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Derivatives

Definition
A function f : D C R — R is said to be differentiable in xo € int (D)
(int (D) denotes the set of the interior points of D)
if:
3L = Jim T0 TR = Fx0)
h—0 h
—_————

difference quotient.

We call L = f' (x0). We define the left and right derivative of f in xo the two limits:

lim f(x—&-h)—f(x)7 m f(X-l—h)—f(x)’

h—0— h—0+ h

when they exist and we call them ' (x5 ) and f’ (xg ) respectively.

Remark
Note that the left and right derivatives can be defined even if xo belongs to the closure
of D.
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Derivatives

Geometric interpretation of the derivative

Let f be differentiable in xy. Find the equation of the straight line passing
through A = (xo,f (x0)) and B = (xo + h, f (xo + h)).
o Generic equation of the straight line y = mx + ¢

o A belongs to the line & f (x0) = mpxo + ch.

@ B belongs to the line & f (xo + h) = my (xo + h) + ch.
Whence

f(Xo—i—h)—f(Xo):th0+mhh+Ch—th0—Ch:mhh:>

_ f(x0+h)—f(x0)
mp = h

If h — 0 then my, — f’ (xo) = The derivative is the angular coefficient of
the line tangent to the graph.
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Derivatives

Theorem

If f is differentiable in xq then it is continuous in xg.

Proof. We know that the limit

jim ) =F00) iy
X—rX0 X — Xo
exists and it is finite. Whence
. _ . () —f(x)
Jim (FO) = £ o)) = Jfim —=— = (x—x)
f —f
= lim (x) (o) lim (x — xo)
X—X0 X — X0 X—>X0
= f/(Xo)-OZO,

which means



Derivatives

Problem
Is the converse true?

That is, if f : D C R — R is continuous in xg, can we say that f is differentiable in xo? )

Answer
No! Differentiability is a condition much stronger than continuity.

As always, to prove our assertion, we need at least one counter-example:

f(x)=Ix],
is continuous in xp = 0, nevertheless
. |0+ h| —]0] . h . |0+ h| =0 . —h
lim BT gim D=1 lim S0 o i =2 =1
horo h e h pso- h :

thatis ' (x5 ) = +1# ' (xg ) = —1, whence #f (0).

Definition
The point xo = 0 it's called an angle point. More generally, we say that a function f (x)

has an angle point in xo whenever the derivative has a jump discontinuity in xo.

= 57T



Derivatives

Theorem

Let f :DCR—>Randg: D CR — R be two functions differentiable in
X0.

For all € R and 8 € R, the function a.f + B8g : D CR — R defined as

(af+8g)(x)=af(x)+Pg(x), VxeD

is differentiable in xog and

(af+88) (x0) =af (x)+ g (x0).




Derivatives
Proof.
We have to proof the the limit of the difference quotient

i (07 +58) 00+ )~ (af +5g) (x0)
h—0 h

exists and it is finite. For this purpose note that

(af+Bg)(x+h)—(af +Bg)(x)

lim
h—0 h

_ i @f ot h) +Bg(x0+h) —af(x) ~Bg(x)
h—0 h

_ i @f ot h)—af(x)+Bg(x+h) —Be(x)
h—0 h

_ ;',ifo af(x0+h/)7—f(x0)+Bg(xo+h/1—g(Xo)

= af’ (x)+ B8& (x).



Derivatives

Theorem

Let f :DCR—>Randg: D CR — R be two functions differentiable in
X0.

The function f - g : D C R — R defined as

(f-g)(x)=f(x)-g(x), ¥xeD

is differentiable in xqg and

(f-g) (x0) = f'(x0) g (x0) +  (x0) & (x0)-




Derivatives

Proof. We have to proof the the limit of the difference quotient

i (F8) 0o ) = (£ 8) (x0)
h—0 h

exists and it is finite. For this purpose note that
i (F8) (0 +h) — (Fg) ()

h—0 h
_ i [0t h) g(x0+ h) — f(x0) &(x)
h—0 h
_ i fO0th) g0+ h) — f(x0) g(x0+h) +f(x0) g (x0+ h) — f (%) &(x0)
h—0 h
_ i 800 h) (f(x0+ h) = f(x0)) +  (x0) (g (x0+ h) — g (x0))
h—0 h
= lim |5 (0 + h) (f (0 + hz — f (%)) +F (%) (g (x0 + hl)7 — g (%))

g differentiable in xo = g continuous in xo = g (x0 + h) = g (x0) .
Whence

i (F8) (ot h) — (Fg) (x0)
h

h—0

=g (%) f' (x0) + f (x0) & (x0) -



Derivatives

Theorem
Letf:DCR—Randg: ECR— R withf(D)CE.
Hence it is possible to define (g o f): D CR — R in the standard way

(gof)(x)=g(f(x)), VxeD.

Assume f is differentiable in xo € D and g is differentiable in f (xo) € E.
Then (g o f) is differentiable in xo and

(g o) (x0) =g (f (%)) ' (x0)-

Proof. The proof is rather technical and we skip it.



Derivatives

e Compute the derivative of a constant function, f (x) = ¢ for all x € R.

f(x+h)—f(x+h) . c—c
h—0 h h—0 h

=0= f'(x) =0.

o Compute the derivative of f (x) = x for all x € R.

F(x+h) —F(x+h h—
fim LXER = Ot h) o xFhox ey 2
h—0 h h—0 h




@ For n € N, n > 1, compute the derivative of f (x) = x" for all x € R.

[im Gt )=
h—0 h
n x" 4+ n x""Yh+ n X"2H .+ n A" — X"
i 0 1 2 n
= MM h
x" 4+ n X" h+ n X"2R 4+ R — X"
i 1 2
= 20 h
Tt [T ) xR
; 1 2
= 0 h
= lim ( n >x"1+< " ) X2 h4 ...+ AL
h—0 1 2
Since lima—o h = limaso A2 = limpoo A2 = ... = limpoo A"~ = 0 we have

/ _ n n—1 __ n! n—1 __ n—1
f(X)_(;[)X BTG O



@ For a > 0,a # 1, compute the derivative of f (x) = a* for all x € R.

x+h X h
, _.afa_x.afl_X
f(x)flllnoih =a I’:T =a"In(a).
Since In(e) = 1 we have (e*) = e*.
@ Compute the derivative of f (x) = sinx for all x € R.
. si + h) —sin(x)
p _ sin (x
(x) ilrlno h
— im sin x cos h + cos x sin h — sin x
= 0% h
. . cosh—1 sinh
= |lim |sinx ———— 4+ cosx —— | = cosx.
h—0 h h
N—— N~~~
1 1
1] 1

@ Compute the derivative of f (x) = cos x for all x € R. Remember that

cosx = sin (x + ), hence by the rule of derivation of composite function

(cosx) = (sin (x—i— g))l = cos (x+ g) (x+ g)l = cos (x+ g) = —sin(x).



