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Limits

Definition
Let f: D C R — R be a function. Let xg be a limit point of D. We say
that

lim f(x)=1L

X—>X0

if and only if 9L € R such that

Ve>0 30>0:VxeD:0<|x—x|<d = |f(x)—Ll<e
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Limits: a short digression

Definition

A piecewise-defined function is a function defined by multiple sub—functions.)

Example

A standard example is the absolute value:

X if x>0
x| = _
—x ifx<0

Nevertheless, there is no limit in creating a piecewise-defined function...
x?+sin(x) if x < —10

f(x)=10 if —10<x<1
—In(x) if x>1




Limits

An important remark

Consider the function

f(x)=x°
It is immediate to prove that
lim  (x) = lim x> = 0.
x—0 x—0

Consider the piecewise-defined function

f(x) ifx#0
9 if x=0.

g(x)=

Which is now

i = 7.
(9= 77

The value of the function in xo does not matter for the limiting behaviour!

lim g (x) =0.

x—0




Limits
An important remark

Consider the function

f(x)=x
It is immediate to prove that

lim  (x) = lim x* = 0.
x—0 x—0

Consider the piecewise-defined function

f(x) ifx<—%orx>k
g(X): 10 10

9 if — 35 <x< 15
Which is now
limg(x)= 777
x—0

The value of the function in xo does not matter for the limiting behaviour! Only the
behaviour of the function around xp ...

lim g (x) =09.

x—0

57
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> ifx#0
0-8 [ xTr) =
9(z) {0.5 if x =0.
0.6
0.5 ®
0.4r
02 lim g(x) =0
z—0
0 S
-1 -0.5 0 0.5



2 . 1 1
)z 1fx<—mora:>m
0.8 9(@) = 05 if -+ <z< i
. 1 5 << 15
0.6 -
0.5
0.4
0.2+
0 1 1 1
-1 -0.5 0 0.5




x2 ifx<—%ora:>%

0.8 g(x) = : 1 1

6 li =0.5
0.6 mli%g(ac)
0.5
0.4
0.2+

0 1 1 1

-1 -0.5 0 0.5




2 . 1 1
T if z < —45 O T > 15
0.8 g(z) =10 ifx=0
0.5 otherwise .
0.6 -
0.5 —O—
0.4
0.2+
0 : o ‘
-1 -0.5 0 0.5




2 . 1 1
T if x < —45 O T > 15
0.8l g(z) =10 ifz=0
0.5 otherwise .
0.6+ lim g(z) = 0.5
x—0
0.5 —O—
0.4
0.2+
0 : ® ‘
-1 -0.5 0 0.5




Limits
Definition
Let f: (a,4+00) CR — R be a function. We say that

NLRIORY
if and only if 3L € R such that

Ve >0 3IM >0suchthatif x>M = |f(x)—L|<e.
Similarly, Let f: (—o0,a) C R — R be a function. We say that
lim f(x)=1L

X——00

if and only if 3L € R such that

Ve >0 IM > O0suchthatif x< -M = |f(x)—-L|<e.

In both cases we say that the function has an horizontal asymptote at L.




1.5

1.4

1.3

1.2

1.1

0.9

0.8

0.7

fl@)=(z+1)/x

0 10 20 30 40

50



0.8

0.7

10 20 30 40 50



0.7



1.5

1.4

1.3

1.2

1.1

0.9

0.8

0.7

fl@)=(z+1)/x

0 10 20 30

40

50



Limits

Definition
Let f : D C R — R be a function. Let xp be a limit point of D. We say
that

lim f(x) =400

X—rX0

if and only if

VK>0 30>0:VxeD:0<|x—x| <6 = f(x)>K.

Equivalently ...

VK>0 30 >0:VxeD:xg—0<x<xo+0,x#*x = f(x)>K.J

We say that the function has a vertical asymptote at xg.



Limits

Definition
Let f : D C R — R be a function. Let xp be a limit point of D. We say
that

XI|_>n)'|(0 f(x)=—o00

if and only if
VK>0 30>0:VxeD:0<|x—x| <6 = f(x)<—-K.

Equivalently ...

VK>0 30>0:VxeD:xp—d<x<xo+dx#xg = f(x)<—K.J

We say that the function has a vertical asymptote at xg.
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Limits
Definition
Let f: (a,4+00) C R — R be a function. We say that
lim f(x)=+oc0
X—>+00
if and only if
VK >0 3IM >0suchthatif x>M = f(x)> K.
Similarly ... let f : (—o00,a) C R — R be a function. We say that
lim f(x)=+4oc0
X——00

if and only if

VK >0 IM >O0suchthatif x< -M = f(x)> K.

etc ... etc ...




Limits
Theorem

Let f : D CR — R and xo be a limit point of D. If f (x) — L when x — xo then the
limit is unique.

Proof. Suppose, by contradiction, that there exist Ly and Ly with Ly # L> such that

lim f(x) =L, lim f(x)= Ls.

X—+X0 X—+X0

Hence for all e > 0 | can find §; > 0 and > > 0 such that
0 < |x —x0| < d1 and x € D implies |f (x) — L1| <e/2, (L)
0 < |x —x0| < 02 and x € D implies |f (x) — L2] < /2 (O).

