0.1 Soluzioni esercitazione VIII, del 9/12/2008

Esercizio 0.1.1. Risolvere, al variare del parametro reale k, il seguente sistema lineare

$$\begin{cases} x+y+z=1\\ x+ky+kz=-1\\ kx+z=0 \end{cases}$$

Soluzione: Il determinante della matrice dei coefficienti è k-1, che è quindi diverso da zero solo per $k \neq 1$. Per tali valori di k il teorema di Cramer garantisce esistenza e unicità della soluzione. Essa, usando sempre il teorema di Cramer risulta essere

$$(x, y, z) = (\frac{k+1}{k+1}, k+2, -\frac{k^2+k}{k-1})$$

Invece, per k=1 si riconosce subito l'incompatibilità della prima e della seconda equazione. Dunque, in questo caso il sistema non ammette soluzioni.

Esercizio 0.1.2. Si considerino i seguenti vettori di \mathbb{R}^3 : $v_1 = (0, 0, 2), v_2 = (1, 2, 1), v_3 = (1, 0, 1).$

- 1. Mostrare che formano una base di \mathbb{R}^3
- 2. Trovare le coordinate di v = (1, -3, -2) nella nuova base $\{v_1, v_2, v_3\}$

Soluzione:

- 1. Ricordando che n vettori in \mathbb{R}^n formano una base se e soltanto se sono linearmente indipendenti, è sufficiente mostrare l'indipendenza lineare di v_1, v_2, v_3 . A tal fine basta mostrare che la matrice A delle loro componenti ha determinante diverso da zero. Effettivamente si trova $det(A) = -4 \neq 0$.
- 2. Occorre determinare tre numeri reali a, b, c tali che $v = av_1 + bv_2 + cv_3$. Sfruttando la linearità delle operazioni fra vettori e la proprietà che due vettori sono uguali se e solo se hanno le componenti ordinatamente uguali giungiamo a ridurre il problema alla risoluzione del sistema lineare

$$\begin{cases} b+c=1\\ 2b=-3\\ 2a+b+c=-2 \end{cases}$$

la cui unica soluzione è $(a,b,c)=(-\frac{3}{2},-\frac{3}{2},\frac{5}{2})$. Questa terna rappresenta le coordinate di v nella nuova base $\{v_1,v_2,v_3\}$.

Esercizio 0.1.3. Sia S lo spazio delle soluzioni del sistema omogeneo

$$\begin{cases} 2x_1 + x_2 + 3x_3 - x_4 = 0 \\ 2x_1 + x_2 = 0 \\ 3x_3 - x_4 = 0 \\ -2x_1 - x_2 + 3x_3 - x_4 = 0 \end{cases}$$

- 1. Determinare una base per S.
- 2. Dire quale fra i seguenti vettori è ortogonale ad S: v = (0, 0, 1, 1), w = (2, -1, 3, -1).

Soluzione:

1. Osservando che la prima equazione è somma della seconda e della terza e che la quarta equazione è differenza della terza con la seconda, possiamo eliminare le equazioni prima e quarta. Ponendo allora $x_2 = h, x_4 = k$ si trovano subito

$$S = \{(-\frac{h}{2}, h, \frac{k}{3}, k\}$$

Ponendo allora prima h=1 e k=0 e poi h=0 e k=1 si trova che una base di S è data dai vettori $v_1=(-\frac{1}{2},1,0,0)$ e $v_2=(0,0,\frac{1}{3},1)$.

2. Ricordando che un vettore è ortogonale ad uno spazio se e soltanto se è ortogonale ad ogni vettore di una sua base, andiamo a calcolare prima i prodotti scalari (v, v_1) e (v, v_2) e poi i prodotti scalari (w, v_1) e (w, v_2) . Si ha

$$(v, v_1) = 0$$
 $(v, v_2) = \frac{4}{3} \neq 0$

Dunque $v \notin S^{\perp}$. Poi

$$(w, v_1) = -2 \neq 0$$

e questo è già sufficiente per concludere che neanche w appartiene ad S^{\perp} .

