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1 Domains

Exercize 1. Find the domain of the following function
f(x)=In(In(z)).
Exercize 2. Find the domain of the following function
f(x)=In(In(In(x))).
Exercize 3. Find the domain of the following function
f(z)=e¥,
Exercize 4. Find the domain of the following function

Vr+Vl-z
f@) ===
2 Limits

Recall the operations with infinity

a+ oo =400+ a=-+o0, a # —oo

a—00=—00-+a= —00, a # +oo
a- (£oo) = £oo - a = +o0, a € (0,+00]
a - (£oo0) = o0 - a = Foo, a € [—o0,0)

a

— =0, eR

+o0 “

+

% = o0, a € (0,+00)

+

% = Foo, a € (—o00,0)

and the Figure 1 that lists the most common indeterminate forms and the transformations for

applying 'Hopital’s rule.

Exercize 5. Compute the limit

Exercize 6. Compute the limit
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Indeterminate

Conditions Transformation to 0/0 Transformation to eo/e0
form
0/0 lim f(z) =0, limg(z) =0 — lim M — im 1/g(z)
e e e g(z) =< 1/f(a)
oofoo lim f(z) = o0, limg(z) =00 | lim @ - lim 1/9(z) —
T T e g(z) e l/f(iﬂ)
0xo 35132 f(z) =0, ilgi!](w) =00 Jlglgif z)g(z) = £1_)nz % }Ellg (z)g(z) = Ll—% 1?;2)
; — o i ol . 1/g(x) —1/f(=) /@)
0o lim =00, lim = _ = ljm 2 AT _ —Inli
ln f(2) = oo, limg(a) =00 lim(f(o) - g(a)) = lim =7 T m(f(e) - ofe) = mlim =
0 li = 0+71- =0 . (z) — . g(.’l)) . (z) _ . lnf(m)
o lim f(z) lim g(z) lim f(2)") = explim T 1) lim f(2)") = explim Ta(a)
; —1 1 _ : . Inf(z) . )
© 1 =1, 1 = (2) = () —
! im f(2) =1, limg(z) =00 lim f(z)") = explim - Ta(@) fim fla)™ = esplim o =
w0 li =00, li =0 5 (2) _ . 9(=) . (2) _ . Inf(z)
im (@) = o0, limg(a) =0 lim ()" = explim - T f@) lim f(2)*"*) = explim 4@

Fig. 1: Common indeterminate forms and the transformations for applying I’'Hopital’s rule

Exercize 7. Consider the function

1 ifx=0
fay=1
¢ ifxz0
compute lim,_o f (z).
Exercize 8. Compute the limit
. sinx
lim In ( )
z—0 T
Exercize 9. Compute the limit
lim 2*®
z—0%

3 Series

Exercize 10. Establish if

>, 1
7;2(\/_—\/”—1)—%

converges or not.

1

Remember that ¥, - converges <> p> 1.

Exercize 11. For which values of 2 the series

i nlz" (3.1)

n
n=1 T

converges? For which values of x it diverges?
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4 Taylor's expansions

Exercize 12. Using a Taylor’s expansion of In (1 + ) around x = 0 truncated at the third order

compute an approximation for the number In (2).

5 Graphs of functions

Exercize 13. Find the domain, vertical asymptotes, horizontal asymptotes and the intersection
with the z =0 and y = 0 axes, plus study the sign, monotonicity, maxima, minima, concavity and

convexity of the function
f(z)=a%e".

Exercize 14. Find the domain, vertical asymptotes, horizontal asymptotes and the intersection
with the £ =0 and y = 0 axes, plus study the sign, monotonicity, maxima, minima, concavity and

convexity of the function
r - 23

1422

f(x)=

Exercize 15. Find the domain, vertical asymptotes, horizontal asymptotes and the intersection
with the z = 0 and y = 0 axes, plus study the sign, monotonicity, maxima, minima, concavity and

convexity of the function .
-
x)=2x+In (—) .
f (@) 1+zx
Exercize 16. Find the domain, vertical asymptotes, horizontal asymptotes and the intersection

with the £ =0 and y = 0 axes, plus study the sign, monotonicity, maxima, minima, concavity and

convexity of the function
Nz

f (@)= 1+1In(z)
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6 Solutions

6.1 Domains

Solution of Exercise 1 The function In (In(z)) is the composition of two functions
x—In(z) — In(In(x)).
This composition is defined for all z such that In () > 0 and hence the domain is

D=(1,+).