Now consider § = min (d1, d2). Since xp is a LIMIT POINT of D then there exists
x* € D such that 0 < |x" — xp| < 6. Since § < d1 AND 6 < &2, for that x* both
conditions (A) and (OJ) are satisfied, whence

L= Lol = |l = F (<) + £ (<) = Lol < [l = F )|+ [F () = La| < 5+ 5 =,

<e/2 <e/2
which means L; = L.



Limits

Theorem

Let f : D C R — R be a function defined on the set D, subset of R, with
value in R. Let xo be a limit point of D. Then:

3 lim f(x) = L < Vx, € D such that x, — xp and x, # xo = f (xn) — L.

X—rX0
v

In practice

If we find two sequences x, — xp and y, — xg such that
f(xn) = 41 and £ (yn) — L2
with 1 # £5, in virtue of the theorem above we can conclude that the limit
A5, F 0

does not exist.




Limits

Example

Remember that

sin(3) =1
sin(53) =1 -
in((4k+1) =) =1, VkeN.
sn(91) =1 s ((4k+1) 5)
sin(33) =-1
sin(73)  =-1

™
= s 4k+3) =) =-1, VkeN.
sn(11z) =-1_ " (( )3)




Limits

Example
lim sin 1) » (L)
x—0 X o
Since
. T . T
sin ((4k+1) 5) =1, sin ((4k+3) E) =-1, VkeN.
consider )
Xk = 1 Vk € N.

Gkt1)z T @Gkt3) T

whence xx — 0 and yx — 0 nevertheless

f (x¢) = sin (Xik) = sin ((4k+1) g) =151

and
f (yx) = sin (i) = sin ((4k+3) g) =15 -1

whence the limit (A) does not exist!
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Limits

Example

The theorem is still valid even if xo = £00. Example f (x) = sin (x) and

lim sin(x) =77 (4)

X—>+00

Since
sin ((4k—|— 1) g) =1, sin ((4k+3) g) =-1, VkeN

consider
xe = (4k +1) g V= (4k+3) g Vk € N.

whence x, — 400 and yx — 00 nevertheless

f (xk) = sin (xk) = sin ((4k+1) g) =1-1

and
f (yk) = sin (yx) = sin ((4k +3) g) - 11

whence the limit (A) does not exist!




Left and right limits

Definition
Let f : D C R — R be a function. Let xy be a limit point of D. We say
that

lim f(x)=1L

+
X—>X0

if and only if 9L € R such that

Ve>0 30>0:VxeD:0<x—x<d = |[f(x)—Ll<e

similarly, we say that
lim f(x)=1L

X—)Xo

if and only if 9L € R such that

Ve>0 30 >0VxeD:0<x—x<d = |f(x)—L|l<e




Left and right limits
Theorem
Let f : D CR — R be a function. Let xo be a limit point of D. Then the limit

lim f(x) =1L

X—+X0

exists IF AND ONLY IF

lim f(x)=Land lim f(x)=L.

x—)x;r x*;Xo*

In practice
We will encounter one among these situations

@ lim, f(x)=Land lim_ - f (x) = L. We can conclude that the limit

5
lims_x f (x) exists and it is equal to L.

@ At least on between lim, o f(x) and lim__ — f(x) does not exist. We can
0

conclude that the limit lims_,,, f (x) does not exist.

@ lim,_, f(x) = L1 and Iimx_%_ f (x) = Lz, with L; # L>. We can conclude that

the limit limy_, f (x) does not exist.
4

= = TH



Left and right limits
Example

The sign (x) function is defined on (—o0,0) U (0, +00) as

|X| X -1 IfX<0

e () X _m_ 1 if x>0

If x > 0, by definition, sign (x) = +1 so that
li i = +1.

Jim_sign (x) =+

If x < 0, by definition, sign (x) = —1 so that

lim sign(x) = —1.

x—0~

Whence

3 lim sign (x).

x—0




f(x) = sign (x)
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Left and right limits

Definition
Let f : D C R — R be a function. Let xy be a limit point of D. We say
that

lim_ f(x) =+o0

X—}Xo

if and only if

VK>0 30>0:VxeD:0<x—x<0 = f(x)>K

similarly, we say that

lim f(x)=+o0

X—)XO

if and only if

VK>0 30>0:VxeD:0<xp—x<0 = f(x)>K




Left and right limits

Definition
Let f : D C R — R be a function. Let xy be a limit point of D. We say
that

lim f(x)=—o00

+
X—>X0

if and only if

VK>0 30>0:VxeD:0<x—x<d = f(x)<-—-K

similarly, we say that

lim f(x)=—oc0
X—Xq

if and only if

VK>0 30>0:VxeD:0<xp—x<d = f(x)<-—-K




Left and right limits
Example

Consider the function f : (=00, 0) U (0, 00) — (—00,0) U (0, 00) defined as
1

Take any K > 0 then consider an x* such that 0 < x* < % We have

1
Fx') == > K,

hence, by putting 6 = % in the definition, we have proved that

lim — = +4o0.
x—0t X

Using an identical procedure you can try to prove that

lim — = —o0.
x—0— X




Left and right limits
Definition

Other (intuitive) definitions (in what follows we implicitly assume x € D)

lim F(x)=LT&Ve>0,36>0:0<x—-x<6=0<f(x)—L<e

+
X—>X0

|im+f(x):L_<:>V€>O,E|5>O:O<X—Xo<c5:>0<L—f(x)<8
X_)XO

lim f(x)=LT&Ve>0,30>0:0<x-x<6=0<f(x)—L<e¢

X*)XO

lim f(x)=L" ©Ve>0,30>0:0<x—x<d0=0<L—-f(x)<e

X*}Xo

lim f(x)=LT&Ve>0,IM>0:x>M=0<f(x)-L<e¢

X—+00
E}T fx)=L"<Ve>0,IM>0:x>M=0<L—-f(x)<e
ET f(x)=L"=Ve>03IM>0:x<-M=0<f(x)—L<e

lim f(x)=L"&Ve>0,IM>0:x<-M=0<L-f(x)<e.

