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 An Equilibrium Queuing Model of Bribery

 Francis T. Lui
 State University of New York at Buffalo

 It is sometimes argued that bribery is inefficient because bureaucrats
 may cause delays for attracting more bribes. This hypothesis is ex-
 amined in the context of a queue where customers having different
 values of time are ranked by their bribe payments to the queue's
 server. The Nash equilibrium strategies of the customers are de-
 rived. It is shown that the server is unlikely to slow down the alloca-
 tion process when bribery is allowed. The model does not have strin-
 gent informational requirements, and the equilibrium outcome
 minimizes the average value of time costs of the queue. It also sug-
 gests a useful auctioning procedure.

 I. Introduction

 If prizes are awarded simultaneously at a specified time to the first
 customers who queue for them, the arrival times of the customers to
 the queue can serve the function of prices in the allocation process
 (Holt and Sherman 1982, 1983). When prizes are awarded in a con-
 tinuous stream, as is common in practice, the arrival times cannot
 serve this function very well. Instead, bribes for buying better posi-
 tions in the queue sometimes give useful signals similar to those of a
 pricing mechanism.'

 Comments and suggestions by John Chipman, Leo Hurwicz, Edward Prescott, Guo-
 qiang Tian, two anonymous referees, and participants of seminars I gave at SUNY-
 Buffalo and at the Applied Microeconomics Workshop of the University of Minnesota
 are gratefully appreciated. I am particularly thankful to Charles Holt, Jr., who read an
 earlier draft of this paper and provided detailed comments. Remaining errors are my
 own. Financial support from the Sloan Foundation is acknowledged.

 1 Rigid prices often give rise to queues. The waiting time of queues may be regarded
 as part of the real resource costs of price rigidity. However, as argued by Alchian
 (1970), stable prices may sometimes be superior to flexible market-clearing prices be-
 cause the former reduces the search costs of customers who look for lower prices.
 Bribery in this paper may be viewed as a means to reduce the resource costs further.

 [Journal of Political Economy, 1985, vol. 93, no. 4]
 (? 1985 by The University of Chicago. All rights reserved. 0022-3808/85/9304-0010$01.50

 760

This content downloaded from 160.80.47.205 on Mon, 20 Feb 2017 16:08:02 UTC
All use subject to http://about.jstor.org/terms



 MODEL OF BRIBERY 761

 That bribery may have beneficial effects is not a new idea (e.g., Leff

 1970). It is often argued that bribes serve as "lubricants" in an other-

 wise sluggish economy and improve its efficiency. However, aside

 from the undesirable distributional consequences, an important op-

 posing view on efficiency also exists. Myrdal (1968, chap. 20), quoting

 the Santhanam report on prevention of corruption by the Indian

 government, argues that the corrupt officials may deliberately cause

 administrative delays so as to attract more bribes. If this is indeed the
 case, the efficiency argument will be much less appealing. A serious

 study on bribery should not leave this question unanswered.

 Myrdal's hypothesis can be examined in the context of a queue

 where customers come to one end of it to wait for prizes distributed

 by a server at the other end. However, the question whether the

 server can increase bribe revenue by slowing down the service does
 not have a trivial answer. Several issues are involved. For instance,

 what will happen to the number of incoming customers who choose

 not to join the queue because the expected waiting time is too long?
 For those who stay, do they always want to pay larger bribes when the

 wait is too long? A more fundamental difficulty, however, is that a

 customer's action affects others. Externalities must be incorporated in

 the behavioral model of the queue.

 Several queuing models related to bribery are available in the litera-

 ture. The Kleinrock model (1967), which will be discussed extensively
 later in this paper, assumes that a customer paying a bribe will be

 placed in front of those who have paid smaller bribes in the queue,

 but behind those who have paid larger bribes. This model has the

 desirable feature that it can generate socially optimal results. How-

 ever, in this model the amounts of bribes to be paid by different
 customers are decided by the server (who acts as if he is also a social

 planner) rather than the customers themselves. To obtain optimal
 results, a great informational burden is imposed on the server, who is

 required to know the values of time of all customers. Some later

 models have less severe informational requirements. Naor (1969) dis-

 cusses a queue where a uniform toll is imposed on those who want to

 join it. Rose-Ackerman (1978) proposes a system in which a customer
 entering a queue served with higher priority will have to pay a larger
 bribe than one joining a lower-priority queue. However, if customers

 differ in their opportunity costs of time, it can easily be shown that
 these two models give suboptimal solutions in the sense that the total
 value of time spent in waiting by the customers is not minimized.2

