}{g(x)}e$ risulta

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \ell.$$

Sia $(a, +\infty)$ una semiretta destra di \mathbb{R} , siano $f:(a, +\infty) \to \mathbb{R}$ e $g:(a, +\infty) \to \mathbb{R}$ due funzioni derivabili in $(a, +\infty)$.

Theorem 19 (III Teorema di de L'Hôpital) Supponiamo che:

- $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = +\infty;$
- esiste il $\lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = \ell \in \bar{\mathbb{R}}.$

Allora esiste anche il $\lim_{x\to+\infty} \frac{f(x)}{g(x)}e$ risulta

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \ell.$$

Sia (a, b) un intervallo di \mathbb{R} , sia $x_0 \in (a, b)$ e sia $f : (a, b) \to \mathbb{R}$ una funzione che, per un certo $n \in \mathbb{N}$, sia derivabile fino all'ordine n - 1 in (a, b) e tale che esista anche $f^{(n)}(x_0)$.

Definition 20 (Polinomio di Taylor di Ordine n) Chiamiamo polinomio di Taylor di ordine n relativo alla funzione f di punto iniziale x_0 il polinomio $T_{f,x_0}: \mathbb{R} \to \mathbb{R}$ definito ponendo

$$T_{f,x_0}^n(x) \stackrel{\text{def}}{=} \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k, \quad \forall x \in \mathbb{R}.$$

Example 21 Come è noto la funzione eponenziale $\exp : \mathbb{R} \to \mathbb{R}$ ha derivata di ogni ordine $n \in \mathbb{N}$ sull'asse reale e risulta

$$f^{(n)}(x) = \exp(x)$$

per ogni $x \in \mathbb{R}$. Comunque fissato il punto $x_0 \in \mathbb{R}$ possiamo allora considerare il polinomio di Taylor di ordine n relativo alla funzione exp di punto iniziale x_0 . Risulta quindi

$$T_{\exp,x_0}^n(x) = \sum_{k=0}^n \frac{\exp(x_0)}{k!} (x - x_0)^k.$$

In particolare, scegliendo $x_0 = 0$, otteniamo

$$T_{\exp,0}^n(x) = \sum_{k=0}^n \frac{1}{k!} x^k.$$

Definition 22 Il polinomio di Taylor relativo alla funzione esponenziale di punto iniziale $x_0 = 0$ è anche noto come polinomio di Mc Laurin.

Example 23 La funzione logaritmo

Definition 24 (Resto Associato al Polinomio di Taylor) Chiamiamo resto associato al polinomio di Taylor di ordine n relativo alla funzione f di punto iniziale x_0 la funzione $R_{f,x_0}^n:(a,b)\to\mathbb{R}$ definita ponendo

$$R_{f,x_0}^n(x) \stackrel{def}{=} f(x) - T_{f,x_0}^n(x), \quad \forall x \in \mathbb{R}.$$

Sia $R_n:(a,b)\to\mathbb{R}$ il resto associato a $T_{f,x_0}^n:\mathbb{R}\to\mathbb{R}$.

Theorem 25 (Valutazione di Peano del Resto) Supponiamo che la funzione $f:(a,b) \to \mathbb{R}$ sia derivabile fino all'ordine n in (a,b). Risulta allora

$$\lim_{x \to x_0} \frac{R_{f,x_0}^n(x)}{(x - x_0)^n} = 0.$$

Si dice anche che $R^n_{f,x_0}:(a,b)\to\mathbb{R}$ è in x_0 un infinitesimo di ordine superiore ad $(x-x_0)^n$ e si scrive $R^n_{f,x_0}(x)=o((x-x_0)^n)$.

Theorem 26 (Valutazione di Lagrange del Resto) Supponiamo che la funzione $f:(a,b)\to\mathbb{R}$ sia derivabile fino all'ordine n in (a,b) e fino all'ordine n+1 in $(a,b)-\{x_0\}$. Allora, per ogni $x\in(a,b)$ esiste un opportuno ξ strettamente compreso tra x_0 ed x tale che

$$R_{f,x_0}^n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}.$$
 (1.3)

Example 27 Con riferimento all'Esempio (21), consideriamo il problema di dare una valutazione del numero reale trascendente $\exp(1) \equiv e$. Calcolando nel punto x=1 il polinomio di Mc Laurin di ordine n relativo alla funzione esponenziale, abbiamo

$$T_{\text{exp},0}^n(1/2) = \sum_{k=0}^n \frac{1}{k!}.$$

Più esplicitamente,

$$T_{\text{exp},0}^{n}(1/2) = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \cdots$$

= $1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \cdots$

Come si vede il calcolo di $T^n_{\exp,0}(1)$ si basa esclusivamente su operazioni elementari di somma e prodotto di numeri razionali. Pertanto il calcollo di $T^n_{\exp,0}(1)$ non presenta alcun problema per ogni $n \in \mathbb{N}$. Si pone nondimeno il problema di sapere entro quale limite il numero razionale $T^n_{\exp,0}(1)$ costituisce un'approssimazione del numero reale trascendente e. Allo scopo, applicando la valutazione di Lagrange (1.3), consideriamo il resto

$$R_{\exp,0}^n(1) = \exp(1) - T_{\exp,0}^n(1) = \frac{\exp(\xi)}{(n+1)!}.$$

Pur non conoscendo quale punto sia esattamente $\xi \in (0,1)$ sappiamo che, per la crescenza della funzione esponenziale, risulta certamente

$$\exp(\xi) < \exp(1) = e < 3.$$

Pertanto avremo

$$R_{\text{exp},0}^n(1) < \frac{3}{(n+1)!}$$

e ciò fornisce una valutazione in termi razionali dell'errore che commettiamo sostituendo ad e il valore $T^n_{\mathrm{exp},0}(1)$ in dipendenza dalla scelta di n. Così scegliendo n=5, avremo che

$$T_{\text{exp},0}^5(1/2) = 1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120}$$

approssima il numero e con un errore

$$R_{\exp,0}^5(1) < \frac{3}{6!} = \frac{1}{240}.$$

Mentre se vogliamo una approssimazione di e con un errore minore di 10^{-4} dovremo scegliere il valore $T^n_{\exp,0}(1)$ in corrispondenza ad un $n \in \mathbb{N}$ soluzione della disequazione

$$\frac{3}{(n+1)!} < 10^{-4}.$$

Ossia

$$(n+1)! > 3 \cdot 10^4.$$

Si vede che il minino $n \in \mathbb{N}$ soluzione di quest'ultima disequazione è n=7. Infatti

$$8! = 40320 > 3 \cdot 10^4.$$

Pertanto

$$T_{\text{exp},0}^{7}(1/2) = 1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \frac{1}{720} + \frac{1}{5040} = 2.71825$$

costituisce un'approssimazione di e con un errore minore di 10^{-4} .

Exercise 28 Con riferimento all'Esempio (27), dare una valutazione del numero reale trascendente $\exp(1/2) \equiv \sqrt{e}.con$ un'approssimazione caratterizzata da un errore minore di 10^{-4} .