X—r—00

=



Left and right limits

Example

Using the definitions of limits it is straightforward to prove that

lim =0
x—0— 1 +X2 ’
) 1

lim = =0,
X—+00 X

lim 5 = 0+,
X—+00 X
x—1

lim =0T,

. X
lim 5 = or
x—0t 1+ x




Left and right limits

Theorem
Let f (x) and g (x) be two functions defined on a set D C R. Let xy be a
limit point of D.
e If when x — xo we have g (x) — 0" and f (x) — L > 0 then
f(x)/g(x) — +oo.
o If when x — xo we have g (x) — 0~ and f (x) — L > 0 then
f(x)/g(x) = —o0.
o If when x — xo we have g (x) — 0" and f (x) — L < 0 then
f(x)/g(x) = —oc.
e If when x — xo we have g (x) — 0~ and f (x) — L < O then
f(x)/g(x) — +oo.

Identical results hold for x — x; and x — xo+ )




Left and right limits

Theorem
Let f (x) and g (x) be two functions defined on a set D C R. Let xy be a
limit point of D.
o If when x — xo we have g (x) — L > 0 and f (x) — 07 then
f(x)/g(x)—0".
o If when x — xo we have g (x) — L > 0 and f (x) — 0~ then
f(x)/g(x)—0".
o If when x — xo we have g (x) — L < 0 and f (x) — 07 then
f(x)/g(x)—0".
o If when x — xg we have g (x) — L < 0 and f (x) — 0~ then
f(x)/g(x)—0t.

Identical results hold for x — x; and x — xo+ )




Some important limits

Assume a > 1.
lim log, (x) =77

x—0*
For all K > 0 consider 6 = a—X. So if
O<x<d=ak
we have (for a > 1 the log, is increasing)
log, (x) < log, () = —K.
whence

lim log, (x) = —o0.
im log, (x)



Some important limits

Assume a > 1.

i =77
Xlirroo log, (x) =77

For all K > 0 consider M = a¥. So if
x> M = aX
we have (for a > 1 the log, is increasing)
log, (x) > log, (M) = K.
whence

thoo log, (x) = +o0.

Similar computations show that, for 0 < a < 1, we have

xll[HJr log, (x) = 400, xﬂToo log, (x) = —o0.



Some important limits

Assume a > 1.

lim a* =77

X—>—00

For all € > 0 consider M = log, (1/¢). So if

x < —-M
we have (if a > 1 then a* is increasing)

0<a¥<a M= loell/ =

whence

lim a*=0.
X—r—00



Some important limits

Assume a > 1.
lim a* =77
X——+00
For all K > 0 consider M = log, (K). So if
x > M = log, (K)
we have (if a > 1 then a* is increasing)
> a = JdoslK) = k.
whence

lim 3% = +o0.
X—r+400

Similar computations show that, for 0 < a < 1, we have

lim a8 =+0c0, lim a°=0.
X——00 X——+00



Some important limits

Example

lim log, (x) = +o0,

X—+00

im_logy/ (x) = —o0,

lim & = +oo,
X—r+00

lim (l) =0.
X——+00 e




Algebra of limits

The red indicates that the sign must be established. Let a > 0 be a strictly
positive number.

0 +oo a
foo 0 0
07> =+o00, 07 =0, (—00)2" = 400, (—oo)2 o o
(+00) " = 400, (+00)"® =0, 400?=0, +00’®=+00

+00 4+ 00 = +00, —00—00=—00, (+00)-(+a)=+oco



Indeterminate form: 0/0

1/x 0 2
lim —— =-= lim — = +o0,
x—00 1/x 0 x—oo x

/x> 0 X



Indeterminate form: oo/

. X
lim —
X—00 X
. x?
lim —

818 318

= lim — =0,
X—00 X

= lim x =00
X—>00



Indeterminate form: co — oo

1
lim x2 —x =00 —00= lim x? <1—> = (+00) - (+1) = +o0,

X—00 X—>00

1
lim \/X2+X—X:OO—OO:§.

X—00



Indeterminate form: 0°



Indeterminate form: 1

lim
X—r+00

(



Indeterminate form: oc®

Forany a > 1

H . 1/ logg x . loga(x)
lim x1/198% = (400)° = lim 208 (M) i ghst0 = 4,
X—r+00 X—r+00 X——+00



Rules for limits

Theorem

Let f :DCR—Randg: D CR — R be two functions, xg a limit point
of D. If

lim f(x)=L; and lim g(x) = L>

X—X0 X—X0

then

Jim (F(x) +g () = L1+ La.

The results still holds if xg = +o00 or xp = —o0.

Warning!