@ For a > 0,a # 1, compute the derivative of f (x) = log, (x) for all x > 0.

log, (x + h) — log, x log, (*t) x4+ h\ 7
lim —&a 82X _ fim —2 X/ — |im log, (—)
h—0 h h—0 h—0 X

1 x
B h
(1 + ﬁ> } _ lim log, (1 + ﬁ) .
X X h—0 X

Nevertheless, by changing variable, we get

fl(x) =

= lim lo
h—0 €a

. A\ . 1 . 1\7
limlog, (14 — = limlog,(1+¢t)t = lim log, {1+ =
h—0 X t—0 q—r o0 q
1 q
= log, ( lim (1 + 7> > =log,e.
q—o0 q
Whence | .
og, e
I == = |
(log, (x))' = &€ =

In particular (In(x))" = 1.

@ For a € R, # 1, compute the derivative of f (x) = x“ for all x > 0.

(Xa)/ _ (eln(x"‘)) _ (ea In(x)) = e” In(x) (OZ In (X))/ = e” In(x) % — % = ax



Derivatives

Definition

Let f: D CR — R be a function and let xo be a point such that

lim f'(x) = +ooand lim f' (x)= —oo.
x—xg x—xg

In this case the point xo is called a cusp point.

Example

f(x)=+V|x]:R—=R,
If x > 0 then f (x) = v/x = x*/2, which implies

/ o 1 1 4 . 1 _1 N i . , .
f(x)—2x2 =5 2_2\/;:>XILr{)1+f(x)—+oo.
If x < 0 then f (x) = v/—x = (—x)*/2, which implies
P =5 (08 () = =3 (0 7F = o= = im (=







Derivatives: Rolle’s Theorem

Theorem
Let f : [a, b] — R be continuous on [a, b] and differentiable on (a, b).
If f (a) = f (b) then 3xp € (a, b) such that f' (xp) = 0.

Proof. Continuity on [a, b] and Weiestrass = Im, M € [a, b] :
f(m)<f(x)<f(M), ¥xeR.

If both m ¢ (a, b) and M ¢ (a, b) then

f(a)=1f(b)=Ff(m)=Ff(M)=f(x)=1f(m)="Ff(M)=f(x)=0Vx.

Assume, without loss of generality, that at least M € (a, b).



Derivatives: Rolle’s Theorem

Theorem
Let f : [a, b] — R be continuous on [a, b] and differentiable on (a, b). If
f(a) = f (b) then 3xy € (a, b) such that f' (xp) = 0.

Proof. M € (a, b) hence for h > 0 small M+ h € (a,b). f(M)is a
maximum, so f (M + h) — f (M) < 0 and since h > 0 we get
f(M+h)—f(M)
h
For h < 0 (small) the sign changes accordingly
f(M+h)—f(M)
h

Since f is differentiable we have that

<0=f(MY) <0 (A).

>0=f"(M7)>0 (D).

fr(M™) = (M7) =1 (M),

which combined with (A) and (CJ) gives ' (M) = 0.
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Derivatives: Lagrange's Mean Value Theorem.

Theorem

Let f : [a,b] — R be continuous on [a, b] and differentiable in (a, b).
There exists a point xo € (a, b) such that

f(b)—f(a)=(b—a) f (x)-

Proof. Consider the function g (x) = f (x) — ax. Find « such that

ga)=g(b) & f(a)—aa=f(b)—absa(b—a)=1f(b)—1f(a)
f(b) - f(a)
e a=———

g, as f, is continuous in [a, b] and differentiable in (a, b) and g (a) = g (b)
= Rolle's Theorem on g.

3% € (a,b) 1 & (%) = 0 = F (x0) — = ' (x0) = -1~ (3)

. O
b—a



Derivatives

Exercize

Use Lagrange’s theorem to prove that

In(x) <x, V¥xe€(0,00).

Solution.
o If x € (0,1) we have In(x) < 0 < x, so the inequality is obvious.

@ If x =1 the inequality is 0 < 1, which is true.
e If x > 1 Lagrange's theorem on the interval [1, x] gives
In(x) —In(1) 1
x—1 c
with ¢ € (1, x) and where we have used (In(x))’ = 1/x. In particular
c > 1. Hence we get
x—1 x 1

In(x) = _7—2<§<x
c c

where the last inequality follows exactly from ¢ > 1.



Derivatives

Exercize

Use Lagrange’s theorem to prove that

sin(x) <x, Vx>0.

Solution.
o If x> 7 Then x >1andsosin(x) <1< 7% <x.

™

o If xe (0, 5) apply Lagrange's theorem on the interval [0, x]

sin(x) —sin(0)
0 = cos(c)
with ¢ € (0,x). Since 0 < ¢ < x we also have that 0 < ¢ < 7 and

hence 0 < cos(c) < 1, whence

0< sin (x)

=cos(c) <1=sin(x) < x



Exercize
Let f (t) be the GDP of a country. Assume also that f (0) = 0 and that f
verifies the hypotheses of the Lagrange’s theorem.

Assume that
f'(t)<7% Vt>0.

Which is the maximum GDP at time t 7

Solution. Using the Lagrange's theorem on [0, t] applied to the function f

we know that
f(t) —f(0)

=f"(c) <79
o (c) <7%

whence f(t) < 7% t.



Derivatives

Exercize
Does there exist a continuous and differentiable function f (x) such that
f(0)=—1and f(2) =4 and f'(x) <2 for all x?

Solution. Since such a function would also verify the hypotheses of the

Lagrange's theorem we would have

f(2)-f(0) _

“2-0 10
with ¢ € (0,2). This would imply

4%1 — f'(c) <2,

which is impossible.



Derivatives

Exercize

Let f : [0,1] — R be a function continuous on [0, 1] and differentiable in (0,1) such that
f(0) =0 and |f' (x)| < |f (x)| for all x € (0,1).

Prove that f (x) = 0 for all x € [0, 1].

Solution. Fix x € (0,1). By Lagrange 3x; such that 0 < x; < x and f (x) = f' (x1) x,

whence
f ()| = x |[f' ()] < x |f (a).

By Lagrange 3x; such that 0 < x2 < x1 and f (x1) = f' (x2) x1, whence (using x1 < x
and |f' ()| < f (x))

If (X)) < x |f ()] = xx1 ’f’ (X2)| <xx |f(x)| = X2 f(x2).
By iterating we get a sequence x, € (0,1) such that
If (< X" [f (xa)] -

By the Weiestrass theorem |f (x)| is bounded in [0, 1], whence x" |f (x,)| — O.



Derivatives: Cauchy’'s Mean Value Theorem

Theorem

Let f : [a,b] — R and g : [a, b] — R be cont. in [a, b] and diff. in (a, b).
Then there exists a xg € (a, b) such that

(f (b) — f(a) &' (x0) = (g (b) — £(a)) f'(x0)

Proof. Suppose first that g (b) # g (a). Define h(x) = f (x) — g (x) and

find the « such that

h(a)=h(b) = f(a)—ag(a)=Ff(b)—ag(b)

o i PO F(3)
& a(g(b)—g(a)=f(b)—f(a) & Z(b)—£2(3)’
h, as f and g, is continuous in [a, b] and differentiable in (a, b). Apply
Rolle’s Theorem to h obtaining

Y R f(b)—f(a) ,
dxo € (a,b) : h (§) =0=f"(x0) — mg (x0)

whence the thesis.



