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1 Domains

Exercize 1. Find the domain of the following function

f (x) = ln (ln (x)) .

Exercize 2. Find the domain of the following function

f (x) = ln (ln (ln (x))) .

Exercize 3. Find the domain of the following function

f (x) = e
√

x
x−2 .

Exercize 4. Find the domain of the following function

f (x) =

√
x +
√
1 − x

√
x − 2

.

2 Limits

Recall the operations with infinity

and the Figure 1 that lists the most common indeterminate forms and the transformations for

applying l’Hopital’s rule.

Exercize 5. Compute the limit

lim
x→∞
(
x − 1

x2
)
x2

.

Exercize 6. Compute the limit

lim
x→0
(1 +

sinx2

x
)

1/x

.
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Fig. 1: Common indeterminate forms and the transformations for applying l’Hopital’s rule

Exercize 7. Consider the function

f (x) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if x = 0

x2 if x ≠ 0

compute limx→0 f (x).

Exercize 8. Compute the limit

lim
x→0

ln(∣
sinx

x
∣)

Exercize 9. Compute the limit

lim
x→0+

xsinx

3 Series

Exercize 10. Establish if
∞

∑
n=1

2(
√
n −
√
n − 1) −

1
√
n

converges or not.

Remember that ∑n
1
np converges ⇔ p > 1.

Exercize 11. For which values of x the series

∞

∑
n=1

n!xn

nn
(3.1)

converges? For which values of x it diverges?
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4 Taylor’s expansions

Exercize 12. Using a Taylor’s expansion of ln (1 + x) around x = 0 truncated at the third order

compute an approximation for the number ln (2).

5 Graphs of functions

Exercize 13. Find the domain, vertical asymptotes, horizontal asymptotes and the intersection

with the x = 0 and y = 0 axes, plus study the sign, monotonicity, maxima, minima, concavity and

convexity of the function

f (x) = x2 e−x.

Exercize 14. Find the domain, vertical asymptotes, horizontal asymptotes and the intersection

with the x = 0 and y = 0 axes, plus study the sign, monotonicity, maxima, minima, concavity and

convexity of the function

f (x) =
x − x3

1 + x2
.

Exercize 15. Find the domain, vertical asymptotes, horizontal asymptotes and the intersection

with the x = 0 and y = 0 axes, plus study the sign, monotonicity, maxima, minima, concavity and

convexity of the function

f (x) = 2x + ln(
1 − x

1 + x
) .

Exercize 16. Find the domain, vertical asymptotes, horizontal asymptotes and the intersection

with the x = 0 and y = 0 axes, plus study the sign, monotonicity, maxima, minima, concavity and

convexity of the function

f (x) =

√
x

1 + ln (x)
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6 Solutions

6.1 Domains

Solution of Exercise 1 The function ln (ln (x)) is the composition of two functions

xÐ→ ln (x) Ð→ ln (ln (x)) .

This composition is defined for all x such that ln (x) > 0 and hence the domain is

D = (1,+∞) .

Solution of Exercise 2 The function ln (ln (ln (x))) is the composition of three functions

xÐ→ ln (x) Ð→ ln (ln (x)) Ð→ ln (ln (ln (x))) .

This composition is defined for all x such that ln (ln (x)) > 0 hence it must be that ln (x) > 1 that is

x > e where e is the Neper number. So the domain is

D = (e,+∞) .

Solution of Exercise 3 The function e
√

x
x−2 is defined whenever the argument of the exponential

function is defined (remember that the exponential function is defined everywhere), hence it must be

that x > 0 in order to have
√
x defined and moreover it must be x ≠ 2 in order to have the fraction

1/(x − 2) defined. Hence the domain is

D = (0,2)⋃(2,∞).