Esercizio 0.1.4. Studiare, al variare di x > 0, il carattere delle seguenti serie

1.
$$\sum_{n=0}^{\infty} \frac{(n+1)x^n}{2n+3}$$

2.
$$\sum_{n=1}^{\infty} \frac{1}{n^2 2^{n+1} x^n}$$

3.
$$\sum_{n=1}^{\infty} \frac{n^2(x+1)^n}{n^2-1}$$

$$4. \sum_{n=1}^{\infty} \frac{1}{n^3 lg(n)x^n}$$

Soluzione:

1. Applichiamo il criterio del rapporto. Si ha

$$\lim_{n\to\infty} \sqrt[n]{\frac{(n+1)x^n}{2n+3}} = \lim_{n\to\infty} \frac{\sqrt[n]{n+1}}{\sqrt[n]{2n+3}} \cdot x$$

Osserviamo adesso che entrambi le radici rimaste convergono ad 1 (si può vedere col criterio del confronto o, più in generale, mostrando che se p è un polinomio, allora $\sqrt[n]{p(n)} \to 1$). Quindi il precedente limite fa x. Ne segue che per 0 < x < 1 c'è covergenza e per x > 1 divergenza. Per x = 1 la serie, mediante sostituzione, si riduce alla serie $\sum \frac{n+1}{2n+3}$ che chiaramente diverge in quanto il suo termine generico non tende a zero.

2. La serie in questione coincide con $\frac{1}{2}\sum \frac{1}{n^22^nx^2}$. Applichiamo il criterio della radice. Abbiamo

$$\lim_{n \to \infty} \sqrt[n]{\frac{1}{n^2 2^n x^2}} = \lim_{n \to \infty} \frac{1}{2x \sqrt[n]{n^2}} = \frac{1}{2x}$$

Quindi vi è convergenza se $\frac{1}{2x} < 1$, cioè se $x > \frac{1}{2}$; vi è invece divergenza se $\frac{1}{2x} > 1$, cioè se $0 < x < \frac{1}{2}$. Infine, per $x = \frac{1}{2}$, la serie diventa, tramite semplice sostituzione,

$$\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^2 2^n \frac{1}{2^n}} = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^2}$$

che certamente converge, essendo, a meno di una costante moltiplicativa, la serie armonica generalizzata di esponente maggiore di 1.

3. Applichiamo il criterio del rapporto. Si ha

$$\lim_{n\to\infty} \frac{(n+1)^2(x+1)^{n+1}}{(n+1)^2-1} \cdot \frac{n^2-1}{n^2(x+1)^n} = \lim_{n\to\infty} (x+1) \cdot \frac{(n+1)^2(n^2-1)}{n^2((n+1)^2-1)} = x+1$$

Poichè x > 0, allora x+1 > 1. Quindi il limite è sempre maggiore di 1, di conseguenza la serie diverge per ogni x > 0.

4. Applichiamo il criterio del rapporto. Si ha

$$\lim_{n \to \infty} \frac{1}{(n+1)^3 lg(n+1)x^{n+1}} \cdot n^3 lg(n)x = \lim_{n \to \infty} \frac{n^3 lg(n)}{(n+1)^2 lg(n+1)} \cdot \frac{1}{x} = \frac{1}{x}$$

Quindi vi è convergenza per $\frac{1}{x} < 1$, cioè per x > 1; vi è divergenza per 1/x > 1, cioè per 0 < x < 1. Per x = 1, invece, la serie si riduce a $\sum \frac{1}{n^3 lg(n)}$. Osserviamo allora che per ogni $n \ge 1$ risulta $lg(n) \ge 1$ e quindi

$$\frac{1}{n^3 lg(n)} \le \frac{1}{n^3}$$

Quindi $\sum \frac{1}{n^3 lg(n)} \leq \sum \frac{1}{n^3}$. Poichè la seconda serie converge, essendo una serie armonica di esponente maggiore di 1, converge anche la prima per il criterio del confronto.