Derivatives: Cauchy’'s Mean Value Theorem

Theorem
Let f : [a,b] = R and g : [a, b] — R be cont. in [a, b] and diff. in (a,b).
Then there exists a xg € (a, b) such that

(f (b) — £ (a)) &' (x0) = (g (b) — g (a)) f' (x0)-

Proof. Suppose now that g (b) = g (a). Apply Rolle's Theorem to g
obtaining

Ixp € (a,b) : g’ (x0) = 0.

whence the claimed identity (0 = 0) is verified.



Derivatives

Exercize
Use Cauchy’s Theorem to prove that

N

O<1—cos(x)<X—, Vx > 0.

Y
Z

Solution. Apply Cauchy's theorem to
f(x)=1—-cos(x), g(x)= 5

on the interval [0, x].

X o F)=F(0) _ f(x)  1—cos(x) _ sin(x)
Ixo € (0, )'g(x)—g(O) g’(Xo):> X; P

Nevertheless we have proved that S'"(X) < 1 for x > 0, whence

1 — cos 2
0<X2(X)<1:>1—COS(X)<X2.
2



Derivatives

Theorem

Let f : [a,b] — R be differentiable in (a, b), then f' cannot have any jump discontinuity
on (a, b).

Proof. Let xo € (a, b). We know that the limit

lim f(x)—f(x)
X—X0 X — Xo

= f' ()

exists and is finite. Suppose that the limits lim, _, f'(x)=Aand lim_, - f'(x)=B

—> X,
0
exist and are finite. If x > xo we have

Ix; € (x0,x) : 109 = fx) = f'(x).

X — Xo
As x — xg also x1 — xg then
. f(x)—f .
f'(x0) = lim f(x) = F() = lim f(x)=A
><—>><°+ X — Xo >(;|_—>>(ar

Similarly by considering x — x; we can show that B = f’(x0) and then A = B.



Derivatives

Remark

The derivative of a function could, however, have other types of discontinuities.

Example

f(x)—{ ) Sig(;) iig

f is continuous everywhere since lim,_,o x> sin (%) = 0. If x # 0 the derivative is

£ (x) = 2 sin (%) ~ cos (%) .

FO)=FO) _ o Xsin() L (;) _

x—0 x—0 x—0 X x—0 -

Nevertheless since

’

the function is differentiable in xo = 0 and ' (0) = 0. Nevertheless

lim £ (x) = lim [2x sin (%) ~ cos (%)} _ 4

whence f’ has an essential discontinuity in xo = 0.




Increasing and Decreasing functions: a reminder

Definition
Let D C R — R be a function and let / C D be an open interval
| = (a, b), subset of the domain. We say that the function f is strictly

increasing in [ if
Vxi,x0 €1:x1 < xo = f(x1) < f(x),
we say that the function f is increasing in [ if

Vxi,xa € 1:x1 <xo = f(x1) < f(x).




Derivatives and monotonicity

Theorem
Let f : [a, b] — R be differentiable in (a, b).

If f'(x) > 0 (resp. f'(x) <0) for all x in (a,b) then f is increasing (resp.
decreasing) in (a, b).

Proof. Consider x1,x2 € (a, b) with x; < x. Mean value theorem implies
Ixg € (x1,%2) : F(x2) — f (x1) = ' (x0) (x2 — x1).
If £ (x0) > 0 it follows that f (x;) < f (x2), that is f is increasing.

If ' (x0) <0 it follows that f (x2) < f(x1), that is f is decreasing.



Derivatives and monotonicity

Theorem

Let f : [a, b] — R be differentiable in (a, b).

If f is increasing (resp. decreasing) in (a, b) then ' (x) > 0 (resp.
f'(x) <0) for all x in (a, b).

Proof. Assume that f is increasing and let xo be in (a, b). For h > 0 we

have xg < xg + h, whence

f(XO —+ h) — f(Xo)
h

ZO:>f/(X5") > 0.
Similarly, for h < 0 we have h = — |h| and hence

f(xo—[hl) = f(x0) _ f(x0)—r(x0—|hl)
— |h] [l

>0=1f"(x5) >0

whence ' (xp) > 0 (the case f decreasing is identical).



Local minima and local maxima

Definition
Let f : [a, b] — R be a function.
A point xp € (a, b) is a local minimum if there exists a sufficiently small

d > 0 such that
(xo —d,x0 +9) C (a,b) and f(x) > f(x0),Vx € (xo — d,x0 + 0) .

A point xp € (a, b) is a local maximum if there exists a sufficiently small

0 > 0 such that

(xo —d,x0+0) C(a,b) and f(x) < f(x0),Vx € (xo — d,x0 + 9).




f(x) = Sin(lOO‘* x) In(1 - z?)

-0.5 0 0.5




f(x) = Sin(100‘* x) In(1 - z?)

Local minima

-0.5 0 0.5




f(x) = Sin(100‘* x) In(1 - z?)

/ Local maxima

-0.5 0 0.5




Fermat's Theorem on local extrema

Theorem
Let f : [a,b] = R and xg € (a,b). If f attains a local min or max in xg
then either

f'(x)=0

or

ﬂf’ (X()) .

V.

Proof. If xp is local min. then for suff. small h we have f (xg + h) > f (xo).
If f is differentiable in xg then

>0 >0
—_—
. f(X0+h)—f(X0) _ . f(Xo—l—h)—on
hlntr)L h =f(qg) <0, hll>no1+ h =f(qg) =0
~~ ~~—

<0 >0

but since 3’ (xp) then ' (xo) = 0. The only option left is that Af’ (xp).



Fermat's Theorem on local extrema

Theorem
Let f :[a,b] = R and xo € (a,b). If f attains a local min or max in xg
then either

f'(x0) =0

or

' (x0) .

Proof. If xq is local max. then for suff. small h we have
f(xo+ h) < f(xp). If fis differentiable in xg then

<0 <0
—_—
. (Xo—|—h)—f(X0) _ ) f(Xo—{—h)—on +
= > = <
hljg— h flo) 20, hl;n3+ h flg) <0
~— ~—
<0 >0

but since 3f’ (xp) then ' (xo) = 0. The only option left is that A’ (xg).



Local minima and local maxima

Remark

The converse of the Fermat's Theorem on local extrema is not true!

' (x0) = 0 is a necessary but not sufficient condition to have a local
max/min in xp.

As always we have to find a counter-example ...
f(x)=x3=f(x)=3x2= f(0)=0.

Nevertheless for x < 0 trivially x> < 0 and for x > 0 trivially x3 > 0.

Definition
Let f : [a, b] — R be differentiable in xg. If ' (xo) = 0 the point xg is

called a critical point.




Local minima and local maxima

Exercize

Find all the critical points of f (x) = x* : (0, +00) — (0, +00).

Solution. Define

g(x)=In(f(x))=In(x*)=xIn(x).
Whence

g (x) = (xIn(x)) = (x) In(x)+x (In(x)) =1-In (X)—f—X'% =In(x)+1.

but also

g (x) = (In(F (x)) = f(lx) F(x).
So that
f(lx)f’(x) () 1= F(x) = F(x) (In(x) + 1) = x* (In (x) + 1)

ff(x)=0x(In(x)+1)=0In(x)+1=0&x=¢e1,

which is thus the unique critical point.



Local minima and local maxima

Exercize
Establish if the critical points of f (x) = x* : (0, +00) — (0, +00) are local

min or local max or neither local min nor local max.