 2 Naor (1969) assumes that all customers have equal values of time. Suboptimal
 results are thus avoided in his model. Rose-Ackerman (1978) explicitly shows that her
 system is not optimal. It should be noted that when people differ in their values of time,
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 In this paper, I propose an equilibrium queuing model of bribery
 with decentralized decision making. This model has some desirable
 features. Under some specified conditions, it is capable of giving so-
 cially optimal solutions. At the same time, it does not have stringent
 informational requirements. To obtain optimal results, the model is
 based on the queuing discipline of Kleinrock. However, the amounts
 of bribe payments are not decided by the server, but by the customers
 themselves. As we shall see, this lightens the informational require-
 ments significantly. Another important feature is that the desired
 socially optimal solution is consistent with individual optimization
 strategies. In other words, there exists a Nash equilibrium of this
 noncooperative game such that, under some specified conditions, the
 outcome is also socially optimal. Based on this equilibrium concept,
 we can assess the validity of Myrdal's hypothesis. It should also be
 pointed out that the model need not be confined to the study of
 bribery alone. If bribes are regarded as legitimate payments, the
 mechanism becomes a useful auctioning procedure when a queue is
 involved.

 In the next section, I outline a modified version of the Kleinrock
 model and derive an explicit expression for the time that a customer
 expects to spend in the queue. A criterion of social optimality is also
 stated. In Section III, I derive the bribing function for the customers
 and show that the implied strategies form a Nash equilibrium. In
 Section IV, I determine the server's optimal speed when the latter is a
 choice variable. I also show that Myrdal's hypothesis is not necessarily
 true. In Section V, I consider an extension of the model by allowing
 the server to charge, in addition to other bribe payments, a uniform
 entry fee on all joining customers. Given this assumption, Myrdal's
 hypothesis is shown to be even less plausible. Section VI is a summary
 of the results. Finally, the Appendix discusses a mathematical
 generalization of the model.

 II. The Queuing Model

 The following assumptions are made for the queuing model in this
 paper:

 1. Customers arrive at the end of the queue according to a Poisson
 process at a mean rate of m customers per unit of time.

 2. At the other end of the queue, there is a server who distributes a
 gift to each customer. The gift can also be purchased in the market at

 the Rose-Ackerman system dominates the Naor system in terms of efficiency because it
 can differentiate the customers to some extent. However, the former also has stronger
 informational requirements.
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 MODEL OF BRIBERY 763

 a monetary value of P. The service time required to give out a gift

 obeys an exponential distribution with a mean service time of 1/u.

 3. Let v represent the value of time of a customer. In general,

 different customers may have different values of time, so that v is a
 random variable. The cumulative distribution function of v is repre-

 sented by A (v). It is assumed that A (v) is known to the customers, and
 the derivative of A (v) is continuous throughout its domain.

 4. When a customer comes to the end of a queue, he can follow

 either of two strategies: (i) he can decide not to join the queue at all or

 (ii) he can pay a bribe x to the server before he sees the queue length.

 He will be placed in front of those whose bribes x' < x and behind
 those whose bribes x" - x. He does not know the actual number of
 people in front of him if he pays x. However, he can estimate the
 expected time he has to spend in the queue (waiting time plus the
 time spent when he is being served). The expected time spent in

 the queue by a customer who pays x is represented by W(x). He can-
 not revise his bribe.

 5. A customer being served will be ejected from service, but not

 from the queue, if a newly entering customer offers a bribe larger

 than his.3

 We also let x* represent the maximum bribe received by the server.

 Let the truncated distribution function of x be B (x) such that B (x*) is
 the proportion of customers who choose to stay in the queue. In
 general, B (x*) ? 1. It is assumed that B (x) is continuous. The variable
 x* is endogenous in the model and will be determined in Section III.

 PROPOSITION 1 (variant of Kleinrock [1967]). Given the assumptions
 of the model, the expected time that a customer paying bribe x spends
 in the queue is given by

 W m[I - rB(x*) + rB(x)]2 (1)

 where r is defined by r = m/u.

 Proof. A customer paying a bribe x has to wait for three things
 before leaving the system:

 i) His own expected service time is 1/u because of the assumption of
 the exponential distribution of service time.

 ii) The customer must wait until service has been given to all those
 still in the queue and who arrived before him and whose bribes are at
 least as big as his. Owing to Little's (1961) result, which states that the
 expected number of units in a system is equal to the product of their

 3 This assumption is not essential, but it greatly reduces the algebra involved. The
 model can be modified for the case when a customer being served cannot be ejected
 from service.
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 arrival rate and the expected time they spend in the system, the ex-
 pected number of customers whose bribes lie in the region (y, y + dy)
 iS4 m(y)W(y)dy, where m(y) = m[dB(y)ldy]. The total number of those
 customers whose bribes are at least as big as x is therefore

 Ix m dB(y) W(y)dy.
 Since each of these customers causes him to wait 1/u units of time, his
 expected waiting time for them is

 fx (m)[ dy ]W(y)dy.
 iii) The customer must wait until service is given to those who come

 after him while he is still in the system and whose bribes exceed his.
 The expected number of such people coming per unit of time is

 m dB(y).

 Hence, during the time W(x) he expects to spend in the queue, the

 expected number of arrivals of these customers is

 W(x)m dB(y).