Nota 0.1.5. Per chi ha usato il criterio della radice, si ricorda il limite notevole $\sqrt[n]{lg(n)} \to 1$.

Esercizio 0.1.6. Studiare il grafico delle seguenti funzioni

1.
$$f(x) = \frac{1-x}{x^2+1}$$

2.
$$f(x) = \frac{x-1}{x^3}$$

3.
$$f(x) = \sqrt{x+1} - \sqrt{x}$$

Soluzione:

1. (a) (DOMINIO)

In una frazione l'unico problema è dato dal denominatore, il quale non può essere nullo. In questo caso il denominatore è somma di due quantità positive e quindi è sempre positivo. Per cui il dominio D coincide con tutto l'asse reale.

(b) (STUDIO DEL SEGNO) - facoltativo

Dal momento che il denominatore è positivo, il segno di f(x) è dato solo dal numeratore. Quindi $f(x) \ge 0 \Leftrightarrow 1-x \ge 0 \Leftrightarrow x \le 1$.

(c) (LIMITI)

Poichè $D=\mathbb{R}$, bisogna calcolare solo i limiti per $x\to\pm\infty$. Entrambi sono evidentemente uguali a 0 in quanto il numeratore è un polinomio di grado minore del denominatore.

(d) (STUDIO DELLA DERIVATA PRIMA)

La regola di derivazione del rapporto di funzioni porta subito a $f'(x) = \frac{x^2 - 2x - 1}{(x^2 + 1)^2}$. Andiamo a studiarne il segno: il denominatore è sempre positivo, mentre il numeratore è positivo per $x < 1 - \sqrt{2}$ e $x > 1 + \sqrt{2}$, e negativo per $1 - \sqrt{2} < x < 1 + \sqrt{2}$. Per cui f(x) è crescente per $x < 1 - \sqrt{2}$ e $x > 1 + \sqrt{2}$ e decrescente altrove. Per cui in corrispondenza di $x = 1 - \sqrt{2}$ c'è un punto di massimo, mentre un punto di minimo è presente in corrispondenza di $x = 1 + \sqrt{2}$.

(e) (STUDIO DELLA DERIVATA SECONDA)

La regola di derivazione del rapporto di funzioni porta (con un po' di calcoli!) a

$$f''(x) = \frac{-2(x^3 - 3x^2 - 3x + 1)}{(x^2 + 1)^3} = \frac{-2(x + 1)(x - (2 + \sqrt{3})(x - (2 - \sqrt{3})))}{(x^2 + 1)^3}$$

Lo studio del segno porta allora a concludere che la derivata seconda è positiva (e quindi f è convessa) per x < -1 e $2 - \sqrt{3} < x < 2 + \sqrt{3}$ ed è negativa (e quindi f è concava) altrove. Per $x = 1, 2 \pm \sqrt{3}$ ci sono dei punti di flesso.

(f) (GRAFICO)

vedere il file grafico prima funzione. Scusate ma non sono riuscito a inserirlo in questo documento.

2. (a) (DOMINIO)

In una frazione l'unico problema è dato dal denominatore, il quale non può essere nullo. In questo caso il denominatore è x^3 che è diverso da zero se e soltanto se $x \neq 0$. Per cui $D = (-\infty, 0) \cup (0, \infty)$.

(b) (STUDIO DEL SEGNO) - facoltativo

Il denominatore è positivo se e solo se $x \ge 0$; invece il numeratore è positivo se e solo se $x \ge 1$. Quindi la funzione è positiva per x < 0 e per x > 1 e negativa per 0 < x < 1.