Solution of Exercise 2 The function In (In (In(z))) is the composition of three functions
z—In(z) —In(ln(z)) — In(ln(In(z))).

This composition is defined for all = such that In (In (x)) > 0 hence it must be that In (x) > 1 that is

x > e where e is the Neper number. So the domain is

D =(e,+0).

Solution of Exercise 3 The function efg is defined whenever the argument of the exponential
function is defined (remember that the exponential function is defined everywhere), hence it must be
that 2 > 0 in order to have \/z defined and moreover it must be x # 2 in order to have the fraction
1/(x - 2) defined. Hence the domain is

D =(0,2)J(2, ).

N A

Solution of Exercise 3 The function RV is defined in all x such that the three functions
VZ, V1 -2z and 1/v/x — 2 are defined. Let’s analyze them separately. The function \/z is defined
for > 0. The function /1 -z is defined for # < 1. The function 1/v/z —2 is defined for = > 2 (note

that I am not writing x > 2 since the denominator must be different from zero). Hence the original

function ﬁ% _12_55 is defined for all z such that x >0 and <1 and = > 2. So the domain of the

function YEHYLT i empty.

V-2
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6.2 Limits

Solution of Exercise 5 Consider that

(1) 7))

Let’s study the asymptotic behaviour of the argument of the logarithm that appears above

-1 -1 1
lim ©= = lim —£ = — =0
Tr—+oo ¢ Tr—00 €T + 00
hence (remember that lim,_o+ In (y) = —oo)
-1
lim ln(x 5 ):—oo
T—+00 €
whence
. 2 x—1
lim 2% In| —— ) = (+00) x (—00) = —0c0
T—>+00 X
so that )
-1\* 2 1n(( 2=1 _
lim(x—Q) :limexl((zz)):e‘x’z()
Tr—>00 .’B r—>00
Solution of Exercise 6 Consider that
. 2 . 2
sin (z sin (z
lim —) = lim (2 ) T
z—0 €T z—0 €T
but ' )
sin(x i
lim (2 )—lmsm(y)—l
z—0 €T y—0 Yy
so that ' ) ' )
sin (x sin (x
lim ( ) = lim ( ) =0
x—0 x x—0 x2
Hence the limit

. o\ l/z
lim (1 + M)
x—0 x

is a 1% indeterminate form. Re-write the limit as

sin :c2 1z
an(\"_ (=)
Im|1l+ — =lime
z—0 €T

z—0

()
=l1ime .

z—0
Now consider the exponent and apply Hopital’s rule

. 2

sin (x
liml ln(1+L) :9
z—>0 x 0

Iz

1

. 2 sinx cosx SN (9U2)
lim — - =1
z—0 ] 4 sinz T 2
x N e’ N——
-2

-1
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so that

) o\ L/
lim (1 + M) =e.

z—0 €T

Solution of Exercise 7 Remember that in the definition of the limit of a function

lim f(z)=L < Ye>03d >0 such that Va such that 0 < |z —xo| <d=|f (z) - L|<e.

T—>IQ

since it is required that |z — zg| > 0 the value of the function in xg, that is f (z¢), does not enter
in the definition. In other words, what really matters is the behaviour of the function around =z,

irrespectively of the value of the function in xg. So consider the function

1 ifz=0
f@=1

x ifxz0

the idea is that, for all  # 0, if 2 is very close to 0 then also f () = 22 is very close to zero, so the
limit

lim f ()

z—0

is exactly 0. Let’s try to verify this claim using the definition
Ve > 039 > 0 such that Vx such that 0 < |z| <0 = ‘:1:2| <e,

which is true. In fact it is enough to take, Ve > 0, any ¢ < /e so that if 0 < |z| < § we have

0<z?<6’<e.

Solution of Exercise 8 First remember the notable limit

. sinx
lim =1
z—=0 x

which, by continuity of the absolute value, implies

. |sinx
lim

z—0

x
which, by continuity of the logarithm, implies

sinx

lim In (

z—0

‘):111(1):0.