Solution of Exercise 3 The function
√
x+
√

1−x
√

x−2
is defined in all x such that the three functions

√
x,
√
1 − x and 1/

√
x − 2 are defined. Let’s analyze them separately. The function

√
x is defined

for x ≥ 0. The function
√
1 − x is defined for x ≤ 1. The function 1/

√
x − 2 is defined for x > 2 (note

that I am not writing x ≥ 2 since the denominator must be different from zero). Hence the original

function
√
x+
√

1−x
√

x−2
is defined for all x such that x ≥ 0 and x ≤ 1 and x > 2. So the domain of the

function
√
x+
√

1−x
√

x−2
is empty.
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6.2 Limits

Solution of Exercise 5 Consider that

(
x − 1

x2
)
x2

= e
ln((x−1

x2
)

x2

)

= e
x2 ln((x−1

x2
))

Let’s study the asymptotic behaviour of the argument of the logarithm that appears above

lim
x→+∞

x − 1

x2
= lim

x→∞

1 − 1
x

x
=

1

+∞
= 0

hence (remember that limy→0+ ln (y) = −∞)

lim
x→+∞

ln(
x − 1

x2
) = −∞

whence

lim
x→+∞

x2 ln(
x − 1

x2
) = (+∞) × (−∞) = −∞

so that

lim
x→∞
(
x − 1

x2
)
x2

= lim
x→∞

e
x2 ln((x−1

x2
))
= e−∞ = 0.

Solution of Exercise 6 Consider that

lim
x→0

sin (x2)

x
= lim

x→0

sin (x2)

x2
x

but

lim
x→0

sin (x2)

x2
= lim

y→0

sin (y)

y
= 1

so that

lim
x→0

sin (x2)

x
= lim

x→0

sin (x2)

x2
x = 0.

Hence the limit

lim
x→0

⎛

⎝
1 +

sin (x2)

x

⎞

⎠

1/x

is a 1∞ indeterminate form. Re-write the limit as

lim
x→0

⎛

⎝
1 +

sin (x2)

x

⎞

⎠

1/x

= lim
x→0

e
ln
⎛

⎝

(1+
sin(x2)

x
)

1/x
⎞

⎠
= lim

x→0
e

1
x
ln(1+ sinx2

x
)

.

Now consider the exponent and apply Hopital’s rule

lim
x→0

1

x
ln
⎛

⎝
1 +

sin (x2)

x

⎞

⎠
=
0

0

H
= lim

x→0

1

1 + sinx2

x

⎛
⎜
⎜
⎜
⎝

2 sinx cosx

x
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

→2

−
sin (x2)

x2
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→1

⎞
⎟
⎟
⎟
⎠

= 1
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so that

lim
x→0

⎛

⎝
1 +

sin (x2)

x

⎞

⎠

1/x

= e.

Solution of Exercise 7 Remember that in the definition of the limit of a function

lim
x→x0

f (x) = L⇔∀ϵ > 0∃δ > 0 such that ∀x such that 0 < ∣x − x0∣ < δ⇒ ∣f (x) −L∣ < ε.

since it is required that ∣x − x0∣ > 0 the value of the function in x0, that is f (x0), does not enter

in the definition. In other words, what really matters is the behaviour of the function around x0,

irrespectively of the value of the function in x0. So consider the function

f (x) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if x = 0

x2 if x ≠ 0

the idea is that, for all x ≠ 0, if x is very close to 0 then also f (x) = x2 is very close to zero, so the

limit

lim
x→0

f (x)

is exactly 0. Let’s try to verify this claim using the definition

∀ϵ > 0∃δ > 0 such that ∀x such that 0 < ∣x∣ < δ⇒ ∣x2∣ < ε,

which is true. In fact it is enough to take, ∀ϵ > 0, any δ <
√
ϵ so that if 0 < ∣x∣ < δ we have

0 < x2 < δ2 < ϵ.

Solution of Exercise 8 First remember the notable limit

lim
x→0

sinx

x
= 1

which, by continuity of the absolute value, implies

lim
x→0
∣
sinx

x
∣ = ∣1∣ = 1

which, by continuity of the logarithm, implies

lim
x→0

ln(∣
sinx

x
∣) = ln (1) = 0.

