MATEMATICA GENERALE - Canali II, III, IV Sessione Invernale, III Appello, 9/02/10, A.A. 2009/2010 - Compito 3

Cognome	e No	me	Matricola									
Canale	\square II (Prof. Scarlatti)	□ III (Prof.ssa Fabretti	\Box IV (Prof.ssa Tessitore)									
Firma												
1) (10 p.ti) Studiare la funzione $f(x) = \frac{e^x}{x+1}$												
a] Domin	io e segno											
b] Limiti												
c] Determ	ninazione punti critici (ovver	o stazionari)										
d] Studio	massimi e minimi											

e	Grafico	(lo	studio	di	eventuali	flessi	è	opzionale).

2) (6 p.ti) Determinare dominio e punti stazionari della funzione

$$f(x,y) = y^3 + 3yx^2 - 15y - 12x.$$

3) (8 p.ti) Studiare al variare del parametro $\alpha \in \mathbb{R}$ le soluzioni del sistema e trovar
le:

$$\begin{cases}
-x + z = \alpha \\
x + z = 1 \\
-2x + z = \alpha + 1
\end{cases}$$

Individuare la risposta corretta nelle seguenti domande a risposta multipla. Ogni risposta esatta vale 2 punti, ogni risposta sbagliata -1 punto, risposta non data 0 punti.

- 4) (2 p.ti) Sia $A\mathbf{x} = \mathbf{0}$ un sistema omogeneo di n equazioni lineari in n incognite, il sistema ammette soluzioni non banali se
 - 1. det(A) = 0
 - 2. $det(A) \neq 0$
 - 3. se il rango di A è pari ad n
 - 4. Nessuno delle precedenti
- 5) (2 p.ti) Il limite

$$\lim_{x \to 0} \log \left(1 + x\right)^{\frac{1}{x}}$$

- 1. vale 0
- 2. vale e
- 3. vale 1
- 4. vale ∞
- 6) (2 p.ti) La retta y = -2x + 3 nel punto $x_0 = 1$ risulta tangente al grafico della funzione:
 - 1. $f(x) = e^{1/x-1}$
 - 2. $f(x) = e^{-x^2 1}$
 - 3. $f(x) = e^{1-x^2}$
 - 4. nessuna delle precedenti
- 7) (2 p.ti) La funzione $f(x) = \frac{1}{x}$
 - 1. è integrabile in [-1, 1]
 - 2. ha primitiva log(x)
 - 3. è integrabile in [1, 2]
 - 4. nessuna delle precedenti