Solution of Exercise 9 Note that

xsinx _ eln(xsmz) _ esinx Inz

now consider that

lim sinz Inx
-0+
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is a 0 x (—o0) indeterminate form. Re-write sinx Inx as

. . SlniL' cosx )
lim sinz Inz = lim — T tim —— = lim —(z cosz (1n:1:)2).
z—0% =0t — =0t — 5 z—0%
Inx z (Inz)
Again we have a 0 x oo indeterminate form....
2 2Inx 2
: . (Inz)” g . . 2lnzg . T
hmx(lnm)Q:hm( 1) = lim —%~ = lim ——< = lim - = lim 22 =0
z—0* z—0% = z—0% ( —) z—0% ( —) z=0" =% z-0*
x x €T
and so
lim sinz lnz =0
z—0%
and finally
lim wsinx = lim esinx Inz _ elimw_,0+ sinz Inz _ 1
z—0% z—0% '
6.3 Series

Solution of Exercise 10 Consider that

1 1 1
(=271 2 )= (en-2vmvi=ion) = o (va Vi)

hence

(\/E—\/k— 1)2

((JE—J_k—l)(VEw_k—l)f
(VE+Vk-1)

1 Ni 1 <
\/_(\/E+\/k:—1)2 S VEkE

5 (i 7

x>

—_
—_ S|»—\
ol

N

b
o

Solution of Exercise 11 The series trivially converges if z = 0. Assume now x # 0. Apply the

jans1| _ (n+ D! a™ nn ||( )—ll " e
n+1 (1+%)n

|| (n+ )™ nllz

ratio criterion

Hence the series absolute converges (and hence converges) if |z| < e. Nevertheless if |z| > e we have

|1 || e
= > >1
ol (L) (L)

Therefore |a,| is increasing and it cannot happen that |a,| — 0, and hence it cannot happen that

an — 0, hence the necessary condition is not satisfied. Summarizing

ot .
Y. —— <o e xe(-ee).
n=1
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6.4 Taylor’'s expansions

Solution of Exercise 12 We want to use the formula

£(@) = £ (a0) + £ (20) (2 =0) + 1 " (20) (@ =0)* + o 1" o) (& = 0)" + 0 (2 - 0)")

using zo = 0, with f (z) =In (1 + z) and neglecting the error term o ((:U = x0)4). So first not that
f(0)=1In(1) =0 and then compute the derivatives

f(@)= —— = [ (0) =1,

1+x
HOEET jx)z = F(0) =1,
@=2 jx)g = f1(0)=2,

whence )

1n(1+m)=x—%+§x3+o(m4).

Neglecting the error term o (x4) and computing the formula above for x =1 we get

ln(2)z1—%+%:¥:%
6.5 Graphs of Functions
Solution of Exercise 13
e Domain. The function z? e™? is the product of the function 22 with e~ and they are both

defined everywhere on the real line, so the domain D of the function is D = R.

e Asymptotes. There are no vertical asymptotes since the function has no critical points. Now

consider the limit

2
. _ . x o H .. 2r oo g .. 2
lim 22¢®=00-0= lim -+ =—>=lim —=—7= lim —=0
T—>+00 T>Fo0 00 r—>+o00 T [e%) r—>+oo T
=
lim z2e™® = lim 2%e” = (+00) - (+00) = +00.
xr—>—00 xr—>+00

so x =0 is an horizontal asymptote for x — +o0.

e Intersection with x =0. If z =0 we get f(0) =0.
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e Intersection with y = 0. The equation
2e®=0

is equivalent to

22 =0
and this is because ¢™® > 0 for all . Hence the function intersects the axis y = 0 only in x = 0.
e Sign. Since, trivially, 22 >0 and e ® > 0 we have that f (z) >0 for all z.

e Monotonicity. Compute the first derivative
fl(x)=2ze® -2 ="z (2-1).

Hence
()20 2(2-2)>0

whence f’(z) >0 if 2 € [0,2], so the function is decreasing in (—o0,0], increasing in [0, 2] and

decreasing in [2, o)

e Maxima and minima. Since f'(0) =0 and f'(z) <0 for x <0 and f'(z) >0 for 0<z <2
we have that z = 0 is a minimum. Similarly since f’(2) =0 and f’(x) >0 for 0 <z < 2 and

f'(z) <0 for x > 2 we have that x = 2 is a maximum.
e Concavity and convexity. Consider the second derivative
f"(x)=-e"z (2-2)+e® (2-2)-e P x=e"(a* -4z +2).

