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What are we going to study?

Binary outcome models

Multinomal outcome models

Mixture Models

Models of Count Data

Panel data Models
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Before starting...

We need an introduction on the basic probability models for
categorical variables.

Binary: “Agree/Disagree”,”Presence/Absence”

Nominal: brand, preferred political party

Ordinal: levels of agreement, degree

Count: number of events, number of subjects, number of
clicks

Note: for simplicity we will treat ordinal variables as nominal.
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How do we proceed?

For each presented model, we will specify:

probabilistic properties: model definition, support of the
variable, number of unknown parameters, analytical form
of the probability mass function (pmf), moments.

statistical properties: Maximum Likelihood Estimator
(MLE), Fisher Information and Standard Errors.
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Continuous probability distributions

Let X be a random variable, such that X ∈ R. The main
function we should consider are:

probability density function: f (x), f : R→ R+; f (x) ≥ 0
and

∫
R f (x)dx = 1 .

probability distribution function: P(X ≤ x) = F (x), with:

F (x) =
∫ x

−∞ f (x)dx

F : R→ [0, 1].

limx→−∞ F (x) = 0

limx→+∞ F (x) = 1

quantile function, defined as Q(F (x)) = F (x)−1, such
that Q : [0, 1]→ R.
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Discrete probability distributions

Let X be a random variable, such that X ∈ I. The main
function we should consider are:

probability mass function: Pr(X = x), with
Pr : I→ [0, 1], Pr(X = x) ≥ 0 and

∑
i Pr(X = xi ) = 1.

probability distribution function: Pr(X ≤ x) = F (x), with:

F (x) =
∑

i :xi≤x Pr(X = xi )

F : I→ [0, 1].

limx→−∞ F (x) = 0

limx→+∞ F (x) = 1

limx→x0+
F (x) = F (x0)

quantile function, defined as Q(F (x)) = F (x)−1, such
that Q : [0, 1]→ I.
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Moments of a distribution

Continuous random variables

E (X ) = µ =
∫
R f (x)xdx

V (X ) = σ2 =
∫
R f (x)(x − µ)2dx

Discrete random variables

E(X ) =
∑n

i=1 pi · xi

V(X ) =
∑n

i=1 pi · (xi − µ)2,
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Maximum Likelihood Inference

Let assume to observe an i .i .d . sample X1, . . . ,Xn, with
Xi ∼ fθ(X ) depending on the parameter (or vector of
parameters) θ ∈ Θ, and X ∈ R.

We define the likelihood function as

L(θ) =
n∏

i=1

fθ(Xi ),

and the log-likelihood function as

`(θ) =
n∑

i=1

log(fθ(Xi )).
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Maximum Likelihood Estimation

The Maximum Likelihood Estimation (MLE) consists in
maximizing the Likelihood function w.r.t. the unknown
parameter θ.

Analytic Differentiate the likelihood function with respect
to the parameter vector and set the resulting gradient
vector to zero. Solve the system of equations to find
extrema. Take the second derivative to make sure that
you have a maximum rather than a minimum. This
method only works if there is an analytical solution.
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Maximum Likelihood Estimation

Grid Search If you know θ lies in a subspace of R, do an
exhaustive search over that region for the θ that produces
the largest likelihood. In other words, try each possible
value of θ and find θ̂, which is the θ that produces the
largest likelihood. This is a good way of showing that you
can find the maximum of the likelihood function by
repeated approximation and iteration. However, it is not
practical in most cases and becomes much more difficult
when the parameter space is high dimensional (even just
three-dimensional).

Numerical This is the most common (when analytical
solutions are unavailable). Basically, we give the computer
a set of starting values θ0 for che vector θ, and let a hill
climbing algorithm (Newton-Raphson, BHHH, DFP, etc.)
find the maximum θ̂ML.
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Fisher Information and Standard Errors

By CLT we know that
√
n(θ̂ − θ)

D−→ N(0, I (θ)−1).

Therefore, the (asymptotic) standar error of an ML estimator,
θ̂ML, is calculated by the inverse of the Fisher Information
matrix:

se(θ) =

√
[I (θ)]−1,

where the Fisher Information matrix is

I (θ) = −E [H(θ)]

and the the Hessian matrix H, is

H(θ) =
∂2`(θ)

∂θ∂θ′
.
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Binary data: Bernoulli distribution

Y ∼ Ber(p)

supp (Y ) = {0, 1}

One parameter: p ∈ (0, 1).

Probability mass function: Pr(Y = y) = py (1− p)(1−y).

E [Y ] = p.