 Again, on the average, each of these customers causes him to wait 1/u
 units of time. It follows that his expected waiting time for them is

 W(X) I ( dB (y).

 Adding up, we get

 W(x) I(I) +{ ( )W(y)dB(y) + W(x){ (M)dB(y)

 or

 (1/u) + rf W(y)dB(y)

 W (x) = 1 - rB (x*) + rB (x) (2)

 4 Little's result follows mainly from the observation that if a queuing system has
 existed for a long time, the expected number of "births" of any particular kind of
 customer to the system is equal to the expected number of "deaths" of this kind of
 customer from the system. It is also assumed that the interval (y, y + dy) is so
 infinitesimally small that any bribe payments within this interval cannot be distin-
 guished from each other. A new customer who pays a bribe within this interval will
 always be placed after those who have come earlier and have paid bribes within the
 same interval.
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 MODEL OF BRIBERY 765

 Replacing W(x) and W(y) in equation (2) with the expression given in

 equation (1), we can establish the proposition if the following equality

 is true:

 (1u + [1 (lI/u)dB(y) (_/U) -_U_ I _1 -rB(x*) + rB(y)]2
 [1 - rB (x*) + rB (X)]2 1 -rB (x*) + rB (x)

 By simplifying the expression on the right-hand side, we see that this

 equality is true. Thus, equation (1) is indeed the solution to equation

 (2). This completes the proof.
 We now substantiate in part our earlier claim that this model is

 capable of yielding socially optimal outcomes. We want to examine

 how the bribe of a customer should be related to his value of time so
 that the queue has optimal properties. In other words, we want to

 know the necessary restrictions on the bribing function x(v) such that

 the ranking of the customers in the queue is "correct."

 To determine an optimality criterion for the queue, we first notice

 that real time costs are spent by customers having different values of

 time v. A natural direction is to consider whether the queue is capable

 of minimizing the average value of time costs spent by customers in
 the queue, which is defined as

 fv*

 JovW[x(v)]dA (v)

 JdA (v)

 where v* is the maximum value of time among those customers who

 choose to stay in the queue.

 DEFINITION. A queue is socially quasi-optimal for a given mean

 service time if the customers are ranked in such a way that for a given
 number of customers in the queue, the average value of time costs

 spent by the customers is minimized.

 PROPOSITION 2. For any given A (v), the bribing function x(v) results

 in a socially quasi-optimal queue if x(v) is a strictly increasing function

 of v.
 Proof. See Kleinrock (1967).

 The intuition behind this proposition is simple. To minimize the

 average value of time costs of the queue, all that is needed is to rank

 customers according to their values of time so that people with higher

 values of time are placed in front of those with lower values and

 therefore are served first. Since the queuing rule is to rank customers

 according to x, it necessarily also ranks them according to v for any
 x(v) that is a strictly increasing function of v.
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 We have used the term "quasi-optimal" rather than "optimal" be-
 cause the queue is optimal only when the number of customers is
 given. Nothing has been said about the optimal number of people to
 join the queue. For example, if nobody joins the queue, the time cost
 is zero. But this need not be an optimal outcome. In Sections IV and
 V, it will be shown that the server may have the incentive to choose a
 speed of service such that all incoming customers join the queue. The
 model guarantees that the ranking of all these customers is correct.

 III. The Bribing Function and
 the Nash Equilibrium

 I now turn to the derivation of a bribing function that is both socially
 quasi-optimal and privately optimal. I proceed in two steps. First, I
 artificially construct a differentiable bribing function that satisfies the
 socially quasi-optimal outcome requirement. Second, I show that if all
 other customers follow this bribing function, there is no incentive for
 anyone to depart from it.

 To guarantee social quasi optimality, I impose the restriction that
 x'(v) > 0 on the bribing function I construct. Since the ranking of x is
 the same as the ranking of v,

 B[x(v)] - A(v). (3)

 It follows immediately that

 B'(x)x'(v) = A'(v). (4)

 I also note that, given this restriction, the definitions of x* and v*
 imply that x* = x(v*). Therefore,

 B (x*) = A (v*). (5)

 Each customer with a given value of time v solves the following
 maximization problem:

 max G = P - [x + DW(x)]. (6)
 x

 Recall that P is the monetary value of the gift. The term in brackets is
 the expected total cost of joining the queue, and G is the expected net
 gain. Because of (1), equation (6) can also be stated as

 max G = P - x - -r (7)
 x m [ 1 - rB (x*) + rB (X)]2

 The first-order necessary condition is

 dG =- _ 2r2vB'(x) (8)
 dx m[l - rB(x*) + rB(x)]3
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 MODEL OF BRIBERY 767

 Equation (8) defines a relation between x and v. To get a more explicit

 solution, substitution of equations (3), (4), and (5) into (8) obtains

 x'(v) = 2r 2vA (v)
 m[I - rA(v*) + rA(v)]3

 To solve this differential equation, integrate it with respect to v:

 2r2vA'(v)dv

 m[1 - rA(v*) + rA(v)]3

 where K is a constant to be determined. It should be pointed out that
 in (7) the notation v is used to emphasize that it is a parameter in the
 maximization problem. In (8), (9), and (10) v is used rather than v to
 indicate that once the maximization problem is solved, the bribe x is
 dependent on the variable v.