Solution of Exercise 9 Note that

xsinx = eln(x
sinx
)
= esinx lnx

now consider that

lim
x→0+

sinx lnx
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is a 0 × (−∞) indeterminate form. Re-write sinx lnx as

lim
x→0+

sinx lnx = lim
x→0+

sinx
1

lnx

=
0

0

H
= lim

x→0+

cosx

− 1
x (lnx)2

= lim
x→0+

−(x cosx (lnx)2) .

Again we have a 0 ×∞ indeterminate form....

lim
x→0+

x (lnx)2 = lim
x→0+

(lnx)2

1
x

H
= lim

x→0+

2 lnx
x

(− 1
x2 )
= lim

x→0+

2 lnx

(− 1
x
)

H
= lim

x→0+

2
x
1
x2

= lim
x→0+

2x = 0

and so

lim
x→0+

sinx lnx = 0

and finally

lim
x→0+

xsinx = lim
x→0+

esinx lnx
= elimx→0+ sinx lnx

= 1.

6.3 Series

Solution of Exercise 10 Consider that

(2
√
n − 2

√
n − 1 −

1
√
n
) =

1
√
n
(2n − 2

√
n
√
n − 1 − 1) =

1
√
n
(
√
n −
√
n − 1)

2
,

hence

n

∑
k=1

(2
√
k − 2

√
k − 1 −

1
√
k
) =

n

∑
k=1

1
√
k
(
√
k −
√
k − 1)

2

=
n

∑
k=1

1
√
k
(
(
√
k −
√
k − 1)(

√
k +
√
k − 1)

(
√
k +
√
k − 1)

)

2

=
n

∑
k=1

1
√
k (
√
k +
√
k − 1)

2
∼

n

∑
k=1

1
√
k k
< ∞.

Solution of Exercise 11 The series trivially converges if x = 0. Assume now x ≠ 0. Apply the

ratio criterion

∣an+1∣

∣an∣
=
(n + 1)! ∣x∣n+1

(n + 1)n+1
nn

n! ∣x∣n
= ∣x∣ (

n

n + 1
)
n

= ∣x∣ (
1

n+1
n

)

n

=
∣x∣

(1 + 1
n
)
n .

Hence the series absolute converges (and hence converges) if ∣x∣ < e. Nevertheless if ∣x∣ ≥ e we have

∣an+1∣

∣an∣
=

∣x∣

(1 + 1
n
)
n ≥

e

(1 + 1
n
)
n ≥ 1.

Therefore ∣an∣ is increasing and it cannot happen that ∣an∣ → 0, and hence it cannot happen that

an → 0, hence the necessary condition is not satisfied. Summarizing

∞

∑
n=1

n!xn

nn
< ∞⇔ x ∈ (−e, e) .
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6.4 Taylor’s expansions

Solution of Exercise 12 We want to use the formula

f (x) = f (x0) + f
′
(x0) (x − x0) +

1

2!
f2
(x0) (x − x0)

2
+

1

3!
f3
(x0) (x − x0)

3
+ o ((x − x0)

4
)

using x0 = 0, with f (x) = ln (1 + x) and neglecting the error term o ((x − x0)
4
). So first not that

f (0) = ln (1) = 0 and then compute the derivatives

f ′ (x) =
1

1 + x
⇒ f ′ (0) = 1,

f2
(x) = −

1

(1 + x)2
⇒ f ′ (0) = −1,

f3
(x) = 2

1

(1 + x)3
⇒ f ′ (0) = 2,

whence

ln (1 + x) = x −
x2

2
+

2

3!
x3 + o (x4) .

Neglecting the error term o (x4) and computing the formula above for x = 1 we get

ln (2) ≈ 1 −
1

2
+
1

3
=
6 − 3 + 2

6
=
5

6
.