Solution. Since

then
sign (' (x)) = sign (In(x) + 1).
Whence

f'(x) >0 In(x)+1>0<In(x) > -1 x> e ! Increasing

flix)<0eIn(x)+1<0sIn(x) < —1 & x < e ! Decreasing

x = e 1 is a local minimum.
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Local minima and local maxima

Exercize
Find a function f such that f (xo) is a local min. or local max., while

' (x0) does not exist.

Solution. Consider
f(x)=1Ix|>0=Ff(0) VxeR.

Global minimum in x = 0, nevertheless:

. j0+h -0
oY) = lim 2TAIZO_
(07) = Jim —
_ . j0+h -0
F(07) = fim OEMZ0_
(07) = Jim — )

i.e. '(0) does not exist.



Local minima and local maxima

Exercize

Find all the critical points of f (x) = Xx (0, +00) — (0, +00).

Solution. Define

Whence
- (%) < (2) sty -1 1
but also 1
g (x)=(n(f(x))) = = f(x)
So that F)
1 1—In(x , 1—1In(x 11—1In(x
f(x)f(x):x2():>f(x):f(x) X2():XX x2()
f’(x)zO@xi1_)|<r2](x)20<:>ln(x):1(:>x:e,

which is thus the unique critical point.



Local minima and local maxima
Exercize
Establish if the critical points of f (x) = Xx (0, +00) — (0, +00) are local

min or local max or neither local min nor local max.

Solution. Since

1
f’(x)>0<:>72>O<:>In(x)<1(:>x<e|ncreasing
X
1—
f’(x)<0<:>72<0<:>|n(x)>1(:)x>eDecreasing
X

v — e ic 2 local maximimm
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Concavity and Convexity

Definition
A function f : D C R — R is said to be concave in D if for all x; and x> in
D it holds that

f(l—a)xi+ax)>(1—a)f(x)+af(x),Yael0,]1]

i.e. if the graph of the function is above the segment that joins (x1,f (x1))
with (x2, f (x2)).
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Concavity and Convexity

Definition
A function f : D CR — R Js said to be convex in D if for all x; and x> in
D it holds that

f(l—a)xi+ax)<(l—-a)f(x)+af(x),Yaec]l0,1]

i.e. if the graph of the function is above the segment that joins (x1,f (x1))
with (x2, f (x2)).




Concavity and Convexity

Theorem

A function f is convex on D if and only if

o)~ f

f(x3)— f(x2)'

X2 — X1

or, equivalently, if and only if

o) —

X3 — X2

f (X3) — f (Xl) .

X2 — X1

X3 — X1




Concavity and convexity

Proof. By definition of convexity
Vx,y € D)Vae[0,1] = f(ax+(1—-a)y) <af(x)+(1—-a)f(y) (&)

Since x3 — x2 < x3 — x1 define @ = 2=2 € (0,1). Then put « in the definition (A)

with x = x; and y = x3
X3 — X2 X3 — X2
f x1+ (11— X3
X3 — X1 X3 — X1
X3 — X2 X2 — X1
f X1 + X3
X3 — X1 X3 — X1

_ f(M—X2X1+XQX3—M> :f<X2 X3—X1> ~ ().

X3 — X1

flax+(1—-a)y)

Hence we can say that

fe)=flax+(1-a)y) Saf()+1-a)fy)= =2 fa)+ 2= fs)



Concavity and convexity

Summary:

fle)=flax+(1-a)y)<af(x)+(1-a)f(y)=

X3 — X2 X2

x f (Xl) +

X3 —

which implies

K R

(s —x) f(x2) < (xs =) f (1) + (2 — ) f (x3)

(@ —x) f(x2) < (x5 = x2) F (1) + (6 — x5+ x2 — 1) f (x3)
(x3—x1) fF(x) <(x3—x)f(x1)+ (x3—x1 — (x3 — x2)) f(x3)

(3 =x2) f(x3) + (x3 = x) f(x) < (3 —x) f () + (x3 —x) f(x3)
(s — x2) F(x3) — (xs —x2) F (3a) < (3 — 1) F (xs) = (xs — x1) F (x2)

flxs) = fa) o Flxs) = f(x)

X3 — X1 - X3 — X2

o
m— f (xs)



Concavity and convexity

Now we do similar computations as before

(s = x1) f(x2) < (x3 —x2) f (xa) + (x2 — x1) £ (xs)
e (6-x)fle)<(a—x+x—x)f(a)t (e —x)f(x)
& (e—x1)f(e)<(x—x—(x—x1))f(a)+ (e —x) f(x)
& (x—x) f(x)—(a—x)f(xa) < —(e—x)f () + (e —x) f(xs)
& (s —x) (f() = f(x)) < (e —x) (f (xs) — f (xa))
&

fe)—fla) . flx)— f(X1)7

X2 — X1 - X3 — X1

SO summing up

fFle) = fla) o fle)—fla) _ Flx)—Fflx)

X2 — X1 X3 — X1 - X3 — X2

Since we used only double implications <>, the argument reverses throughout.



Concavity and Convexity

Theorem
Let f : [a, b] — R be a function which is differentiable on (a, b).

Then f is convex on (a, b) < f' is increasing on (a, b).

Proof. =-. Consider four points a < x; < x» < x3 < x4 < b. By the
property of convex functions (used two times)
fle)—fla) _ fls)—flxe) _ flxa)—f(xs)

< <
X2 — X1 X3 — X2 X4 — X3

Now let x, — x;© and x3 — x, obtaining (since f is differentiable!)
Fl(x) < (),

the arbitrariness of x; and x4 = f’ is increasing on (a, b).



Concavity and Convexity

Theorem
Let f : [a, b] — R be a function which is differentiable on (a, b).

Then f is convex on (a, b) < f' is increasing on (a, b).

Proof. <. Consider three points a < x; < x» < x3 < b. By the mean
value theorem

f(x)—f(a)

X2 — X1

da € (x1,x2) : =f' ()

and
38 € (x2, x3) : M
X3 — X2
Since o < 3 then ' (a) < f'(B) and hence
f(Xg) — f(Xl) < f(X3) — f(Xg)

Xo — X1 - X3 — X2

= f'(B).

which is the equivalent condition for convexity.



Concavity and Convexity

Theorem
Let f : [a, b] — R be a function which is differentiable on (a, b).

Then f is convex on (a, b) < f' is increasing on (a, b).

Corollary
Let f : [a, b] — R be a function which is twice differentiable on (a, b).
Then f is convex on (a, b) < " (x) > 0 for all x € (a, b).

Theorem
Let f : [a,b] — R be a function which is differentiable on (a, b).

Then f is concave on (a,b) < f' is decreasing on (a, b).

Corollary
Let f : [a, b] — R be a function which is twice differentiable on (a, b).
Then f is concave on (a,b) < f”(x) <0 for all x € (a, b).

TOTTO(




Concavity and Convexity: The Second Derivative Test
Theorem

Let f : [a,b] — R be twice differentiable on (a, b) and let xo € (a, b) be such that
f-, (Xo) =0.

@ Iff"" (x0) > 0 then xo is a local minimum.

@ Iff"" (x0) < 0 then xo is a local maximum.

