MATEMATICA GENERALE - Canali III, IV A.A. 2012/2013 - Simulazione d'Esame

Cognome	Nome	Matricola
Canale	\Box III (Prof. Manzini)	\square IV (Prof.ssa Tessitore)
Firma		
1) $(9 p.ti)$ Studiare la fun	nzione $f(x) = xe^{\frac{1}{x} + x}$	
a] Dominio e segno		
b] Limiti		
•		
c] Determinazione punti	critici (ovvero stazionari)	
d] Studio massimi e mini	mi	

e] Grafico (lo studio di eventuali flessi è opzionale).

$$\int_{1}^{2} \frac{x}{\sqrt{1+x^2}} e^{\sqrt{1+x^2}} dx$$

3) (7 p.ti) Studiare al variare del parametro $t \in \mathbb{R}$ le soluzioni del sistema e trovarle:

$$\begin{cases} x - y &= 1 \\ 2x + ty &= 0 \\ -x + y &= t \end{cases}$$

Individuare la risposta corretta nelle seguenti domande a risposta multipla. Ogni risposta esatta vale 2 punti, ogni risposta sbagliata -1 punto, risposta non data 0 punti. L'ultima domanda vale 2 punti

4) (2 p.ti) Una funzione integrabile in [a, b] é sempre derivabile in (a, b).

 \square Vero \square Falso

5) La matrice Hessiana di una funzione di due variabili é

$$\begin{pmatrix} 2x+y & -1 \\ -1 & e^2y \end{pmatrix}$$

sapendo che il puntp P = (1, 2) é un punto stazionario, dire se

- 1. P é un punto di massimo relativo
- 2. P é un punto di minimo relativo
- $3. P ext{ \'e un punto di sella}$
- 6) (2 p.ti) Determinare l'estremo superiore, inferiore, il massimo, il minimo, i punti di accumulazione, i punti di frontiera e i punti interni dell'insieme

$$A = \left\{\frac{1}{n}\right\}_{n>1} \cup \left\{\frac{n-1}{n}\right\}_{n>1}$$

- 1. sup A = 1, inf A = 0, $\nexists max A$, $\nexists min A$, $Acc(A) = \{0, 1\}$, $Fr(A) = A \cup \{0, 1\}$, $Int(A) = \emptyset$.
- $2. \ sup A = \tfrac{1}{2}, in f A = \tfrac{1}{2}, max A = \tfrac{1}{2}, min A = \tfrac{1}{2}, Acc(A) = \{0,1\}, Fr(A) = A \cup \{0,1\}, Int(A) = A.$
- 3. sup A = 1, inf A = 0, $\nexists max A$, $\nexists min A$, $Acc(A) = \{0,1\}$, $Fr(A) = A \cup \{\frac{1}{2}\}$, $Int(A) = \{\frac{1}{2}\}$.
- 7) (2 p.ti) La serie geometrica $\sum_{i=0}^{\infty} x^i$ converge se
 - 1. x > 0
 - |x| < 1
 - 3. $|x| \leq 1$
- 8) (2 p.ti) Dare la definizione di dipendenza lineare di un insieme di vettori $\{v_1, \cdot, \cdot, \cdot, v_n\}$ di uno spazio vettoriale V. Trovare un insieme di vettori di \mathbb{R}^4 di rango pari a 3.