Consider the roots of the polynomial 2% — 4z + 2

4 16 — 4+2+2
:I:\/26 8 _ :|:2\/_:2i\/§

T12 =

so f”(z) > 0, and hence f is convex, for z € (—00,2— \/5) or x € (2+\/§,oo). Viceversa
f"(x) <0, and hence f is concave, if z € (2-v/2,2+/2).

e Graph. See Figure 2.
Solution of Exercise 14

e Domain. Since the numerator is a polynomial and the denominator is 1 + 22 > 0 for all
then the domain D of the function is D =R.
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Fig. 2: The red dotted lines indicate the position of the points 2 + V2 and 2 - /2.

e Asymptotes. There are no vertical asymptotes since the function has no critical points. Now

consider the limit

3 3 (L1 _
lim ror lim ’ ("”2 1) =—00
x40 1 + 12 15400 xr2 (#4_1)
_ .3 3 (4L _
lim x = lim < (xz 1) = 400
w00 1422 a—-co g2 (L 11)

so there are no horizontal asymptotes.
¢ Intersection with x =0. If z =0 we get f(0) =0.

e Intersection with y = 0. The equation

$—.’L‘3

1+ 22
is equivalent to

m—a:3::1:(1—x2):0

and this is because 1 + 22 > 0 for all . Hence the function intersects the axis y=0in 2 =0

and z = +1.

e Sign. Since, trivially, 1+ 22 > 0 we have that f (z) > 0 for all 2 such that x (1 - a:2) > 0 hence
for all x such that x € (oo, -1] or z € [0,1].

e Monotonicity. Compute the first derivative

xt+ 42?2 -1

(22 +1)?

J (@)=~

Hence

f'(2) 20 e z*+42° -1 <0.
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Put 22 =t and find the solution of
2 +4t-1=0

which are
tLQ =-24+ \/5

Since t = 22 > 0 only the solution -2 + /5 is acceptable. So the equation

24422 -1=0

has the two real solutions —v/-2 + V5 and +\/-2+ /5. So the function is decreasing in
(—oo, -V -2+ \/5], increasing in [—\/—2 +/5, +\/—2 + \/5J and decreasing in [+\/ -2+ /5, oo)

e Maxima and minima. Since f’ (— -2+ \/5) =0 and f'(z) <0 for z < —\/-2++/5 and

f'(x) > 0for -\/-2 + /5 <z < /-2 + /5 we have that « = —\/ -2 + /5 is a minimum. Similarly
since f’(\/—2+\/5) =0 and f'(z) >0 for -/-2+v5 <2 < v/-2+/5 and f'(z) < 0 for
x>V -2 +5 we have that z = /-2 + /5 is a maximum.

¢ Concavity and convexity. Consider the second derivative

4x (932 - 3)

(z2+1)°

f' (@) =

so f”(x) >0, and hence f is convex, for x € (—/3,0) or x € (v/3,00). Viceversa f” (z) <0,
and hence f is concave, if x € (O7 \/§)

e Graph. See Figure 3.

1.5

1 L L 1 L L L L 1
-2 -1.5 -1 -0.5 o 0.5 1 1.5 2

Fig. 3: The red dotted lines indicate the position of the points —\/-2 + V5 and V-2 + /5. The blue
dotted lines indicate the position of -/3 and V3.

Solution of Exercise 15
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e Domain. The domain of .
-
=2 In| ——
f(x) z+1n ( T a?)

coincides with the domain of In (i—i) The logarithmic function In (y) is defined if and only if

y >0 so we need to impose that i—i > 0 which implies z € (-1,1) so the domain is D = (-1,1).

e Asymptotes. There are two possible vertical asymptotes. Consider the limits in the critical

l1-z
1+x

lim (2m+ln(1_—x)) =400
x—>—1% 1l+x

so x = —1 is a vertical asymptote. If x - 17 then i—i — 0% and hence

lim (2m+ln(1_x)) = —00
z—1- l+z

so x = 1 is a vertical asymptote. We cannot look for horizontal asymptotes given that the

points z = -1 and x = 1. If x > —17 then — +o00 and hence

domain of f is bounded.
e Intersection with x =0. If z =0 we get f(0) =0.