Proof. Assume f" (xo) > 0. Since f'(xo) = 0, we have

’ 7 /
lim f (Xo + h) —f (Xo) — Jim f (Xo + h)
h—0+ h h—0t h

=f" (x) >0

Which means that | can find an ¢ such that, for h > 0 and sufficiently small
f’ (X() + h)
h
hence the function is increasing in a right neighborhood of xp. Similarly, for h < 0 and

sufficiently small we get

0<f"(x0)—e< <f"(x0)+e=f (x0+h)>h(f(x)—¢c)>0

' (xo + h) < h (f" (x0) — ) <0,

hence the function is decreasing in a left neighborhood of xo, and hence xo is a local

minimum.



Concavity and Convexity: The Second Derivative Test
Theorem

Let f : [a,b] — R be twice differentiable on (a, b) and let xo € (a, b) be such that
f-, (Xo) =0.

@ Iff"" (x0) > 0 then xo is a local minimum.

@ Iff"" (x0) < 0 then xo is a local maximum.

Proof. Assume f" (xo) < 0. Since f' (x0) = 0, we have

’ 7 /
lim f (Xo + h) —f (Xo) — Jim f (Xo + h)
h—0+ h h—0t h

=f"(%)<0

Which means that | can find an ¢ such that, for h > 0 and sufficiently small
f/ (Xo =+ h)
h
hence the function is decreasing in a right neighborhood of xp. Similarly, for h < 0 and

sufficiently small we get

f'(x0)—e< <f"(x0)+e<0=f (xo+h)<h(f(x)+e) <0

f'(xo+h) > h (" (x)+¢e) >0,

hence the function is increasing in a left neighborhood of xo, and hence xo is a local

maximum.



Concavity and Convexity: The Second Derivative Test

Exercize

Find minima/maxima of the following function

Fx) = M)

X

Solution. The function is defined in D = {x € R | x > 0}. The first derivative is

£ (x) = (In (x))’ %—i—ln(x) (%) _ 1 () _1-In(x)

x2 x2 x2

Hence f' (x) = 0 if and only if x = e. Besides since

1 1—In(x):_1+2|n(x)

x3 x3 x3

£ (x) = (1= In (x))’ 712 +(1-1In(x)) <;> -1,

we have that

3 . .
f"(e) = —= < 0= xo = eis a local maximum.
e

)



Concavity and Convexity: The Second Derivative Test

Exercize

Find minima/maxima of the following function

F(x)=In(1—In(x)) = In(x).

Solution. The domain of the function is determined by the two conditions

x>0
1-In(x)>0=In(x)<1l=x<e ’

whence D = (0, e). The first derivative is

£ (x) = (In (L — In (x)))'(In (x)) = 1_|1n(x) <_1>_i _ _m’

X

hence f' (x) = 0 < x = e?. Nevertheless e ¢ D = the function has no

minimum no maximum in (0, e).



Concavity and Convexity: The Second Derivative Test
Exercize

Find minima/maxima of the following function

Solution. The domain of the function is D = (0, 4+00). The first

derivative is

) = () L) (3) = 5 -G - 1B

x) x2 X2 x2 7

hence f'(x) =0 < x =e.

f'(x) = (1-In(x) X12 +(1—In(x)) <X12> __ 1 _,i=n(y)

x2 x3 x3
-2
_ _3 n(X):>f”(e):— :_e <0, (02)

x3

whence x = e is a local maximum.



Concavity and Convexity: The Second Derivative Test

Exercize

Find minima/maxima of the following function

f(x)y=In(1+In(x)) —In(x).

Solution. The domain of the function is determined by the two conditions

x>0

-1 _1
I+in(x)>0=In(x)>—-1=>x>e "= ¢

whence D = (%,—i—oo).



Concavity and Convexity: The Second Derivative Test

Exercize

Find minima/maxima of the following function

F(x) =In(1+In(x)) = In(x).

Solution. D = (%, —|—oo). The first derivative is

F(x) = (n(1+h(x)) = (n(x) = x(1+1|n(x)) x

1-1-1In(x) In (x)

x(1+In(x))  x(1+In(x))’

hence f'(x) =0 < x = 1.



Concavity and Convexity: The Second Derivative Test

Exercize

Find minima/maxima of the following function

f(x)=1In(1+In(x)) = In(x).

Solution. D = (%,+00). f'(x) = —X(l':‘r(l);)(x)). The second derivative is

1 !
RO IS <x (1+In(x>)> -
1 In (x)

T TR ) 2@y D)

) = ()

B 1 In (x)
T X2 (1+In(x) +x2 (1+In(x))? (1 +in()+1)
—(1+4+1In(x))+In(x) (2+In(x)) _ (In (X))2 +In(x) — 1.

x2 (14 In(x))? x2 (1+In(x))?




Concavity and Convexity: The Second Derivative Test

Exercize

Find minima/maxima of the following function

f(x)=1In(1+In(x)) = In(x).

Solution. Summary

(1 / . In(x) " _(In (X))2 +In(x) -1
D — <e,_|_oo> , '(x)= —m’ i) = x2 (1+1In (X))2 ‘
Whence

-1
(1) = T = 1<0=x=1 is a local maximum.



Concavity and Convexity: The Second Derivative Test

Exercize

Find concavity/convexity regions of the following function

f(x)=In(1+In(x))—In(x).

Solution. Summary

S S W 1 BN (L169) e LICO R
D_<e’+ )7 Fx) x (141In(x))’ ) x2 (1+In(x))2 '

Whence
f"(x) >0« (In(x))* +In(x) —1>0.

Call t = In(x). We have " (x) >0 < t> 4+t — 1 > 0. The roots of the
polynomial t2 +t — 1 are t; o = _115 14 {HZD/E. Whence

+v5 V5 -1
5 .

ort>
- 2

1
f/fx)>0et?+t—-1>0t<—



Concavity and Convexity: The Second Derivative Test
Exercize

Find concavity/convexity regions of the following function

f(x)=1In(1+In(x)) = In(x).

Solution.  Summary

S S W 1 ¢ B PN (L169) e LICO R
D= (L) F0 = ' (x) .

1+1In(x))’ x2 (14 In(x
f"(x)ZO@tz—i-t—lZO(:)tS—1+\fort> ‘/52_1
Nevertheless t = In (x) whence
t< —1+2\/§ = In(x) < —1+2\/§ = x < e_Hz\/g,
Nevertheless e~ 2" < e~ hence e~ e ¢ D, whence
VE-1

1
f"(x)>0<x>e 2z , and f”(x)§0®g<xge\/§2



Concavity and Convexity: The Second Derivative Test

Exercize
Find concavity/convexity regions of the following function

f(x)=In(1+In(x))—In(x).

Solution.  Summary

SN P U1 ) vy~ (IN0))° +1n(x) -1
D_<e7+ >7f()_ x(1+|n(x))’f()_ x2(1+ln(x))2 '
f”(x)ZO@xZe@, andf”(x)§0<:>%<xgeﬁ2_1

Which is the relative position of e\/§271 with respect to the critical point
x =17 Consider that v/5 ~~ 2.2361 then v/5 — 1 > 0 and hence

—1+v5
2

e > 1.