 It is also necessary to show that (10) is the solution of a maximiza-
 tion problem:

 d2G _ (2r2v [ 1 - rB (x*) + rB (x)]B "(x) - 3r[B '(x)]2
 dx2 m J [1 - rB(x*) + rB(x)]4

 By using (8) to get expressions for B'(x) and B "(x), we can simplify
 this to

 d2G -
 2= <0 dxz x'(v)v

 for v > 0. If v = 0, from (7), the maximum of G obviously occurs at
 the lowest permissible value of x. By assumption, negative values of v
 are not allowed.

 Since the main purpose of this paper is to assess the validity of

 Myrdal's hypothesis, it is desirable to see whether counterexamples to
 the hypothesis exist. To do this, I shall derive a more explicit bribing

 function than (10) by making the additional assumption that A(v) is a

 uniform distribution function from v = 0 to v = v,:

 A(v) = Av for v E [0,v v]. (11)

 The results for the general distribution function A (v) will be dis-
 cussed in the Appendix.

 Equation (10) now becomes

 m(1 rAv* + rAv)3

 Solving this gives

 x- r + K (12)
 m(1 - rAy* + rAy )2 -mA(I - rAy* + rAv)+K.(2

This content downloaded from 160.80.47.205 on Mon, 20 Feb 2017 16:08:02 UTC
All use subject to http://about.jstor.org/terms



 768 JOURNAL OF POLITICAL ECONOMY

 A necessary condition for Nash equilibrium, as argued below, is
 that the customer with the lowest value of time does not pay any bribe.
 Because x'(v) > 0, other people with higher values of time always pay

 higher bribes than he does. If he pays a positive bribe, he can always
 improve his gain by paying less without affecting the time he expects

 to spend in the queue. The case for a minimum positive bribe im-

 posed by the server will be fully discussed in Section V. In (12), v = 0
 implies x = 0. This condition can be used to solve for K. The bribing

 function now becomes

 _ 1 yr
 X mA(l -rAv*) m(1 - rAv* + rAv)2

 (13)
 1

 mA(1 - rAv* + rAv)

 It remains to determine v*. Recall that x* is the largest bribe paid by

 a customer in the queue and v* is his corresponding value of time,
 which is also the largest among those who join the queue. For this

 customer, his expected net gain must be nonnegative. Otherwise, he

 will not join the queue. Moreover, as long as v* < VI, that is, some
 people do not join the queue, his gain cannot be positive. Otherwise,
 people with a value of time just above his will also join the queue.5

 Hence, for v* < v,, G(x*) = P - - v*W(x*) = 0. From (1),

 V*r X* _ p _ H]r
 m[ -rB(x*) + rB(x*)f

 _ V*r
 m

 By substituting v = v* into (13), we also obtain

 1 V*r 1
 mA(I - rAv*) m mA-

 The solution of the last two equations is

 v* mPA (14)
 rA (I + mPA) (4

 For convenience, define z = mPA. Equation (14) now becomes

 V = rA( + z) (15)

 s The argument follows from the fact that the gain of joining the queue is a de-
 creasing function of v, which can be proved easily.
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 MODEL OF BRIBERY 769

 By utilizing the fact that Av1 = 1, we can readily show an alternative
 expression for v* to be

 * ZV1

 V - r(I + z)
 The condition that v* < Vl is therefore equivalent to

 r > Z (16) 1 + Z'

 In other words, (15) holds if (16) is true.

 Suppose that condition (16) holds, that is, v* < vy, or that only some
 customers join the queue. Then by substituting (15) into (13), we get

 X = Im + Z - r V1- (17) mA ( {[1I(1 + z)] + rAv}2 [1/(1 + z)] + rAv (

 We can also differentiate x with respect to v:

 dx _ 2r2Av

 dv m{[1/(1 + z)] + rAv}3

 This is of course the quasi optimality condition we have imposed
 earlier.

 Suppose r c z/(1 + z). Obviously,

 v* = vI. (18)

 This means that all customers decide to join the queue. Equation (13)
 then becomes

 X mA(I - r) m(1 - r + rAv)2 mA(1 - r + rAv) ( 9)
 We have made use of the fact that Av1 = 1. Again, we can check
 whether x'(v) > 0:

 dx 2r2Av

 dv m(1 - r + rAv)3'

 which must be positive because the condition r c z/( 1 + z) < 1 applies
 to the case here.6

 Equations (17) and (19) express the bribe x in terms of the parame-
 ters m, r, A, P, and the variable v. If the customers know their own

 values of time, they can compute the optimal bribes they should pay.
 PROPOSITION 3. (i) Suppose r > z/(1 + z). If customers with v c v*