e Intersection with y = 0. The equation

1—
2:U+ln( I) =0 (6.1)
1+

has at least the solution x = 0. From the sign of the derivative we can establish if this solution

is unique or note, so let’s move forward.

e Sign. We cannot say anything on the inequality

1—
2:c+ln( x)ZO,
1+x

again we have to use the sign of the derivative to say more.

e Monotonicity. Compute the first derivative

222

1-x

/(@)=

2

so f'(x) <0 for all x in the domain of the function, except for x # 0. This means that the
function is strictly decreasing in its domain. Since f(0) = 0 this means that x = 0 is the
unique solution of the equation (6.2) and, besides, that f(z) >0 for z <0 and f (x) <0 for

x> 0.

e Maxima and minima. Since f is strictly decreasing in its domain there are no maxima

and no minima.
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e Concavity and convexity. Consider the second derivative
4x

f’l(ﬂf):—m

so f”(x) >0, and hence f is convex, for x <0. Viceversa f” (z) <0, and hence f is concave, if

x> 0.

e Graph. See Figure 4.

15

10}

10k

sk

Fig. 4: The graph of f (x) = 2x+ln(i;—ﬁ).
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Solution of Exercise 15

e Domain. The domain of
Nz

@) =@

is determined by the conditions = > 0 (in order to have \/z and In (z) defined) and In (z) # -1
(in order to have the denominator different from zero), which is equivalent to x # et=1/e. So
the domain is D = (0,1/e) u (1/e, o).

e Asymptotes. There is one possible vertical asymptote at the critical point = = 1/e and one
at the critical point  =0. If z - (1/e)" then 1+1n(z) - 0" and hence

NG

lim ——— =+00
z—(1/e)* 1 +1n (x)
while if z - (1/e)” then 1 +1In(z) - 0~ and hence
\/E —0Q.

lim ———=
z—(1/e)- 1 +1n ()
Hence x = 1/e is a vertical asymptote. Nevertheless since

0
Ve —=0.

an0¢ 1+ In (z) s

then x = 0 it is not a vertical asymptote. Now consider

1mi=fglim ° =lim1\/5=+oo,
z—oo 1 +1In(z) oo 2

so there are no horizontal asymptotes.

e Intersection with x =0. The point x = 0 is outside of the domain.

e Intersection with y = 0. The equation

VT (6.2)

1+1In(x) B

has no solution, since the numerator is zero at x = 0 but the denominator is not defined at

x = 0. Nevertheless we already know that the function W% approaches zero as x — 07.

e Sign. Since \/z > 0 always, the sign of

Nz

1+1In(z)’

is equivalent to the sign of 1+1In (x). Hence f (z) >0if z € (1/e,00) and f (z) <0if x € (0,1/e).
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e Monotonicity. Compute the first derivative

L log(a) -1
P = aloa(a) + 1)2

so f'(x) <0 for all z <e (f is decreasing) and f’(x) >0 for all z > e (f is increasing).

e Maxima and minima. By the considerations above x = e is a minimum and there are no

maxima.

e Concavity and convexity. Consider the second derivative

7 —log(x)(log(x) +2)
4232 (log(x) +1)3

7 () =
In order to find the zeros of f” (x) we have to solve the equation
7 —log(x)(log(x) +2) =0,
which, putting y = log (z), is equivalent to
T-y(y+2)=0

whose solutions are

Yio=-1+2V2
hence the solutions of 7 —log(z)(log(x) +2) = 0 are

T19 = Y12 = e*1i2\/§'

Hence the numerator of f” (z) is positive for x € (6_1_2\/5, e 142 \/5) while the denominator
is positive for (log(z) + 1)® > 0 which is equivalent to log(x) + 1 > 0, that is for = > 1/e.
So combining the sign of the numerator and of the denominator we get f”(z) > 0 for
x € (0,6_1_2\/5), f"(xz) <0 for = € (e‘l‘zﬂ,l/e), f"(x) >0 for = € (1/6,6_1+2\/§) and
/" (x) <0 for ze (e‘1+2\/§, oo).

e Graph. See Figure 4.



6 Solutions 16

'
[
-

-1+2/2

Fig. 5: Blue lines represents the position of the points e . The magenta line is the vertical

asymptote x = 1/e while the red line is the position of the minimum z = e.