The converse is not true! Consider f (x) = x and g (x) = —x. Then
Jim (F() 48 ()= lim (x—x)=0

Nevertheless

ngoo f (x) = +o0 and Xgrroog (x) = —o0.

-
= 3T



Rules for limits

Theorem

let f :DCR—Randg: D CR — R be two functions, xg a limit point
of D. If

XI|_>r‘r)1<0 f(x) = L1 and XI|_>n)1(0g(x) =1L
then
XI|_>n:|<0 f(x) -g(x)=Ly-Lo.
The results still holds if xg = +00 or xp = —00 )
Warning!

The converse is not true! Consider f (x) = x and g (x) = . Then

. . 1
XkTOOf(X).g(X) _XE}TOOX. ; B 1

Nevertheless

Xl!rroo f (x) = 400 and Xﬂ)rroog (x)=0.




Rules for limits

Theorem

let f :DCR—Randg: D CR — R be two functions, xy a limit point
of D. If

XIi_)n)(0 f(x) =Ly and XIi_)rr)log (x)=L#0
then ;
im F0) _ b
X—rX0 g (X) I_2

The results still holds if xo = +00 or xg = —00
Warning!
The converse is not true! Consider f (x) = x and g (x) = x. Then

_ f(x) X

lim —= im —=1

X—+0c0o g (X) X—+00 X
Nevertheless
lim f(x)=+ocand Ilim g(x)=+oc.

X——+00

X—r+00 3
Y




Continuity

Heuristically
A function is said to be continuous in a point xg of its domain if arbitrarily

small variations around xo generate small variations around f (xp).

Definition
Let f: D CR — R be a function and let xg € D. We say that f is

continuous in xp if and only if

Ve>0 36 >0:VxeD: |[x—x| <d=|f(x)—F(x) <e.

Theorem
Let f : D CR — R be a function and let xo € D. The function f is
continuous in xy if and only if

lim f(x)="f(x)-.

X—rX0




Continuity

Checklist for continuity
Suppose | give you a function f : D C R — R and a point x € R.

Question: Is f continuous in xg ?

@ Verify that xp is a point of the domain!! That is xp € D.
@ Compute
x||—>r?<0 f(x).

@ |If the limit in point 2 does not exists or is infinite = the function
cannot be continuous. If the limit in point 2 exists and it is finite, call
it L.
Q Verify if
L="f(x)-.




Continuity

Exercize
Is the function

continuous in xp =0 7

Solution. Trivially no. The domain of In(x) is
D = (0, 00)

and, hence, does not include xg = 0.



Continuity

Exercize
Is the piecewise-defined function

In(x) ifx>0
0 if x <0.

f(x) =

continuous in xg =0 7

Solution. The domain of f (x) is the entire real line, so xo € D.

Nevertheless

lim f(x)= lim | =—
A PO = g, In) = o
while

lim f(x) =0,

x—0~

whence Blim,_,o f (x) = The function is not continuous in-xp = 0.



Continuity

Theorem

The function

is continuous in all its domain D = [0, 4+00).

Proof. Consider a xo > 0. Let x € D, then

X — Xo

NG

0 < [F (x) — F(x0)] = [V& - v/3o] = 1 %

so if x — xp, by the comparison theorem, f (x) — f (xo).

Consider now xg = 0. For all £ > 0 take any § < €2 so that

0<x<d=0<+x<Vé<e.



Continuity

Remark
It is possible to prove that the following functions are continuous in all the

points of the corresponding domain:

f(x) = sin(x) D = R
f(x) cos (x D R
f(x) = log,(x) D = (0,+)
f(x) ax D R
Flx) = x" D = R
f(x) = x© D = [0,+00)

More generally, all the trigonometric functions are continuous in their

corresponding domains.




Continuity

Theorem
Suppose that f and g are continuous.

e Thenf+ g, f-g and f/g are continuous in their corresponding
domains.

o Iff (or g) is invertible, then f(=1) (or g(=1)) is continuous in its
domain.

e If it is possible to define (f o g) then (f o g) is continuous in its

domain.




Continuity

Exercize
Find the domain of the function

f(x)=x*

and establish where the function is continuous.

Solution. The function can be written as
X = eln(xx) — X In(x)‘
Whence it is defined for x € (0, +00). Since In(x) is continuous for all

x € (0,400) and since the exponential function is continuous everywhere

then f (x) is continuous for all x € (0, 4+00).



Continuity

Exercize
Find the domain of the function

f (x) =sin (In (1 4+ x?))

and establish where the function is continuous.

Solution. Since for all x it holds that
1+x2>0

then the function f (x) is defined for all x € R. The function f (x) is a

composition of the functions
x—=x>=>514+x>=1In (1—|—x2) — sin (In (1+x2)),

whence it is continuous for all x € R.



Notable limits

Theorem
It holds that

1\~ 1\~
lim (1 + 7) = lim (1 + 7) =e.
Xx—r+00 X X——00 X

Proof. Remember that N
an, = (1 + 7) — e.
n

Consider, for all x > 0, the integer part of x, defined as

[x] =max{m e N|m< x}.

H —|3.5] = 3.

Call, for simplicity nx = |x] € N and note that

For example

ne <x<ne+1,



Notable limits

From

ne < x<nx+1,

we derive
1

ne+1
Since n, < x we have

1 1 1
1+ -<1
nx+1< +X_ +

1 x 1 x
1 < (1
( +nx+1> —( +nx+1)
1

using 1+ =5 <1+ % we can continue ...