6.5 Graphs of Functions

Solution of Exercise 13

● Domain. The function x2 e−x is the product of the function x2 with e−x and they are both

defined everywhere on the real line, so the domain D of the function is D = R.

● Asymptotes. There are no vertical asymptotes since the function has no critical points. Now

consider the limit

lim
x→+∞

x2 e−x = ∞ ⋅ 0 = lim
x→+∞

x2

1
e−x

=
∞

∞

H
= lim

x→+∞

2x

ex
=
∞

∞

H
= lim

x→+∞

2

ex
= 0.

lim
x→−∞

x2 e−x = lim
x→+∞

x2 ex = (+∞) ⋅ (+∞) = +∞.

so x = 0 is an horizontal asymptote for x→ +∞.

● Intersection with x = 0. If x = 0 we get f (0) = 0.
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● Intersection with y = 0. The equation

x2 e−x = 0

is equivalent to

x2 = 0

and this is because e−x > 0 for all x. Hence the function intersects the axis y = 0 only in x = 0.

● Sign. Since, trivially, x2 ≥ 0 and e−x ≥ 0 we have that f (x) ≥ 0 for all x.

● Monotonicity. Compute the first derivative

f ′ (x) = 2xe−x − x2 e−x = e−x x (2 − x) .

Hence

f ′ (x) ≥ 0⇔ x (2 − x) ≥ 0

whence f ′ (x) ≥ 0 if x ∈ [0,2], so the function is decreasing in (−∞,0], increasing in [0,2] and

decreasing in [2,∞)

● Maxima and minima. Since f ′ (0) = 0 and f ′ (x) < 0 for x < 0 and f ′ (x) > 0 for 0 < x < 2

we have that x = 0 is a minimum. Similarly since f ′ (2) = 0 and f ′ (x) > 0 for 0 < x < 2 and

f ′ (x) < 0 for x > 2 we have that x = 2 is a maximum.

● Concavity and convexity. Consider the second derivative

f2
(x) = −e−x x (2 − x) + e−x (2 − x) − e−x x = e−x(x2 − 4x + 2).

Consider the roots of the polynomial x2 − 4x + 2

x1,2 =
4 ±
√
16 − 8

2
=
4 ± 2

√
2

2
= 2 ±

√
2

so f2 (x) > 0, and hence f is convex, for x ∈ (−∞,2 −
√
2) or x ∈ (2 +

√
2,∞). Viceversa

f2 (x) < 0, and hence f is concave, if x ∈ (2 −
√
2,2 +

√
2).

● Graph. See Figure 2.

Solution of Exercise 14

● Domain. Since the numerator is a polynomial and the denominator is 1 + x2 > 0 for all x

then the domain D of the function is D = R.
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-1 0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

Fig. 2: The red dotted lines indicate the position of the points 2 +
√
2 and 2 −

√
2.

● Asymptotes. There are no vertical asymptotes since the function has no critical points. Now

consider the limit

lim
x→+∞

x − x3

1 + x2
= lim

x→+∞

x3 ( 1
x2 − 1)

x2 ( 1
x4 + 1)

= −∞

lim
x→−∞

x − x3

1 + x2
= lim

x→−∞

x3 ( 1
x2 − 1)

x2 ( 1
x4 + 1)

= +∞

so there are no horizontal asymptotes.

● Intersection with x = 0. If x = 0 we get f (0) = 0.

● Intersection with y = 0. The equation

x − x3

1 + x2
= 0

is equivalent to

x − x3 = x (1 − x2) = 0

and this is because 1 + x2 > 0 for all x. Hence the function intersects the axis y = 0 in x = 0

and x = ±1.

● Sign. Since, trivially, 1 + x2 ≥ 0 we have that f (x) ≥ 0 for all x such that x (1 − x2) ≥ 0 hence

for all x such that x ∈ (−∞,−1] or x ∈ [0,1].