 6 Obviously, the two expressions for dxldv here are special cases of eq. (9). It can be
 proved that if the queue does not get infinitely long, the term rA(v*) in (9) must be less
 than one. The x'(v) given in this equation must therefore be positive.
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 770 JOURNAL OF POLITICAL ECONOMY

 follow bribing strategies given by (17) and customers with v > ve do

 not join the queue, where v* is determined by (15), then these strate-

 gies form a Nash equilibrium that is socially quasi-optimal. (ii) Sup-

 pose r ? z/(1 + z). If all the customers follow bribing strategies given
 by (19), then these strategies form a Nash equilibrium that is socially

 quasi-optimal.
 Proof. (i) Suppose r > z/(1 + z). From proposition 2, if everybody

 with v ' v* follows (17), the solution must be socially quasi-optimal

 because it has already been shown that x'(v) > 0.

 Suppose all customers with v c v* follow (17) and those with v > ve

 do not join the queue. From how we constructed the bribing function,
 (17) is clearly the solution of the maximization problem (7). Hence,
 there is no incentive for those with v ? v* to change the bribe. More-

 over, for those with v > v*, their net gain in joining the queue is

 negative if other customers follow (17). Thus, these customers have

 no incentive to join the queue. Since x(0) = 0, the customers with v =

 0 cannot further improve their gain by paying less. They will not

 depart from the strategy (17). The strategies outlined above therefore

 form a Nash equilibrium.
 ii) The proof is almost identical and is omitted here. (Note that

 given v* = v,, the net gains for all the customers are nonnegative.)
 The following example illustrates much of what has been discussed

 in this section. Let r = 1, m = 1, P = 1, and A = 1. It follows easily

 that x * = 0.5, v* = 0.5, and B (x*) = 0.5. Figure 1 plots the net gain G

 against the bribe x for different values of v, assuming that all other
 customers follow their own equilibrium strategies. The optimal bribe

 paid by a customer with v is the x that gives the maximum point on the
 corresponding curve if the gain is positive. It can be seen that the
 maximum gain of a customer is a decreasing function of his value of

 time v. For v > 0.5, the customers cannot have positive gain and do
 not join the queue. For x - 0.5, the customer is already at the front of

 the queue. He cannot improve his position by paying more bribes.

 The curves therefore become decreasing straight lines.

 IV. Optimal Speed of Service

 The bribing function (17) depends on the parameters r, m, P, and A,
 while (19) depends on r, m, and A. Let us now consider the effects of

 changes in the speed of service on the average revenue received by

 the server per period of time.
 PROPOSITION 4. In the model outlined above, if r < z/(l + z), in-

 creasing the mean service time per customer (1/u) will cause the aver-
 age bribe revenue received by the server per period to go up. If r -
 z/(l + z), increasing 1/u will cause the average bribe revenue per
 period to go down.
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 FIG. 1.-Relation between net gain and bribe. The line ab joins the maximum points
 of the curves.

 Proof. The average bribe paid to the server by an incoming cus-

 tomer is given by

 5= x(v)Adv,

 where x(v) is the bribing function given by (17) if r > z/(1 + z) and
 given by (19) if r ? z/(1 + z). Note that x(v) also depends on the
 parameters v, m, A, and P, which have been suppressed in the nota-
 tion here.

 Since on the average there are m customers coming to the queue
 per period, the average bribe revenue per period is mxn. Suppose r <
 z/(1 + z). Then v* = v1. All customers join the queue. We want to
 show that d(m.x)/d(l/u) > 0. Since r = m/u, for fixed m, it suffices to
 show that d/dr > 0. From (19),

 = f~~i [1 - yr 1 ]~~~Adv
 x o [mA(I- r) m(1 - r + rAv)2 mA(I - r + rAyv)

 VI +11+ 2 ln(1 -r) (20)
 m( -r) m rmA
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 772 JOURNAL OF POLITICAL ECONOMY

 Differentiation of (20) yields

 dr vmr2312 - 2r - 2 ln(1 - r)j. (21)

 LetJ denote the term inside the brackets. Clearly, r = 0 implies = 0.
 Moreover, dJldr = 2r2/(1 - r)3 > 0, since r < z/(l + z) < 1. Hence, for

 r ? 0 the smallest value ofJ is zero, which occurs at r = 0. Thus, for 0
 < r K z/(I + z),

 A > 0. (22)
 dr

 By differentiating (21), we can also show that d2x/dr2 > 0.
 Next assume that r > z/(1 + z). Customers with v > v* will not join

 the queue and do not pay any bribe. We want to show that dy/dr < 0.
 From equation (17),

 J I rAv
 = (mA +( {[1I(1 + z)] + rAv}2

 _ 1 j~IAdv.
 [1/(1 + z)] + rAv .