(c) (LIMITI)

Poichè $D=(-\infty,0)\cup(0,\infty)$, bisogna calcolare i limiti per $x\to\pm\infty$ e i limiti per $x\to 0$ da entrambe le direzioni. Evidentemente si ha

$$\lim_{x \to \pm \infty} f(x) = 0$$

$$\lim_{x\to 0^+} f(x) = -\infty$$

$$\lim_{x\to 0^-} f(x) = \infty$$

(d) (STUDIO DELLA DERIVATA PRIMA)

La regola di derivazione del rapporto di funzioni porta subito a $f'(x) = \frac{-2x+3}{x^4}$. Andiamo a studiarne il segno: il denominatore è sempre positivo, mentre il numeratore è positivo per x < 3/2. Per cui f(x) è crescente per x < 3/2 (separamente negli intervalli $(-\infty,0)$ e (0,3/2) e decrescente per x > 3/2. Per cui in corrispondenza di x = 3/2 c'è un punto di massimo, mentre invece non ci sono punti di minimo.

(e) (STUDIO DELLA DERIVATA SECONDA)

La regola di derivazione del rapporto di funzioni porta a

$$f''(x) = \frac{6(x-2)}{x^5}$$

Quindi la derivata seconda è positiva (e quindi f è convessa) per x < 0 e per 0 < x < 2 ed è negativa (e quindi f è concava) per x > 2. Per x = 2 c'è un punto di flesso.

(f) (GRAFICO) vedere il file grafico seconda funzione.

3. (a) (DOMINIO)

Nelle radici quadrate (più in generale nelle radici di indice pari) il problema è dato dal radicando, che deve essere maggiore o uguale di zero. Imponendo allora la validità di entrambe le condizioni $x+1\geq 0$ e $x\geq 0$, si trova subito che $D=[0,\infty)$.

(b) (STUDIO DEL SEGNO) - facoltativo

Si ha

$$\sqrt{x+1} - \sqrt{x} \ge 0 \Leftrightarrow \sqrt{x+1} \ge \sqrt{x} \Leftrightarrow x+1 \ge x \Leftrightarrow 1 > 0$$

Quindi f(x) > 0 per ogni $x \in D$.

(c) (LIMITI e COMPORTAMENTO AGLI ESTREMI DEL DOMINIO) Poichè $D = [0, \infty)$, bisogna calcolare solo il limite per $x \to \infty$. Si ha

$$lim_{x\to\infty}\sqrt{x+1} - \sqrt{x} = lim_{x\to\infty}\frac{(\sqrt{x+1} - \sqrt{x})(\sqrt{x+1} + \sqrt{x})}{\sqrt{x+1} + \sqrt{x}} =$$

$$= \lim_{x \to \infty} \frac{1}{\sqrt{x+1} + \sqrt{x}} = 0$$

All'altro estremo si ha f(0) = 1.

(d) (STUDIO DELLA DERIVATA PRIMA)

Si ha

$$f'(x) = \frac{1}{2\sqrt{x+1}} - \frac{1}{2\sqrt{x}} = \frac{2(\sqrt{x} - \sqrt{x+1})}{2\sqrt{x(x+1)}}$$

Osserviamo che il denominatore è sempre positivo (prodotto fra una radice e un numero positivo), mentre il numeratore è sempre negativo (lo studio del segno ci dice che l'opposto del numeratore è sempre positivo!). Quindi f'(x) < 0 per ogni $x \in D$ e quindi f è decrescente in tutto il suo dominio.

(e) (STUDIO DELLA DERIVATA SECONDA)

Conviene partire da $f'(x) = \frac{1}{2\sqrt{x+1}} - \frac{1}{2\sqrt{x}}$. Si ha

$$f''(x) = \frac{1}{4} \cdot \left(\frac{1}{\sqrt[3]{(x+1)^2}} - \frac{1}{\sqrt[3]{x^2}}\right)$$

Osservando allora che la parentesi è sempre positiva, si conclude che f è convessa in tutto il suo dominio.

(f) (GRAFICO)

vedere il file grafico terza funzione.