V [Y ] = p(1− p).
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Binary data: Bernoulli distribution

Maximum Likelihood Estimation

L(p) =
n∏

i=1

pyi (1− p)(1−yi )

`(p) = log p
n∑

i=1

yi + log(1− p)
n∑

i=1

(1− yi )

MLE: value of the unknown parameter p that satisfies the first
derivative of the log-likelihood (score function) equal to zero

∂`(p)

∂p
=

∑n
i=1 yi
p

−
∑n

i=1 (1− yi )

(1− p)
= 0.
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Binary data: Bernoulli distribution

n∑
i=1

yi − p̂
n∑

i=1

yi = p̂
n∑

i=1

(1− yi )

p̂ =
1

n

n∑
i=1

yi

∂2`(p)

∂p2
= −

∑n
i=1 yi
p2

−
∑n

i=1 (1− yi )

(1− p)2

Since p ∈ [0, 1] and yi ∈ {0, 1}, the second derivative of the
log-likelihood (the derivative of the score function) is negative:
p̂ is the Maximulm Likelihood estimator.
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Binary data: Binomial distribution

By defining X =
∑n

i=1 Yi where Yi
iid∼ Ber(p), we get:

X ∼ Bin(n, p)

supp (X ) = {0, 1}

Two parameters:

p ∈ (0, 1)

n ∈ N

Probability mass function:

Let x ∈ {0, 1, . . . , n} represent the number of successes

Pr(X = x) =
(
n
x

)
px(1− p)(n−x).

E [X ] = np.

V [X ] = np(1− p).
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R commands: Binomial distribution

dbinom(x, size, prob, log = FALSE)

pbinom(q, size, prob, lower.tail = TRUE, log.p =

FALSE)

qbinom(p, size, prob, lower.tail = TRUE, log.p =

FALSE)

rbinom(n, size, prob)
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R commands: Bernoulli distribution

dbinom(x, size=1, prob, log = FALSE)

pbinom(q, size=1, prob, lower.tail = TRUE, log.p =

FALSE)

qbinom(p, size=1, prob, lower.tail = TRUE, log.p =

FALSE)

rbinom(n, size=1, prob)
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Categorical data: Multinomial distribution

Let us consider a generalization of the Binomial distribution.
By extending supp(X ) = {1, . . . , n}, i ∈ {1, . . . , k} with∑k

i=1 xi = n, we get:

X ∼ Multinomial(p)

Three parameters:

p ∈ [0, 1]k event probabilities such that
∑k

i=1 pi = 1

k ∈ N number of mutually exclusive events

n ∈ N number of trials

Probability mass function:

Pr(X = x) = n!
x1!···xk !p

x1
1 · · · p

xk
k

x = {xi : i = 1, . . . , k} and
∑k

i=1 xi = n
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Categorical data: Multinomial distribution

Moments of the distributon:

E [X ] = (E (X1), . . . ,E (Xk)) and E [Xi ] = npi

V [X ] = (V (X1), . . . ,V (Xk)) and V [Xi ] = npi (1− pi )

Cov [Xi ,Xj ] = −npipj for i 6= j

Maximum Likelihood Estimation of p (n and k are known):

L(p) =
n!

x1! · · · xk !
px11 · · · p

xk
k

L(p) = n!
k∏

i=1

pxii
xi !
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Categorical data: Multinomial distribution

`(p) = log(n!) +
k∑

i=1

xi log(pi )− log(xi !)

By model assumption `(p) has to be maximized under the
constraint

∑k
i=1 pi = 1. Therefore, we define the Lagrangian

function:

`(p, λ) = `(p) + λ(1−
k∑

i=1

pi )

`(p, λ) = log(n!) +
k∑

i=1

xi log(pi )− log(xi !) + λ(1−
k∑

i=1

pi )

`(p, λ)

∂pi
=

xi
pi
− λ = 0

p̂i =
xi
λ
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Categorical data: Multinomial distribution

∂2`(p, λ)

∂2pi
= − xi

p2i
.

Since:
k∑

i=1

pi =
k∑

i=1

xi
λ

1 =
1

λ

k∑
i=1

xi

n = λ.

Therefore, we get:

p̂i =
xi
n

p̂ =
(x1
n
, . . . ,

xk
n

)
.
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R commands: Multinomial distribution

rmultinom(n, size, prob)

dmultinom(x, size = NULL, prob, log = FALSE)

No commands available for quantile and cumulative
distribution functions.
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Count data: Poisson Distribution

Y ∼ Pois(λ)

One parameter λ > 0

supp (Y ) = N0

Probability mass function: Pr(Y = y) = e−λλy/y !

E [Y ] = V [Y ] = λ
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Count data: Poisson Distribution

Maximum likelihood Estimation

L(λ) =
n∏

i=1

e−λλyi/yi !

`(λ) =
n∑

i=1

log
(
e−λλyi/yi !

)

`(λ) =
n∑

i=1

(
log(e−λ) + log(λyi )− log(yi !)

)

`(λ) = −nλ+ log(λ)
n∑

i=1

yi −
n∑

i=1

log(yi !)
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Count data: Poisson Distribution

∂`(λ)

∂λ
= −n +

1

λ

n∑
i=1

yi = 0

λ̂ =
1

n

n∑
i=1

yi

and

∂2`(λ)

∂2λ
= − 1

λ2

n∑
i=1

yi .
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R commands: Poisson distribution

dpois(x, lambda, log = FALSE)

ppois(q, lambda, lower.tail = TRUE, log.p = FALSE)

qpois(p, lambda, lower.tail = TRUE, log.p = FALSE)

rpois(n, lambda)