● Monotonicity. Compute the first derivative

f ′ (x) = −
x4 + 4x2 − 1

(x2 + 1)2

Hence

f ′ (x) ≥ 0⇔ x4 + 4x2 − 1 ≤ 0.
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Put x2 = t and find the solution of

t2 + 4 t − 1 = 0

which are

t1,2 = −2 ±
√
5.

Since t = x2 ≥ 0 only the solution −2 +
√
5 is acceptable. So the equation

x4 + 4x2 − 1 = 0

has the two real solutions −
√
−2 +

√
5 and +

√
−2 +

√
5. So the function is decreasing in

(−∞,−
√
−2 +

√
5], increasing in [−

√
−2 +

√
5,+
√
−2 +

√
5] and decreasing in [+

√
−2 +

√
5,∞)

● Maxima and minima. Since f ′ (−
√
−2 +

√
5) = 0 and f ′ (x) < 0 for x < −

√
−2 +

√
5 and

f ′ (x) > 0 for −
√
−2 +

√
5 < x <

√
−2 +

√
5 we have that x = −

√
−2 +

√
5 is a minimum. Similarly

since f ′ (
√
−2 +

√
5) = 0 and f ′ (x) > 0 for −

√
−2 +

√
5 < x <

√
−2 +

√
5 and f ′ (x) < 0 for

x >
√
−2 +

√
5 we have that x =

√
−2 +

√
5 is a maximum.

● Concavity and convexity. Consider the second derivative

f2
(x) =

4x (x2 − 3)

(x2 + 1)3

so f2 (x) > 0, and hence f is convex, for x ∈ (−
√
3,0) or x ∈ (

√
3,∞). Viceversa f2 (x) < 0,

and hence f is concave, if x ∈ (0,
√
3).

● Graph. See Figure 3.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 3: The red dotted lines indicate the position of the points −
√
−2 +

√
5 and

√
−2 +

√
5. The blue

dotted lines indicate the position of −
√
3 and

√
3.

Solution of Exercise 15
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● Domain. The domain of

f (x) = 2x + ln(
1 − x

1 + x
)

coincides with the domain of ln (1−x1+x
). The logarithmic function ln (y) is defined if and only if

y > 0 so we need to impose that 1−x
1+x > 0 which implies x ∈ (−1,1) so the domain is D = (−1,1).

● Asymptotes. There are two possible vertical asymptotes. Consider the limits in the critical

points x = −1 and x = 1. If x→ −1+ then 1−x
1+x → +∞ and hence

lim
x→−1+

(2x + ln(
1 − x

1 + x
)) = +∞

so x = −1 is a vertical asymptote. If x→ 1− then 1−x
1+x → 0+ and hence

lim
x→1−

(2x + ln(
1 − x

1 + x
)) = −∞

so x = 1 is a vertical asymptote. We cannot look for horizontal asymptotes given that the

domain of f is bounded.

● Intersection with x = 0. If x = 0 we get f (0) = 0.

● Intersection with y = 0. The equation

2x + ln(
1 − x

1 + x
) = 0 (6.1)

has at least the solution x = 0. From the sign of the derivative we can establish if this solution

is unique or note, so let’s move forward.

● Sign. We cannot say anything on the inequality

2x + ln(
1 − x

1 + x
) ≥ 0,

again we have to use the sign of the derivative to say more.

● Monotonicity. Compute the first derivative

f ′ (x) = −
2x2

1 − x2

so f ′ (x) < 0 for all x in the domain of the function, except for x ≠ 0. This means that the

function is strictly decreasing in its domain. Since f (0) = 0 this means that x = 0 is the

unique solution of the equation (6.2) and, besides, that f (x) > 0 for x < 0 and f (x) < 0 for

x > 0.