Concavity and Convexity: The Second Derivative Test

Exercize

Find concavity/convexity regions of the following function

F(x) =In(1+In(x)) = In(x).

Solution.

Final summary

Dz(é,—i—oo), () = =)

- 1
f"(x)ZO(:)XZe@ and f”(x)§0<:>g<x§eT.

“x (1+In(x))’
xo = 1 is a local maximum

—1+6
2

e >1

(In(x))* 4 In (x) — 1

x2 (1 + In(x))?

V51




f(x) = log(l + log(m?) —log(z)

(T




f(x) = log(l + log(a:?) - log(x)‘

~ 0.3679

Q|




f(x) = log(l + log(a:?) - log(x)‘




(@) = log(1 + log(x)) — log(x)

2

3.4421



f(z) = log(1 + log(x)) — log(x)

2

3.4421



o
&

—

f(z) = log(1 + log(x)) — log(z)

3 decreasing
o’ i :
@

2

3.4421



f(x) =log(1 + log(z

)~ log(z)

o
&

9
Y3
&

—

concave

~ 0.3679 |

E ‘L§;---:;;;;;:;;;?----..>

1 2 3

h -

3.4421



—

f(z) = log(1 + log(x)) — log(z)

decreasing :

&
L
<

'\Q

concave

convex

<‘.-L-------4..>§----..h

3.4421



Optimization
Exercize

Monopolistic manufacturer.

p(x) = po— x = Price per unit to sell x units

c(x) = c+ax= Cost to produce x units

R(x) = xp(x)=xpo—x>= Total revenues

N(x) = R(x)—c(x)=x(po—a)—x*—co= Net profit.

Remark. Only 0 < x < pg are admissible.
@ Determine the x* that maximizes profit. Does such an x* exist for any
po and o7
@ What is the maximum profit?
© Which is the maximum value for co that guarantees a positive

maximum profit?

© What price per unit must be charged in order to maximize the profit? )




Optimization

p(x) = po— x = Price per unit to sell x units
c(x) = c+ax= Cost to produce x units
R(x) = xp(x)=xpo—x>= Total revenues
N(x) = R(x)—c(x)=x(po—a)—x*—co= Net profit.
Determine x* that maximizes profit. Does such an x* 3V pg and a?
Mx)=p—a-2x=N(x)=0p-—a-2x"=0&x* = po2—a
Besides
N”(x) = —2 = x* is a maximum.
Finally

x* € [0’p0] < po = Q.




Optimization

p(x) = po— x = Price per unit to sell x units
c(x) = e+ ax= Cost to produce x units
R(x) = xp(x)=xpo—x>= Total revenues
N(x) = R(x)—c(x)=x (po—a)—x>—co= Net profit.
What is the maximum profit?
x _ Po—c«
T
R Po — (po — )’ (Po — @)°
nx*) = 5 (pg—a)—T—cozT—co.

Which is the max. ¢y that guarantees a positive maximum profit?

(m—af‘

N(x*) >0 ¢ < 4

2
If cg = cost of the production plant > M no production.




Optimization

x) = pog— x = Price per unit to sell x units

o

x) = ¢cg+ ax= Cost to produce x units

2

(%)
c(x)
R(x) = xp(x)=xpg—x*>= Total revenues
MN(x) = R(x)—c(x)=x(po—a)—x—co= Net profit.

X

What price per unit must be charged in order to maximize the profit?

po—a 1
= pP(x)=po——5—=5(po+a).

*_PO*CY

x 2




Optimization

Exercize
Let o, > 0 be a positive sequence.

cn(x) = In(an+ x2) = cost of producing x units at time t = n
r(x) = In(x)= revenues
Ta(x) = r(x)—cn(x)=1In(x)—In(an+ x2) = Net profit.

@ Determine, at each time n, the optimal amount x, of units that must

be produced.

1
4n -

Which is the first date (i.e. the first n) in which the producer faces a

@ Assume o, =

strictly positive optimal profit?
Which is the total amount produced from the initial time (n = 0) to
infinity (n = o00)?




Optimization

cn(x) = In(ay+x*) = cost of producing x units at time t = n
r(x) = In(x) = revenues
T (x) = r(x)—ca(x)=In(x) = In(an+x?) = Net profit.

Determine, at each time n, the optimal amount x,.

1 2x ap + x2 —2x2 ap — x32
! n n
- _ = = =0& x, =%/
T (x) X o+ x2 x (ap + x?) x (ap + x?) X o

only x, = +./a, is admissible. Since

2
” —2x ap — X

Wn(X):X(an+X2)_X2 (Oén+X2)

3 (an+x2+2x2),

we get
2./
20pn/0n

7 (xp) = — <0,

whence x, = \/a,, is a maximum.




Optimization

Assume o, = L

4!1
1, _ . .
ch(x) = In T + x“ | = cost of producing x units at time t = n
r(x) = In(x) = revenues

() = r(x)—cn(x)=In(x)—In <41 +x2> — Net profit.

Which is the first date in which the producer faces a strictly positive
optimal profit?

7o (x0) =1In(1/2) <0
T (Xa) = In <2> =47 (x1))=7n(x1)=1In(1)=0
m (x1) = In(2) > 0.

so the answer is n = 2.




Optimization

Assume a, = L

4!7
1, _ o
ch(x) = In T + x° | = cost of producing x units at time t = n
r(x) = In(x) = revenues
1 .
m(x) = r(x)—cs(x)=In(x)—In <4n + x2> = Net profit.

Which is the total amount produced from the initial time (n = 0) to
infinity (n = c0)?

Remember that x, = /o, = 2%,

The total amount produced is

[e.e]

oo
Z 1 1

Xn = _——= 1 _= 2
n=0 n=0 2 1- 2




Optimization

Exercize

Find the point on the graph of y = \/x nearest to the point (4,0).
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Optimization

Exercize

Find the point on the graph of y = \/x nearest to the point (4,0).

Solution. We have to find, if it exists, the minimum of

NI=

f(x):\/(x—4)2+(\/>?)2:\/(x—4)2+X: ((x—4)2+x>

By the rule of derivation of composite functions:

/

()" =a ()" &' ()= (80)F) =5 (600) F & ().

(X—4)2—|—X, . —  —
v | ) er-n+)  @x-7)

2¢/(x =42 +x  24/(x—4*+x  24/(x—4)* +x



Optimization

Exercize
Find the point on the graph of y = \/x nearest to the point (4,0).

Solution. Summary
; (2x—7)

f(x):<(x—4) +x) , f(x)—zm.

Whence ' (x) =0« x = L. Is it a minimum?

Fl(x) = @x=7) & - +(2x7)( ! : )
24/(x —4)" +x 24/ (x—4) +x
I TR G Y R N

) (x—4)2+x 22((x 4)2+x)3/2 <2)



3.5

25

1.5

0.5

10



3.5

25

1.5

0.5

A

10



3.5

25

1.5

0.5

A

»

11/(3.5 —4)2 + 3.5 = 1.9365...

v
T v._g é |
r=5=35

10



Optimization

Exercize

Find the minimum distance between the point (0,0) and the graph of the
function g (x) = %

Solution. The (squared) distance between (0,0) and <x, %) is

f(x):(x0)2+<\}}0>2zx2+i.

whence
f/(X):ZX—i:>f’(X):O<:>2X3—1:0<:>X3:1<:>X:7
X2 2 21/3
The second derivative is
1 2 1! 1 ]- . -
f (x):2+;:>f <21/3> >O:>x:m is a minimum.