1 x 1 x
1 <1
( +nx+1> —( +nx+1>

using 1 + i <1+ i we can continue ...

1 x 1 x 1\* 1
1 <(1 1+ - <(1+—
(+nx+1> —<+nx+1)<(+x —(HX

finally, using x < n, + 1 we get

1 Ny 1 x 1 ny+1
1 1+ — 14+ —
) A N O

1 1
<-<—= =1+ -
X Ny Ny

A




Notable limits

From

ne < x<nx+1,

we derive
1

ne+1
Since n, < x we have

1 1 1
1+ -<1
nx+1< +X_ +

1 x 1 x
1 < (1
( +nx+1> —( +nx+1)
1

using 1+ =5 <1+ % we can continue ...

1 x 1 x
1 <1
( +nx+1> —( +nx+1>

using 1 + i <1+ i we can continue ...

1 x 1 x 1\* 1
1 <(1 1+ - <(1+—
(+nx+1> —<+nx+1)<(+x —(HX

finally, using x < n, + 1 we get

1 Ny 1 x 1 ny+1
1 1+ — 14+ —
) A N O

1 1
<-<—= =1+ -
X Ny Ny

A




Notable limits

From

ne < x<nx+1,

we derive
1

ne+1
Since n, < x we have

1 1 1
1+ -<1
nx+1< +X_ +

1 x 1 x
1 < (1
( +nx+1> —( +nx+1)
1

using 1+ =5 <1+ % we can continue ...

1 x 1 x
1 <1
( +nx+1> —( +nx+1>

using 1 + i <1+ i we can continue ...

1 x 1 x 1\* 1
1 <(1 1+ - <(1+—
(+nx+1> —<+nx+1)<(+x —(HX

finally, using x < n, + 1 we get

1 Ny 1 x 1 ny+1
1 1+ — 14+ —
) A N O

1 1
<-<—= =1+ -
X Ny Ny

A




Notable limits

From

ne < x<nx+1,

we derive
1

ne+1
Since n, < x we have

1 1 1
1+ -<1
nx+1< +X_ +

1 x 1 x
1 < (1
( +nx+1> —( +nx+1)
1

using 1+ =5 <1+ % we can continue ...

1 x 1 x
1 <1
( +nx+1> —( +nx+1>

using 1 + i <1+ i we can continue ...

1 x 1 x 1\* 1
1 <(1 1+ - <(1+—
(+nx+1> —<+nx+1)<(+x —(HX

finally, using x < n, + 1 we get

1 Ny 1 x 1 ny+1
1 1+ — 14+ —
) A N O

1 1
<-<—= =1+ -
X Ny Ny

A




Notable limits

From

ne < x<nx+1,

we derive
1

ne+1
Since n, < x we have

1 1 1
1+ -<1
nx+1< +X_ +

1 x 1 x
1 < (1
( +nx+1> —( +nx+1)
1

using 1+ =5 <1+ % we can continue ...

1 x 1 x
1 <1
( +nx+1> —< +nx+1>

using 1 + i <1+ i we can continue ...

1 x 1 x 1\* 1
1 <(1 1+ - <(1+—
(+nx+1> —<+nx+1)<(+x —(HX

finally, using x < n, + 1 we get

1 Ny 1 X 1 X 1 X
< — < —
(1+27) =1+ g) <(1+3) <(1+2) <[

1 1
<-<—= =1+ -
X Ny Ny

A




Notable limits

From

ne < x<nx+1,

we derive
1

ne+1
Since n, < x we have

L <1+1§1+i.
X Ny

1 = 1+
Ny ne+1

1 x 1 x
1 < (1
( +nx+1> —( +nx+1)
1

using 1+ =5 <1+ )—1( we can continue ...

1 x 1 x
1 <1
( +nx+1> —( +nx+1>

using 1 + % <1+ i we can continue ...

1 x 1 x 1\~ 1
1 <(1 1+ = <14+ —
(+nx+1> —<+nx+1)<(+x —(HX

finally, using x < n, + 1 we get

1 Ny 1 X 1>< 1 X
1 <1 1 - <1 1
(+nx+1) —( +nx+1> << +x) —( +nx) <( N

<lc
X

A




Notable limits

From

ne < x<nx+1,

we derive
1

ne+1
Since n, < x we have

! <1+1§1+1
X

1 = 1+
Ny ne+1

1 x 1 x
1 < (1
( +nx+1> —( +nx+1)
1

using 1+ =5 <1+ )—1( we can continue ...

1 x 1 x
1 <1
( +nx+1> —( +nx+1>

using 1 + % <1+ i we can continue ...