 By using the v* given in equation (15), we can simplify this expression

 to

 x rmA [Z + +z 2 ln(1 + z)J. (23)

 Differentiation of (23) yields

 Ar -Lr [2 ln(1 + z) - z + lZ )
 By a trick similar to that in obtaining (22), the term inside the brackets

 can be shown to be strictly negative. Hence, if r > z/(l + z),

 dr < 0. (24) dr

 It also follows easily that d25/dr2 > 0.
 We now consider the situation when r = z/(1 + z). In this case,

 increasing r will cause it to become larger than z/(l + z). Result (24)

 will apply. Thus, increasing the mean service time reduces the aver-
 age bribe revenue when r - z/(l + z).7 This completes the proof.

 Proposition 4 shows that if the objective of the server is to maximize
 bribe revenue and if he is free to change the speed of service, he will

 7 At r = z/(L + z), if r decreases, eq. (27) is applicable.
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 FIG. 2.-Relation between server's bribe revenue, cost, and r. BBB represents the

 bribe revenue function x(r). CC represents total cost as a function of r. Maximum bribe
 revenue net of cost occurs at r = z/(l + z).

 set r = z/(1 + z). Let us call this value r*. He will not choose a speed
 that is too slow because too few customers will want to join the queue
 or pay any bribes. He also will not choose a speed that is too fast
 because when waiting cost is very low, many people will have less
 incentive to pay bribes. The r* can be considered an element of the set
 of Nash equilibrium strategies of the system. Suppose that before any
 bribing occurs the initial r (which can be any positive number) is
 larger than r*; that is, only some customers join the queue. After
 bribery is permitted, the server has the incentive to speed up the
 system rather than to slow it down. The contrary of Myrdal's hy-
 pothesis is therefore possible.

 Suppose there is a cost to the server to perform his service. His
 objective will then be to maximize the bribe revenue net of cost. Prop-
 osition 4 is useful in showing that it is unlikely for the server to slow
 down the system when bribery is allowed. Assuming increasing mar-
 ginal cost for the speed, with no bribery, the optimal strategy for the
 server is to do nothing at all. In other words, the service rate u = 0, or
 r is infinitely large. If bribery is allowed, the speed can only be faster
 or remain the same. An example is illustrated in figure 2 where the
 server's optimal speed with bribery is given by r* = z/(l + z), but that
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 without bribery is given by an infinitely large r. Again, the contrary of

 Myrdal's hypothesis is true.
 The chief results will still hold even when the uniform distribution

 of the v assumption is relaxed. In the Appendix, I show that for

 general distribution functions of v, counterexamples of Myrdal's hy-

 pothesis could also appear.

 V. Optimal Speed When an Entry

 Fee Is Required

 In Section III, a condition for Nash equilibrium is that a customer
 with v = 0 does not pay any bribe. Now suppose the server imposes a

 uniform entry fee F on all customers who decide to join the queue.

 Without paying this fee, a customer will never be served. In addition
 to the fee, as before, a customer can decide to pay more bribe x to buy

 a better position in the queue. The entry fee can also be interpreted as
 the lower bound on bribe payments by customers joining the queue. I

 assume that F is a choice variable of the server, and I shall show that

 given this new assumption in the model, Myrdal's hypothesis can

 never be true.

 From the standpoint of a customer, the following two events are

 equivalent. (i) In addition to any bribe a customer wants to pay, the

 server charges an entry fee F on all joining customers. (ii) The value
 of the gift P is reduced by F. The equivalence of these two events

 permits us to use the same bribing functions developed earlier for our
 present analysis.

 From the standpoint of the server, an increase in F will discourage

 people from joining the queue, a result that follows trivially from the

 analysis below. On the other hand, he can receive some revenues in
 the form of fees. We shall first determine the server's optimal F as a

 function of r. Then, assuming that the server always chooses the
 optimal F, we also derive the revenue function of the server and show
 that it is a strictly decreasing function of r.

 Let us define P* = P - F and z* = mP*A = z - mFA. Any

 increase in F, as noted above, can be regarded as a decrease in the new
 value of the gift, P *. Notice that F cannot be larger than P. Otherwise,
 nobody will join the queue. It follows that z* and P* must always be
 positive. We also let v* represent the maximum value of time among
 customers who choose to stay in the queue after F has been imposed.

 Suppose vD* < vi; that is, after imposing F, only some incoming
 customers join the queue. We can substitute z* for z in equation (15)
 to obtain

 Ve = r + z-mFA (25)
 rA (I ? z - mFA) (5
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 Since v, = 1/A, the condition T7* < v1 is equivalent to

 z - mFA (26)
 r1 F A.z (26)