1 1
The minimum distance is 4/ f (21/3) = “W + 21/3,



Optimization

Utility function

From WIKIPEDIA: Consider a set of alternatives facing an individual, and
over which the individual has a preference ordering.

A utility function is able to represent those preferences if it is possible to
assign a real number to each alternative, in such a way that alternative a is
assigned a number greater than alternative b if, and only if, the individual
prefers alternative a to alternative b.

In a rational choice framework every consumer decides to consume the

amount of good x that maximizes the utility U (x).

a is preferred to b < U(a) > U (b)



Optimization

Exercize

Let up > 0 and uy > 0:
U(x) =uwo In (xz) — w1 x = utility of buying x units of good.

For which value of ug and uy will the consumer buy an amount of good larger than 17

For which value of ug and ui the optimal utility is positive?

Solution. The consumer has to maximize the utility U (x) :

UI(X):zﬂ7U1:0<:>X:2ﬂ:XO.
X u1

Note that

U" (x) = —2% <0,Vx€R

so the function is concave everywhere, whence xo is a maximum. Finally

xo > 1wy <2up.

Ulo) =2t In (29) 200 =200 (In(22) —1) 50 (29) s 10 2% o
un u u u

1 1

1



Optimization
Exercize
Find two nonnegative numbers whose sum is 9 and so that the product of

one number and the square of the other number is maximal.

Solution. We have to find x > 0 and y > 0 such that x + y = 9 and such

that
F(x,y) = xy?

is maximal. Since y =9 — x we have to find the maximum of

f(x)=x(9- z):f'()?jEQ—x) —2x(9-x)=(09—x)(9—x—2x).

£ o) )7 (8 =29 195539 R0 = %0 5P 2x

f"(3) = —18 <0 and f”(9) = 18 > 0 so x = 9 is the minimum and x = 3

the maximum. The final answer is thus



The Derivative of the Inverse Function

Theorem

Let f : [a, b] — R be differentiable in (a, b). Assume f is invertible and call
f(=1) . Is C R — R the inverse function, where I¢ denotes the image of f.
Then f(=1) s differentiable in I and

O )= e

FrifE ()

for all y € If.

Proof. Take a point xg € (a, b) and call yg = f (x0), that is xo = 1 (o).

Hence
) D) xxg 1
lim = |lim = ,
y=Yo Y=Y x=x f(x)—f(x0) ' (x)
whence . .
0] () = _
] o= o) FFi00)



The Derivative of the Inverse Function

Definition
The function sin (x) is strictly monotonic and increasing in [—%, %] so it
can be inverted and the inverse is called arcsin (x) and it is defined in

[—1,1] with values in [-5,5].

1.5f"

| —sin(z) i

-1.5 -1 -0.5 0 0.5 1 15




The Derivative of the Inverse Function

Definition

The function sin (x) is strictly monotonic and increasing in [—%, %] so it
can be inverted and the inverse is called arcsin (x) and it is defined in

[—1,1] with values in [-5,5].

150 . .
1
0.5
0 |
—sin(xz)
- y=x
0.5 —arcsin(z)| |
1 1
-1.5¢%;




The arcsin function: some important values.

Remember that, by definition,

ol

NER O

NI

ol

INE

Wl

Xo—f>)/0=f(Xo)<:>YO—> U (vo0) = xo.
sin(0) = 0 = arcsin(0) =
sin (%) = = arcsin(l) =
sin(-3) = -1 = arcsin(-1) = -
sin (%) = % = arcsin (%) =
sin(-%) = -3 = oarcsin(-3) =
sin (%) = g = arcsin (%) =
sin ( %) = —% = arcsin ( §> = -7
sin(3) = § = arcsin <§> =
sin(—3) = —§ = arcsin ( §> = -Z



The Derivative of the Inverse Function

Exercize
Compute the derivative of the arcsin (x).

Solution. Recall the formula for the derivative of the inverse
/ 1

F(=1) R —

0= Fy

In our case, for x € [—1,1], it means that
, ;o 1
(arcsin (x)) = cos (arcsin (x))”

Since arcsin (x) € [~5, 5], we have

cos (arcsin (x)) = +\/1 —sin? (arcsin (x)) = V1 — x2,

whence

(arcsin (x)) = Nish



The Derivative of the Inverse Function

Definition

The function cos (x) is strictly monotonic and decreasing in [0, 7] so it can
be inverted and the inverse is called arccos (x) and it is defined in [—1,1]

with values in [0, 7).

3r ‘ ‘ ‘ —cos(zi 1

251

157

0.5f

-0.5¢




The Derivative of the Inverse Function

Definition

The function cos (x) is strictly monotonic and decreasing in [0, 7] so it can
be inverted and the inverse is called arccos (x) and it is defined in [—1,1]

with values in [0, 7).

251 . 1

15¢ ‘ 1
4 —cos(z)

L 4 - y=x 1
1 .7 —arccos(z)

0.5F P 1




The arccos function: some important values.

Remember that, by definition,

&

COs

(@)
[}
[}

[a]
o]
7]

(@]
o]
(0]
A~~~ N /N /N~

wR BEH ol N

(@)
[}
)

lm
S

o

~— — — ~—

o iy oy © -

=

=
=
=
=

(-1)
= f(Xo) <Y ):> f(_l

arccos (1

arccos
arccos
arccos

arccos

(
(

0
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—

NI= N
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(yo) = xo-
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The Derivative of the Inverse Function

Exercize
Compute the derivative of the arccos (x).

Solution. Recall the formula for the derivative of the inverse
! 1
Ay L
=)
In our case, for x € [—1,1], it means that
1
—sin (arccos (x))’

(arccos (x))' =

Since arccos (x) € [0, 7], we have

sin (arccos (x)) = —i-\/l — cos? (arccos (x)) = V1 — x2,

whence

(arccos (x)) = —

V1—x2



The Derivative of the Inverse Function

Definition
The function tan (x) is strictly monotonic and increasing in [—5,5] so it
can be inverted and the inverse is called arctan (x) and it is defined in R

with values in [—g, g]

1.5¢

—tan(z)| |

0.5F

-0.5F

-1.5¢




The Derivative of the Inverse Function

Definition
The function tan (x) is strictly monotonic and increasing in [—5,5] so it
can be inverted and the inverse is called arctan (x) and it is defined in R

with values in [—g, g]

1.5¢

—tan(z)
- y=x
—arctan(z)




The arctan function: some important values.

Remember that, by definition,

N

f =
X0 — yo=f(x0) < yo — Y (y) = xo.

W B ol

— — ~—

=
=
=
=
=
=

arctan (0)

limy—s 100 arctan (x)
limy—, o arctan (x)
arctan (@)

arctan (1)

arctan (V/3)

~—~

o

~— —
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The Derivative of the Inverse Function

Exercize
Compute the derivative of the arctan (x).