1 x 1 x 1\~ 1
1 <(1 1+ = <14+ —
(+nx+1> —<+nx+1)<(+x —(HX

finally, using x < n, + 1 we get

1 ny 1 X 1 ny+1
1 14— 14 —
(o) <(e3) <(5)

<ic
X Nnx

A




Notable limits
In summary, ny = | x| = max{m € N| m < x} and
1 \™ 1\~ 1\™"t 1\™ 1
<1+ > <<1+> <<1+) —<1+> <1+>.
ne+1 X Ny Ny Ny
Nevertheless, if x — +o0o0 we have n, — oo

. 1\™ 1
lim 1+ — 1+— ) =e
ny—00 Ny Ny

-~

—e —1

1 Nx 1 nx+1 1 -1
lim 1+ = lim (1+ 1+ =e
Nx—00 ne+1 Nyx—00 n+1 ne+1

—e —1

whence, by the comparison theorem,

1 X
lim <1 + > = e.
X——+0o0 X



Notable limits

What about

1 X
lim (1 + > = 7
X—r—00 X

If x < 0 then x = — |x| and so
1\ 1\ x| — 1 —|x| x| |x|
) - (A< () )
( x x| x| x| -1
1 x| 1 Ix|—1 1
B (”rx\—l) ‘(”x—l) (“rx—l)'

Ix|-1
When x — —oo we have |x| — +00 so that (1 + M%J — e and
1
Whence



Notable limits

Definition
Given n+ 1 real numbers ag, a1, ..., an, the function

1

Po(x)=anx"+ap-1x"" "+ ... +a1x+ao

is called a polynomial of degree n. The numbers ao, a1, ..., a, are called the coefficient of
the polynomial.

Any function of the form

OR

where Q, (x) is a polynomial of degree n and Pn (x) is a polynomial of degree m, is

called a rational function.

Remark

Any rational function such as (A) has the domain

D={x€R|Pn(x)#0}.

For all x € D the function (A) is continuous.

= = - = = TPCTSTESTS



Notable limits

Limits of fractions of polynomials
Put in evidence the highest power:

. xT —3x%2 4+ x
lim —m—m———
x—=400 9 — 12 x7 — x4

x8 —3x2 4 x

—0 —0
~ = /=
1-3x°+x % 1

l =_—.
m 3 1

x—+00 Qx 1 —12 — x
<~ ~~

—0 —0

—0 —0
~ =
1-3x 04 x77

lim

lim —mM——— = X
x=4009 — 12x7 — x*  x—o+4o0 9x 1 —12 — x 3
S~ <~

i x' —3x%2 4 x
im —
x—+00 9 — 12 x8 — x4

—0 —0

—0 —0
~ = =
11-3x°+x7° 0

lim

T xotoox 9x 812 — x4
<~ ~~

—0 —0

== —0OQ.

LY




Notable Limits

@ Applying the same geometrical argument used for nsin (1/n) — 1 we

can prove that

jim S0 4
x—0 X
o Consider
. 1—cosx O
[m —M = —.
x—0 X 0

Using the previous notable limit ...

1 — cosx 1—cosx 1+ cosx X 1 — cos? x X

X X X 1 + cos x X2 1 + cos x

:<5i”>2 X _,1.0-=0 (0.1)

X 1+ cos x




Notable Limits

@ To compute
i l1—cosx O
im ———— = —
x—0 X2 0’

we use the notable limits that we already know.

1 — cosx _ 1 — cosx 1+cosx_ 1 — cos? x 1
X2 - X2 1+cosx X2 1 + cos x
sinx 1 1

1
MX L 41—
x2 14 cosx 2 2

@ Same procedure for
. tanx 0
lim = —.
x—=0 X 0

tan x sinx 1
= — 1.
X X COSX




Notable Limits

@ In the case of
. In(14+x) 0
lim ————= = —.
x—0 X 0

we use the properties of the logarithm

In(1
A+ 1420k
X
Callt=1—00
. 1 . 1\*
limIn(1+x)x = limIn{1+4+=
x—0 t—00 t

1 t
= In<|im <1—|—>>:|ne:1.
t—00 t

Note that we obtain the same result both if x — 01 and if x — 0~ .



Notable limits

@ The following limit
.oef—1
lim =

x—0 X

ol o

can be computed changing variable y = e —1=x=In(1+y)

i e*—1 i vy ~im I 1
xlno X - yinO In (1 + y) y~>0 In(l+y)
y

@ To compute
. a\x
lim (1+ —> .
X—+00 X

again we change variable y = %

a\ x 1\ 1\”1?
lim <1+7) — lim <1+> — lim [<1+> ] _ e
X—00 X y—00 y y—00 y



Notable limits

@ To compute
I 1
lim 10801 +x) _ 0
x—0 X 0

it is necessary to use the rule

log, (x)
I = —4
%85 () = log, (5)
Obtaining
im logp, (1 + x) ~ lim In(1+ x) _ i
x—0 X x=0 xInb Inb
@ Similarly for
i@ -1 _0
XTO X a 0

definey = a* — 1= x=log,(y +1)

.oai—1 ) 3%
||m m —m—
x—0 X y—0 |Oga (y + 1)



Notable limits

Recall what we have proved for sequences...

Consider any a > 1 and b > 0 then

Summary
. log, (n) . ,
lim . = 0 = The power diverges faster than the logarithm
n—o00 n
b
lim — = 0 = The exponential diverges faster than the power
n—oo g
n
lim — = 0 = The factorial diverges faster than the exponential
n—oo nl
.nl . .
lim — = 0 = n" diverges faster than the factorial




Notable limits

The same results

Consider any a >

. log, (x
lim 73( ) =
X—00 X
. oxb
lim — =
x—o0 g%

can be straightforwardly proved for limits on the real line.