 Assume condition (26) holds. We can determine the server's ex-

 pected bribe revenue from an average customer (who may or may not

 join the queue) by substituting z* for z in equation (23). In addition to
 this bribe revenue, the server also receives the entry fee F if the

 customer joins the queue. Since the proportion of customers joining

 the queue is A)*, the expected fee from a customer coming to the end

 of the queue is FAV*. Hence, the revenue expected from a customer

 is given by

 = A z+ 1+ - 2 ln(I + z*) + FA-*. (27) 5 rmA [ 1+ Z*
 After substituting z* = z - mFA and vi* = (z - mFA)/rA(I + z -
 mFA) into (27), we can derive the first-order and second-order condi-
 tions:

 dAF _ mA (P -2F) -0, (28)
 dF r(I + z mAF)2

 d 2-~F - -2mA (I + mAE) <,(9
 dF2 r(1 + z - mAF)3 (29)

 since z* = z - mAF > 0. Thus, if condition (26) holds, the server's

 revenue attains a maximum if he chooses F = P12. Assuming that the

 server always chooses the optimal F, we can substitute F = P12 into
 (27). On simplification, this gives us the optimal revenue function of
 the server when only some customers join the queue:

 XF = rmA z -2 ln(I + ) (30)

 It follows immediately that

 dF - 7 [z- 2 ln(I + )].

 By a trick similar to that in obtaining (22), the term in the brackets can
 be shown to be positive. Hence,

 _~F < 0. (31)
 dr

 Since F is always chosen optimally, we can also substitute F = P/2 into
 (26). In other words, as long as r > z/(2 + z), the server can increase
 his revenue by decreasing r, that is, by increasing the speed of service.
 Again the contrary of Myrdal's hypothesis is true here.
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 We next consider the case when r ? z/(2 + z). We shall first deter-

 mine the optimal F chosen by the server. Assume that in the begin-

 ning the F chosen is in fact P/2. Obviously, because (26) is not

 satisfied, all customers join the queue and v * = v1 . From the bribing
 function given by (20) and the fact that every customer pays the entry

 fee to the server, the latter's revenue expected from an average cus-

 tomer is

 _ = V1 + VI 2vi ln(1 - r) + F. (32)
 m(1 -r) m mr

 Obviously, dxF/dF = 1 > 0. In other words, the server can keep on
 increasing revenue by raising F. But this is true only if r ? (z -

 mFA)/(l + z - mFA). When F is increased, the right-hand side of this

 inequality goes down. Eventually, when F is large enough, strict

 equality will occur. Let F* be the entry fee such that this strict equality
 holds. It follows easily that

 F m* = (1 - r) (33)

 Suppose the server increases the fee further so that F > F*. Then
 condition (26) again holds, and only some customers join the queue.
 The revenue function will then be (27) instead of (32). From (28), it
 can be seen that as long as only some of the customers join the queue,
 dkFIdF < 0 if F > P/2. Since the F under consideration is indeed larger
 than P12, the server cannot further increase the revenue by raising F
 beyond F*. Thus, as long as r < z/(2 + z), the optimal F is F*, which is
 just enough to make every customer join the queue. To obtain the

 optimal revenue function, we can substitute F* given by (33) into
 equation (32). After simplification, this becomes

 1 2 + z + 2 ln(1 r)1. (34)
 mA r

 Differentiation yields

 dr -mAr2 [iI - r + ln(1 - r)

 By the same trick as the one used in getting (22), we can readily show

 that the term inside the brackets is strictly positive. Hence,8

 dxF < 0. (35)
 dr

 8 The second derivative is positive. Thus, the function is concave downward.
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 FIG. 3.-Relation between server's revenue and r for different values of the entry fee.

 DE 1LI represents the server's revenue function when F is chosen optimally.

 Because of (31) and (35), the server can always increase the revenue
 XF by increasing the speed of service, whether r is larger than, equal to,
 or smaller than z/(2 + z). When the possibility of an entry fee is
 allowed, the positively sloping part of the bribe revenue function in
 proposition 4 does not appear. Whether or not it is costly to increase
 the speed of service, there is no possibility that Myrdal's hypothesis is
 true.

 The analysis above can also be illustrated by an example depicted in
 figure 3. Letm = 1,P = 1, andA = 1. TheAkEkLk curves, k = 1, ..
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 6, are revenue functions of the server for different values of F. The

 curve DEILI is the revenue function when F is chosen optimally. This
 curve has a negative slope throughout, which is the main result of this

 section.

 VI. Concluding Remarks

 I have examined Myrdal's hypothesis in the context of an equilibrium

 queuing model. In this model, customers can decide to pay bribes for
 buying better positions in the queue. The bribing strategies of the
 customers who have different values of time have been derived. It has

 been shown that these strategies form a Nash equilibrium that mini-
 mizes the average value of the time costs of the queue. Based on this
 equilibrium, the server who wants to maximize either bribe revenue

 or bribe revenue net of cost of service will also choose an optimal
 speed of service. It has been shown that the server could choose to

 speed up the service when bribery is allowed. The contrary of Myr-
 dal's hypothesis is therefore possible.9

 The model has been extended to allow for the possibility of charg-

 ing a uniform entry fee on the customers in addition to other bribes
 they want to pay. Since the fee discourages customers from joining
 the queue, the server wants to speed up further to get back as many
 bribers as possible. Given this new possibility, Myrdal's hypothesis
 cannot be true in the model.