● Maxima and minima. Since f is strictly decreasing in its domain there are no maxima

and no minima.
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● Concavity and convexity. Consider the second derivative

f2
(x) = −

4x

(x2 − 1)2

so f2 (x) > 0, and hence f is convex, for x < 0. Viceversa f2 (x) < 0, and hence f is concave, if

x > 0.

● Graph. See Figure 4.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-15

-10

-5

0

5

10

15

Fig. 4: The graph of f (x) = 2x + ln (1−x1+x
).
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Solution of Exercise 15

● Domain. The domain of

f (x) =

√
x

1 + ln (x)

is determined by the conditions x > 0 (in order to have
√
x and ln (x) defined) and ln (x) ≠ −1

(in order to have the denominator different from zero), which is equivalent to x ≠ e−1 = 1/e. So

the domain is D = (0,1/e) ∪ (1/e,∞).

● Asymptotes. There is one possible vertical asymptote at the critical point x = 1/e and one

at the critical point x = 0. If x→ (1/e)+ then 1 + ln (x) → 0+ and hence

lim
x→(1/e)+

√
x

1 + ln (x)
= +∞

while if x→ (1/e)− then 1 + ln (x) → 0− and hence

lim
x→(1/e)−

√
x

1 + ln (x)
= −∞.

Hence x = 1/e is a vertical asymptote. Nevertheless since

lim
x→0+

√
x

1 + ln (x)
=

0

−∞
= 0.

then x = 0 it is not a vertical asymptote. Now consider

lim
x→∞

√
x

1 + ln (x)
=
∞

∞

H
= lim

x→∞

x

2
√
x
= lim

x→∞

1

2

√
x = +∞,

so there are no horizontal asymptotes.

● Intersection with x = 0. The point x = 0 is outside of the domain.

● Intersection with y = 0. The equation

√
x

1 + ln (x)
= 0 (6.2)

has no solution, since the numerator is zero at x = 0 but the denominator is not defined at

x = 0. Nevertheless we already know that the function
√
x

1+ln(x) approaches zero as x→ 0+.

● Sign. Since
√
x ≥ 0 always, the sign of

√
x

1 + ln (x)
,

is equivalent to the sign of 1+ ln (x). Hence f (x) ≥ 0 if x ∈ (1/e,∞) and f (x) ≤ 0 if x ∈ (0,1/e).
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● Monotonicity. Compute the first derivative

f ′ (x) =
log(x) − 1

2
√
x(log(x) + 1)2

so f ′ (x) < 0 for all x < e (f is decreasing) and f ′ (x) > 0 for all x > e (f is increasing).

● Maxima and minima. By the considerations above x = e is a minimum and there are no

maxima.

● Concavity and convexity. Consider the second derivative

f2
(x) =

7 − log(x)(log(x) + 2)

4x3/2(log(x) + 1)3
.

In order to find the zeros of f2 (x) we have to solve the equation

7 − log(x)(log(x) + 2) = 0,

which, putting y = log (x), is equivalent to

7 − y (y + 2) = 0

whose solutions are

y1,2 = −1 ± 2
√
2

hence the solutions of 7 − log(x)(log(x) + 2) = 0 are

x1,2 = e
y1,2 = e−1±2

√

2.

Hence the numerator of f2 (x) is positive for x ∈ (e−1−2
√

2, e−1+2
√

2) while the denominator

is positive for (log(x) + 1)3 > 0 which is equivalent to log(x) + 1 > 0, that is for x > 1/e.

So combining the sign of the numerator and of the denominator we get f2 (x) > 0 for

x ∈ (0, e−1−2
√

2), f2 (x) < 0 for x ∈ (e−1−2
√

2,1/e), f2 (x) > 0 for x ∈ (1/e, e−1+2
√

2) and

f2 (x) < 0 for x ∈ (e−1+2
√

2,∞).

● Graph. See Figure 4.
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Fig. 5: Blue lines represents the position of the points e−1±2
√

2. The magenta line is the vertical

asymptote x = 1/e while the red line is the position of the minimum x = e.