1 and b > 0 then

The power diverges faster than the logarithm

The exponential diverges faster than the power

The factorial diverges faster than the exponential

n" diverges faster than the factorial



Limits: exercizes

Exercize

Compute the limit
) sin (x) 0
lim = _
x=0In(1+x)|x—7 0

Solution.
im sin (x) _ i 51 (x) X '
x=»0In(l+x)|x =7 x=0 x In(1+4+x)|x—7|
Using
i S (x) ~ 1 lim In(1+ x) 1,
x—0 X x—0 X
we get
sin (x) 1

I = .
X[>nO|n(1+X)|X77| 7



Limits: exercizes

Exercize
Compute the limit

Xli)r&x In(x) =0 x (—o0)

Solution. By changing variable x = e™' = t = — In(x) we get
lim xIn(x) = lim —te '=— lim —.
x—0F t—+o0 t—+oo et

However et diverge faster than t, so

li I =0.
g X



Limits: exercizes

Exercize
Compute the limit

lim x* =0°
x—0t

Solution. Write
X = eln(xx) N In(x)‘

Since x In (x) — 0 and since the exponential is a continuous function we
have

lim x* =1.
x—0t



Limits: exercizes and indeterminate forms

Exercize
Let K > 0 be a positive constant. Compute the limit
In(K)

lim xm) = Q°
x—07t

Solution. The limit is a little bit tricky. Note, in fact, that

SO

This is why 0° is an indeterminate form ...

In(2) In(100

)
lim x") =0°=2, lim x " =0°=100, etc..

x—0t x—0t

.etc...



Limits: exercizes and indeterminate forms
Exercize

Let K > 0 be a positive constant. Compute the limit

In(K)
lim (1+x) ~

x—0

— 1

Solution. Again write

(1+ x)w = exp (In ((1 —|—x)|n(xK)>> = exp (In(XK) In (1 —|—x)>

— exp <In (K) '”(1;”)) S ep(In(K) =K. (03)
SO
>|<i—>mo(1 +X)IH(XK) =K

This is why 1°° is an indeterminate form ...

. In(2) . In(100)
lim (1+x) = =1°=2, lim(1+x) ~ =1%=100

x—0 x—0




A summary of indeterminate forms

The seven indeterminate forms
is indeterminate because, for example

0
Q;
lim Kx = 0 = K, for any arbitrary K.
x—=0 X 0

@ 0 x oo is indeterminate because, for example
. 1 .
lim (Kx)-| =) =0x o0 =K, for any arbitrary K
x—0 X

is indeterminate because, for example

o0
o=
K
. .
lim &~ = — = K, for any arbitrary K.
x—0 x o

@ o0 — oo is indeterminate because, for example

lim <K—|— 1) _1 =00 — oo = K, for any arbitrary K.
x—0 X X




A summary of indeterminate forms

The seven indeterminate forms

@ 1 is indeterminate because, for example

In(K)
Iimo(l +x) x =1 =K, for any arbitrary K.
X—

@ 0° is indeterminate because, for example

. In(k) 0 .
lim x™) =0 = K, for any arbitrary K.
x—0t

@ oo° is indeterminate because, for example

x
1—x

In(K)
lim (7> = 00® = K, for any arbitrary K.

x—0 \ X




A summary of indeterminate forms

Theorem
Let f (x) > 0 and g (x) > 0 be two functions such that

lim f(x)=0, lim g(x)=+oc.

X—>X0 X—>X0

Then
lim £ (x)e®) = 0.

X—rX0

In other words, 07° is not an indeterminate form.

Proof. Take an 0 < € < 1, then there exists a ¢ such that
0<f(x)<e.

Hence
0< (F(x)EX <8 0

where the limit derives from the fact that 0 < ¢ <.1 and g (x) — +oc.



Limits and the sign of a function

Theorem

Let f : D CR — R be a function and xg be a limit point of D. Assume
that

lim f(x)=1L

X—X0

with L > 0. Therefore it exists 6 > 0 such that f (x) > 0 for all
x € (x0—0,x+0)D\ {x}

Proof. In the definition of limit take e = L > 0. So that it exits d > 0 such
that for all x € D such that 0 < |x — xg| < 0 we have

f(x)— L <Ll=—-L<f(x)—L<L=0<f(x)<2L.




Continuity

Exercize
Is the function
f(x)=e ¥/

continuous in xo =0 7

Solution. No because the function is not defined in 0.
Exercize

Is the piecewise-defined function

e V% ifx#£0
if x=0.

g(x)=

continuous in xo =0 7

Solution. The function is defined in 0. So we compute the limit of the function in 0:

/e 1 L
= lim s = o = - =0=£(0),

. o 1 N
le)g(x) - xllnoe

hence the function is continuous.




Continuity and Derivatives
Definition
Let f: D C R — R be a function and let xg € R be a limit point of D.

The point xg may or may not belong to D.
We say that f has a jump discontinuity in xg or, simply, that the function

jumps in xg if

dL; = lim f(x) and 3Ly = lim f(x)

+ —
X—)XO X_>XO

but L; # L.

Example
The sign (x) = |x| /x has a jump discontinuity in x = 0. In fact
x| . x Ix| —x

lim — = Ilim — =1, Ilim — im — =-1
x—0t X x—0t X x—0— X x—0— X




f(x) = sign (x)

1.5

0.5

-0.5

-1.5
-0.5

0.5



Discontinuities
Definition

Let f: D CR — R be a function and let xo € R be a limit point of D. The point xo
may or may not belong to D.

