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Logit models for multinomial responses

Let Y be a categorical response with J categories.
Multicategory logit models for nominal response variables
simultaneously describe log odds for all

(J
2

)
pairs of categories.

Let πj(x) = P(Y = j |x) with fixed x,
∑

j πj(x) = 1.

For observations at that setting, we treat the counts at the J
categories of Y as multinomial with probabilities
{π1(x) . . . , πJ(x)}
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Alligator Food Choice Example
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Baseline-Category Logits

Logit models pair each response category with a baseline
category, often the last one or the most common one. The
J-th baseline-category logit is

log
πj(x)

πJ(x)
= αj + β

′
jx, j = 1, . . . , J − 1

simultaneously describes the effects of x on the J − 1
underlying logit models.
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the effects vary according to the response paired with the
baseline.

these J − 1 equations determine parameters for logits with
other pairs of response categories:

log
πa(x)

πb(x)
= log

πa(x)

πJ(x)
− log

πb(x)

πJ(x)
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Estimating response probabilities

The equation that expresses multinomial logit models directly
in terms of response probabilities {πj(x)} is

πj(x) =
exp

(
αj + βjx

)
1 +

∑J−1
h=0 exp (αh + βhx)

with αJ = 0 and βJ = 0

Note that
∑

j πj(x) = 1 and that for J = 2 the response
variable is binomial and the model becomes a binary logit
model.
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Maximum Likelihood Inference

To estimate the unknown parameters, we need to maximize the
likelihood subject to {πj(x)} simultaneously satisfying the
J − 1 equations that specify the model;

for i = 1, . . . , n let yi = (yi1, . . . , yiJ) represent the multinomial
trial for subject i, where yi = 1 when the response is in
category j and yi = 0 otherwise: therefore,

∑
j yij = 1;

let xi = (xi1, . . . , xip) denote the vector of covariates for the
i-th observed individual ;

let β = (βj1, . . . , βjp) denote the parameters for the j-th logit
model.
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Maximum Likelihood Inference

By considering the n observations, the log-likelihood function is

`(α,β) =
n∑

i=1

log

 J∏
j=1

πj(xi )
yij


By considering πJ = 1−

∑J−1
j=1 πj and yiJ = 1−

∑J−1
i=1 , we

rewrite the contribution to the log likelihood of the i-th subject
as

log

 J∏
j=1

πj(xi )
yij

 =

J−1∑
j=1

yij log πj(xi ) +

1−
J−1∑
j=1

yij

 log

1−
J−1∑
j=1

πj(xi )


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Maximum Likelihood Inference

log

 J∏
j=1

πj(xi )
yij

 =

J−1∑
j=1

yij log
πj(xi )

1−
∑J−1

j=1 πj(xi )
+ log

1−
J−1∑
j=1

πj(xi )


By considering the n individuals, we get

`(α,β) =

n∑
i=1

J−1∑
j=1

yij(αj + β
′
jx)− log

1 +
J−1∑
j=1

exp(αj + β
′
jxi )


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Maximum Likelihood Inference

`(α,β) =
J−1∑
j=1

[
αj

(
n∑

i=1

yij

)
+

p∑
k=1

βjk

(
n∑

i=1

yijxik

)]

−
n∑

i=1

log

1 +
J−1∑
j=1

exp
(
αj + β

′
jxi
)

where:∑n
i=1 yijxik is the sufficient statistic for βjk with

j = 1, . . . , J − 1 and k = 1, . . . , p;∑n
i=1 yij is the sufficient statistic for αj with

j = 1, . . . , J − 1;
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Maximum Likelihood Inference

The log-likelihood is concave, and the Newton-Raphson
method yields the ML parameter estimates.

The estimators have large-sample normal distributions.

Their asymptotic standard errors are square roots of
diagonal elements of the inverse information matrix.
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Alternative approach

An alternative fitting approach fits binary logit models
separately for the J − 1 pairings of responses:

for j = 1 alone, using observation 1 and J for estimating
α1 and β1;

for j = 2 alone, using observation 2 and J for estimating
α2 and β2;

. . .

for j = J − 1 alone, using observation J − 1 and J for
estimating αJ−1 and βJ−1;
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Alternative approach

log
πj(x)/(πj(x) + πJ(x))

πJ(x)/(πj(x) + πJ(x))

The separate-fitting estimates differ from the ML estimates for
simultaneous fitting of the J − 1 logits. They are less efficient.

They are less efficient, tending to have larger standard errors.
However, Begg and Gray (1984). showed that the efficiency
loss is minor when the response category having highest
prevalence is the baseline.
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MC Logit Model as Multivariate GLM

A GLM having univariate response variable in the natural
exponential family is

g(µi ) = xi
′β

with:

link function g ;

expected response µi = E (Yi );

vector of regressors xi of length p;

vector of parameters β of length p.
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MC Logit Model as Multivariate GLM

Let yi = (yi1, yi2, . . . )
′ be a vector response for subject i . We

define the multivariate GLM as

g(µi ) = Xiβ,

where:

µi = E (Yi );

g is a vector of link functions;
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Multinomial outcome logit models

Xi is the model matrix, such that its row h contains the
explanatory variables corresponding to the response yih:

Xi =


1 x′i 0 0 . . . 0
0 1 x′i 0 . . . 0

0 0 0
. . . 0 0

0 . . . 0 0 1 x′i

 ;

β′ = (α1,β1, . . . , αJ−1,βJ−1).
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Alligator Food Choice Example

Example from ”Categorical Data Analysis”, Agresti, 2002.
Data: 219 alligators captured in four Florida lakes.

Nominal response variable: primary food type (five
categories: fish, invertebrate, reptile, bird, other)

Covariates:

Lake of capture (L)

Gender (G)

Size (S)

Baseline-category logit models can investigate the effects of L,
G, and S on primary food type.
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Alligator Food Choice Example
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G 2 vs χ2 statistics

Used to determine whether there is a statistically significant
difference between the expected frequencies Ei and the
observed frequencies Oi in one or more categories of a
contingency table.

G = 2
∑
i

Oi · ln
(
Oi

Ei

)
The total observed count should be equal to the total expected
count: ∑

i

Oi =
∑
i

Ei = N
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G 2- statistic

Likelihood-ratio or maximum likelihood statistical
significance;

use it when the sample size is large;

more reliable for comparing models than for testing fit:
the smaller is the value of the statistic, the closer the
observed frequencies are to the expected frequencies.
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Alligator Food Choice Example
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Alligator Food Choice Example
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Alligator Food Choice Example

Effects of lake (L) and size (S) on the odds that alligators
select other primary food types instead of fish.
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Multinomial outcome logit models in R

library(nnet)

multinom(formula, data, weights, subset,

na.action, contrasts = NULL, Hess = FALSE,

summ = 0, censored = FALSE, model = FALSE,

...)