Solution. Recall the formula for the derivative of the inverse

T o= sy

In our case, for x € R, it means that

1
(arctan (x)) = ——F—— = cos? (arctan (x)) .

cos2(arctan(x))
Now use i

2 _

cos™ (x) = 1 +tan2(x)’
to have
1 1

t = -
(arc an (X)) 1 + tan? (arctan(X)) 1+x



De L'Hopital rule

Theorem

Let f :DCR—Randg: D CR — R be continuous on D and let xy be

a limit point of D. Assume that f and g are both differentiable in D/ {xo}
and g (xo) # 0. If:

lim f(x)= lim g(x)=0 AND 3 lim F ()

)
X—>Xo X—X0 x—x0 g’ (x)

or if

f‘l
lim f(x) =400, lim g(x)==+c0 AND 3 lim () _ L,
X—rXg X—X0 X—X0 g/ (X)
then ]
3 fim )
X—+X0 g(x)

=L




De L'Hopital rule

Proof. Assume f (x)
lim f(x)= lim g(x)=0 AND 3 lim =1,
X—>X0 X—+X0 X—rX0 (X)
The red condition implies )
Ve >036. >0:Vxe D: |x—xo\<6:> €
g'(x)

Take x1 < x2 in (xo — 0,%0). Cauchy applied to f and g in [x1, x2] gives

Cfla)—fle) _ ()
35 € (XI’X2) ’ g(X1) — g(xz) B g (5)

Note that xo — 0. < x1 < & < x2 < xo hence & is such that |£ — xo| < d¢

f' () ‘ f(x1) = f () ’
—l|=|—F/—"F"-"+F—-L|<e
g' (&) g (x) — g (x)
Now take the limit for x2 — x5  and use the blue condition
’ fla) _ L <e.
g (x1)

Now for ¢ — 0 we have that (remember that x; € (xo — 0, X0)) x1 — x5 . Hence:
I 4im £
X—Xq g(X)
1 — 1.

x—)x g(x)

with an identical argument we arrive at: Jlim



De L'Hopital rule

Theorem

Let f :R — R and g : R — R be continuous and differentiable on R. If:

i 7= i (=0 N> 3 iip S
or if
Jim () =Feo,  lim g(x) =Fo0 AND Hxﬂ’i’oo;%‘L
then

5 fim )

=L
x—+o0 g (x)




De L'Hopital rule

Exercize
Compute the limit

li I
g, 710 )

li [
Jig. 10 )




De L'Hopital rule

Exercize
Compute the limit




De L'Hopital rule
Exercize
Compute the limit

) T\
lim (arctanx — — ) e*.
X—00 2

Since the arc whose tangent is +oc is 7

lim arctan(x) = —|—g

X—>+00
whence .
7T arctan x — >
lim (arctanx - —) e = 0x(400)= lim
X—00 2 X—00 e X
1
0H . x
- Hm +_X =— lim



De L'Hopital rule

WARNING!
The hypothesis

31
XI—>rr)]<o g’ (X)

is fundamental!

Example

lim X +sin(x) +00 H im 1 + cos (x)

X—+—+00 X - +00 X300 1 — ﬂ

However

. . Sin (X
XS0 [ 00 |
X—+00 X X—+00 X
~——
—0




De L'Hopital rule

Exercize

lim (In (1 + efl/x))x —0° =777

x—0t

Solution. Use the identity
(1n (1 e77)) = e lelee)

and compute

lim x In (In (1 + e_l/x))
x—0t

In (ln (1 + e—l/X)) o

—l/x
|n(1+e*1/x (1+e71/X)

= lim

x—07F % +00 x—0* xiz
lim — ! ! = lim — L L
x—0t In(1+ e~1/x) 1+el/x )  ySor \In(l+y) 1+1/y
= |im — L > =—1= lim (In (1 + e_l/x))x —e 1= 1
y=0t In(1+y) +In(1+y)7 x—0+ e



De L'Hopital rule

Exercize

Compute the limit
' 5x + sin (x) + In (v/x)
im

X—r 00 3 X

Solution. Blindly applying De L'Hopital gives

‘H

’ 5x +sin(x) +In (v/X) u i 5+ cos (x) + o= 3
im = lim

X—00 3X X—r00 3

%

which does not exist! Nevertheless

fim 2X =2 i )
x—o0 3 x 37 x—o0 3X1 1
In (vx) _ +oo u % 3%
li = | =0,
X—00 3x —+00 X—00 3

whence

X—00 3x



De L'Hopital rule

Exercize

Compute the limit

Solution.

Inx — (x2 - 1)

w1 (@=1)Inx 0

1
— —2x
= lim X 5
x—1t X< —
2x In x +




De L'Hopital rule

Exercize
Establish for which values of o« > 0 the following limit exists and it is finite:

arcsin (x) — 5
Im ————sa
x—1- (1 — X )

Solution. Recall that arcsin (1) = 5. Whence

lim arcsin(—x);% _ 9 g lim (arcsm (X) _/%)/
o1 (1=x%) 0 x=1m ((x—1)%)
= lim L 1
x—1~ m o (1 _X2)a—1 (—2x)
1

= lim : .
17 (1—x2)*72 (=2x)

so if @ > 0 it must be a < % to have a finite limit.



De L'Hopital rule

Exercize
Establish for which values of o > 0 the following limit exists and it is finite:

arctan (x) — 5
im —————=<
x=tooIn (14 55)

Solution. Recall that lim,_, | arctan(x) = 5. Whence

o

arctan(x)— 3  O0p . (arctan( ) — g)

= lim ( i
x—+oo 1 + X2 X«
1
Xo

= lim (
x—+o00 14 X2

)Wl
)=

so, since > 0, the answerisa+1<2= o <1.



De L'Hopital rule

Exercize

Compute the limit
arctan (x)

it In(1+x)"

Solution.
o arctan (x) 0H (arctan (x))’
| —_— = — = ] - 77
x=0 In (1 + x) 0 x=0 (In(1+ x))
1
= |jm
x—0 -1
1+x
. 14 x
= lim =




De L'Hopital rule

Exercize
Compute the limit
. arctan (x?)
lim —————~.
x—0 In (1 + X)

Solution.

i 2t ()0 p L (arctan ()
it In(14+x) 0 ~ x50 (In(1+x) (In(1+x))’
e

1
1+x

_ 2x(1+x)
o xl—>0 1+X2

= |im
x—0

=0.



De L'Hopital rule

Exercize

Compute, as a function of «, the following limit

(2

i sin (x )

x—0 X
Solution.

crD 2 2 2
i SO0 (x?) _ 0 i (sin (x/)) i €08 (x?) 2x im0 08 (x?)
x—=0  x“ 0 x=0 (x9) x—0 axa~l x—0 qax®2
In summary
0 ifa<?2
sin (x?) B
XTO X% a 1 if o=



De L'Hopital rule
Exercize

Compute, as a function of «, the following limit

. In(1+x9)
lim ———=.
x—0 arcsin (x)

Solution. ’ ax*1
In (14 x© 0 In(1+x -
|imw — 7g|imM:|imH+
x—0 arcsin (x) 0 x=0 (arcsin(x)) x—=0 (112)7?
axet VT2 Vit
= lim =m-—=——
x—0 14+ x« x—0 xl—« + X

In summary
+oo ifa<l
lim =41 ifa=1

0 ifa>1