We say that f has a removable discontinuity in xo if

HL:XILrQ f(x) <:><Iim+f(x): lim f(x):L)

X—>Xg X—Xg

but ...

@ either L # f (x0) (in case xo € D)

@ or f is not defined in xo.

Remark. If f has a removable discontinuity in xp, then the piecewise-defined function

f(x) ifx#xo

L if x =xo

g(x)=

is, by definition, continuous in xo.




Discontinuities

Example

Consider the function
F)= ") gy oy SR

X

We know that
. sin(x)
lim ——=~

x—0 X

=1,

nevertheless 0 ¢ D. This means that the piecewise-defined function

sin() i x £ 0

X

1 if x=0

g(x)=

is continuous in xp = 0.




Discontinuities

Definition
Let f: D CR — R be a function and let xo € R be a limit point of D. The point xo
may or may not belong to D.
We say that f has an essential discontinuity in xo if either
3 lim f(x) or lim f(x)=4c0 (A)
X—rXg X—Xg

? lim f(x) or lim_ f(x)==x00 (O)

X—rXg X—+Xg

or both condition (A) and (0J) hold simultaneously.

Example

The function

£ (x) = sin (%)

has an essential discontinuity in xo = 0.




Discontinuities

Exercize
Find the value of the parameter o such that the piecewise-defined function

aSi%+x2 ifx#0
In(2) if x=0.

f(x)=

is continuous everywhere on R.

Solution.

lim f (x) = lim <a Snx +x2> = q,
X

x—0 x—0

whence ao = In(2).



Discontinuities

Exercize

Is the function
In(1+ x)

X

f(x)=

continuous in xg = 07 If not classify the type of discontinuity.

Solution. Since 0 ¢ D the function cannot be continuous in xg = 0.
Nevertheless
In(1+ x)

lim = T
x—0 X

whence the function has a removable discontinuity. This means that the

piecewise-defined function
|n(1+x) |f % ?é O
1 ifx=0

g(x)=

is defined and continuos everywhere on R.



Discontinuities

Exercize

Is the function .

f(x)= PRy

continuous in xg = 17 If not classify the type of discontinuity.

Solution. Since 1 ¢ D the function cannot be continuous in xog = 1. Besides

1 ) 1
400, lim
x—1- |X -1

I —
oot x — 1

| = oo

whence the function has an essential discontinuity in xg = 1.



Discontinuities

Exercize

Is the function

x+7 ifx>0
f(x)=
X ifx<0

continuous on R? If not classify all the discontinuities.

Solution. The function is trivially continuous for all xp # 0. Note that

lim f =7
erEJr (X) ’
while
lim f(x) =0,
x—0~

whence the function has a jump discontinuity in xg = 0.



Main theorem on continuity

Theorem

Intermediate value theorem

Let | = [a, b] be an interval.

Let f : | — R be a continuous function defined on |.
Suppose, without loss of generality, that f (a) < f (b).
Then

V& e (f(a),f (b)) 3xc € (a,b) such that f(xc) =¢&.







f(0)




f(0)




f(0)

g




f(0)

g




f(0)

Le




f(0)

Jump discontinuity

Le




f(0)

Jump discontinuity

Le




f(0)

Jump discontinuity

\

e € (a,b) : fz) =¢




An economic application

Let p be the price of a commodity. Assume that p € (0,1).

Suppose that the demand and supply functions are
D(p)=In(2-p), S(P)=pr (L)

Definition
A price p* is an equilibrium price if

Problem
In an economy with demand and supply given by (/) does an equilibrium

exist?




An economic application

Consider the difference
f(p)=5(p)—D(p)=p—In(2—p)

e o1 {f(O) — _In(2) <0,
fF(1) =1>0.

Since f (p) is continuous in (0, 1) then, by the intermediate value theorem,
dp* € (0,1): f(p*) =0,

whence
S(p*)=D(p%).

In other words, the economy has at least one equilibrium (we did not prove

that is unique).



The Weiestrass extreme value theorem

Definition

Let f : | = [a, b] — R be a function. Suppose that it exists m € | such that
Vxel=f(x)>f(m).

In this case we call £ (m) the minimum value of f in /. We also say that f
attains a minimum at m.

An identical definition holds for the maximum.

Theorem
Let f : [a, b] — R be a function defined on the closed limited interval [a, b].
If f is continuous on [a, b] then f attains a minimum and a maximum on

[a, b].
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0.6

0.4

0.2

0.5




f(z) = 2”
0.8
0.6
04-
0.2
f(0)=0
0 1 ! I
1 0.5 0,,—0 05




f(=1)=1 f(z) = 22 f(H=1
0.8
0.6
04
0.2
M=-1 | f0=0 | M=1
e 0.5 0,,—0 05 1



f(z) = sin(z)/z

1.4

1.2

0.8

Minimum is attained

Minimum is attained




f(z) = sin(z)/x

1.4

Maximum is not attained!

&




f(z) = sin(z)/z

1.4

1.2

0.8

0.6

0.2

Maxmmm is not attained!

8\

We cannot apply the theorem.
The function is not continuous
on the closed set.

-0.4
-10

10






f(z)=1/x

Maximum is never attained!




f(x) = 1/:1:

The function is continuous on (0, 1)
Nevertheless (0, 1) is not closed!