 If bribes are regarded as legitimate payments, the model suggests a

 useful auctioning procedure when a queue is involved. The informa-
 tional requirements of this procedure are not stringent. The ranking
 of the customers is also "correct." However, if the server does not own
 the bribe payments, some of the results in this paper are not applica-
 ble to the auctioning procedure. Specifically, the server may not have
 the incentive to speed up the service.

 Appendix

 I examine how proposition 4 has to be modified if the distribution function of
 v is a general function A(v) instead of the uniform distribution function Av

 9 This result does not strictly depend on the Nash equilibrium approach. Suppose the
 server sells the queue positions according to a pricing scheme that he announces. Then
 a customer has to pay attention only to the pricing scheme when he makes the deci-
 sions, not to the strategies of other people. If the announced pricing scheme is in fact
 the W(x) given by eq. (1), the B(x) and B(x*) in it are consistent with the Nash equilib-
 rium bribing strategies derived in Sec. III, and the server follows the same queuing rule
 of Sec. II to determine the priority of service, then it can be shown (Lui 1985) that the
 supplies for the queue positions will be equal to their respective demands. The main
 result in this paper will also remain valid.
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 assumed in the paper. It is required that A(v) be a differentiable function
 with the lowest v at zero and that A '(v) be continuous. I make use of Leibniz's
 rule for this purpose.

 For v* < vp,
 f v*(r)

 = J x(v, r)A'(v)dv. (A1)
 In x(v, r), the parameters other than r have been suppressed in the expres-
 sion. Apply Leibniz's rule to (Al):

 dA *r dx * dv *(r)
 - J0| -~-A'(v)dv + x[v*(r), r]A'[v*(r)] d (A2)

 dr o dr dr

 To determine the sign of dA/dr, it is necessary to know the signs of dv*ldr
 and dx/dr. First consider dv*ldr. Equation (10) and the Nash equilibrium
 condition imply that

 * [ 2r2vdA(v)
 Jo m[l - rA(v*) + rA(v)]3

 ______ fV rdv

 -r*+ (Vrd2 m Jom[1 - rA(v*) + rA(v)]2

 However, we know from the text that x* = P - (rv*/m). Hence,

 Tim - rdv (A3)

 tom[ - rA(v*) + rA(v)]2

 Using Leibniz's rule again,

 0= dP
 dr

 (v d { rdv + r(dv*/dr)
 =,~~~~~~~~()2 + -(*] Jodr m[l -rA(v*) + rA(v)]2 m[l - rA(v*) + rA

 = ~~~~dv (A4)
 Jo m[l - rA(v*) + rA(v)]2

 + 2r[A(v*) - A(v) + r(dv*ldr)A'(v*)]dv
 JO m[l - rA(v*) + rA(v)]3

 + (r)(dv*

 Suppose dv*ldr- 0. Then since A(v*) - A(v) in the second term of (A4) is
 always positive because v < v* and A'(v*) > 0, the second term must be
 strictly positive. The first and third terms are also positive. The right-hand
 side of (A4) must therefore be strictly positive. This is a contradiction. Hence,

 dv* <0. (A5)
 dr
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 Consider dx/dr:

 dx d[v 2r2vdA (v)

 dr dr om[l - rA(v*) + rA(v)]3

 | 6r2v[A(v*) - A(v) + r(dv*/dr)A'(v*)]dA(v)
 - Jo m[l - rA(v*) + rA(v)]4 (A6)

 + [v ~~4,vdA (v)

 + m[l - rA(v*) + rA(v)]3

 The second term is clearly positive. In the first term, since dv*ldr is negative,
 the sign of the numerator is indeterminate.

 From (A5) and (A6), the first term of (A2) is indeterminate, while the
 second term is negative. Thus,

 -. O forv* < vi. (A7)
 dr

 Now consider v* = vi. Equation (Al) then becomes

 x= x(v1 r)A'(v)dv, (A8)

 dx - Vdx
 I A'(v)dv, (A9)

 dr o dr

 since dvi/dr = 0;

 dx v 6r2v[l - A(v) + r(dv1/dr)A'(vj)]dA(v)
 dr Jo m(l - r + rA(v)]4

 +v m 4rvdA (v) (A 0)
 JOm[ - r + rA(v)]3

 Since dvl/dr = 0, the first term on the right-hand side must be positive. The
 second term is also clearly positive. Thus, dxldr > 0. From (A9),

 d_ > 0 forv* = vi. (All)
 dr

 The first part of proposition 4 is therefore always true. For the case v* < vy,
 slowing down causes fewer people to join the queue because of (A5). Whether
 those who stay will pay more bribe is indeterminate. We cannot know unam-
 biguously the sign of dx/dr. The second part of proposition 4 should be
 modified accordingly. But even in this case, it is quite possible to encounter
 situations contradictory to Myrdal's hypothesis.

 It should be pointed out that the algebraic results in the text can also be
 obtained by using Leibniz's rule.
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