MATEMATICA PER LE APPLICAZIONI ECONOMICHE - CLEM

Docente A. Fabretti

A.A. 2013/2014 - Appello I Sessione Autunnale - 08/09/2014

Firma

1	2	3	4	5	6	7	VOTO

1) (5 p.ti) Per rimborsare un prestito di importo C il signor X deve pagare rate semestrali per 10 anni a quota capitale costante. Sapendo che la prima rata vale R_1 , determinare l'importo dell'ultima rata.

Dati: C = 10000

$$R_1 = 750$$

Risposta: R = 512, 5

Svolgimento:

Dato che si tratta di rate semestrali per 10 anni il numero di rate è 20, quindi

$$QC = \frac{C}{20} = 500.$$

Si calcola la quota interessi al tempo 1

$$QI_1 = R_1 - QC = 250$$

per ricavare il tasso di interesse applicato, ottenuto già su base semestrale

$$i = \frac{QI_1}{C} = 2,50\%.$$

Per determinare l'ultima rata si calcola il debito residuo al tempo 19

$$DR_{19} = C - 19QC = 500,$$

la quota interessi

$$QI_{20} = i \cdot DR_{19} = 12,50$$

e infine si può calcolare la rata

$$R_{20} = QC + QI_{20} = 512, 5.$$

2) (5 p.ti) Considerare un portafoglio composto da 10 ZCB con durata 6 mesi e 15 ZCB con durata un anno e valore nominale 100. Determinare il valore del portafoglio se la struttura dei tassi è piatta con tasso λ e approssimare la variazione del valore di portafoglio se il tasso cresce di 1%.

Dati:
$$\lambda = 4\%$$

Risposta:
$$V = 2422,89$$
 $\Delta V = -18,58$

Svolgimento:

Si calcola il prezzo degli ZCB a 6 mesi

$$P_1 = 100 * (1 + \lambda)^{-1/2} = 98,06$$

e un anno

$$P_2 = 100 * (1 + \lambda)^{-1} = 96, 15.$$

Quindi il valore del portafoglio è

$$V = q_1 P_1 + q_2 P_2 = 2422,89$$

dove i due titoli hanno pesi $w_1 = \frac{q_1 P_1}{V} = 0,405$ e $w_2 = \frac{q_2 P_2}{V} = 0,595$. Si può quindi calcolare la duration di portafoglio:

$$D = w_1 D_1 + w_2 D_2 = 0,798.$$

Quindi si può approssimare la variazione del valore di portafoglio se $\Delta \lambda = 1\%$

$$\Delta V = -\frac{D}{1+\lambda}V\Delta\lambda = -18, 58.$$

3) (5 p.ti) Data la seguente struttura di tassi

$$i(0,0.5) = 3.47\%$$
 $i(0,1) = 3.51\%$ $i(0,1.5) = 3.64\%$ $i(0,2) = 3.81\%$

determinare prezzo e duration di un BTP con durata due anni cedola semestrale e TAN=5%.

Risposta:
$$P = 102.36$$
 $D = 1.93$

Svolgimento:

Il BTP genera il seguente flusso (2.5, 2.5, 2.5, 102.5) sullo scadenzario (0.5, 1, 1.5, 2) quindi il prezzo

$$P = 2.5 \cdot v(0, 0.5) + 2.5 \cdot v(0, 1) + 2.5 \cdot v(0, 1.5) + 102.5 \cdot v(0, 2) = 102.36$$

dove $v(0,t) = (1 + i(0,t))^{-t}$.

La duration è

$$D = \frac{0.5 \cdot 2.5 \cdot v(0, 0.5) + 1 \cdot 2.5 \cdot v(0, 1) + 1.5 \cdot 2.5 \cdot v(0, 1.5) + 2 \cdot 102.5 \cdot v(0, 2)}{P} = 1.93.$$

4) (6 p.ti) Siano A e B due titoli efficienti con rendimento atteso $\bar{r}_A = 3\%$, $\bar{r}_B = 6\%$, deviazione standard $\sigma_A = 0.2$ $\sigma_B = 0.4$ e correlazione $\rho = -0.5$. Determinare la deviazione standard del portafoglio efficiente con rendimento atteso \bar{r} .

Dati: $\bar{r} = 5\%$

Risposta: $\sigma = 0.24$

Svolgimento:

Si determina prima il portafoglio efficiente con $\bar{r} = 5\%$ combinando i due titoli efficienti

$$\alpha \bar{r}_A + (1 - \alpha)\bar{r}_B = \bar{r}$$

da cui si ricava $\alpha = 0.33$.

In questo caso la varianza di portafoglio è data dalla formula

$$\sigma^2 = \alpha^2 \sigma_A^2 + 2\alpha (1 - \alpha)\sigma_{AB} + (1 - \alpha)^2 \sigma_B^2,$$

dove $\sigma_{AB} = \rho \sigma_A \sigma_B$; quindi si ottiene $\sigma^2 = 0.058$ da cui facendo la radice quadrata si ha σ .

Individuare la risposta corretta nelle seguenti domande a risposta multipla. Ogni risposta esatta vale 2 punti, ogni risposta sbagliata -1 punto, risposta non data 0 punti.

- 5)(2~p.ti) Per costituire la somma di 25000 il signor M programma di fare 24 versamenti mensili anticipati al tasso nominale del 7%. Ogni versamento ammonta a
 - 1. 973,48
 - 2. 967, 83
 - 3. 978,12
 - 4. nessuna delle precedenti
- 6) (2 p.ti) Usando la struttura dei tassi dell'esercizio 3 il prezzo di uno ZCB emesso tra 6 mesi e durata un anno è
 - 1. 96.40
 - 2. 96.05
 - 3. 98.23
 - 4. nessuna delle precedenti
- 7) (6 p.ti) Usando il valore attuale di una rendita perpetua posticipata mostrare come calcolare il valore attuale di una rendita posticipata di durata n.