
1 The Riemann and the Riemann-Stieltjes integrals

Definition 1. Let [a, b] be a given interval. A partition P of [a, b] is a collection of points P = {x0, x1, ..., xn} such
that a = x0 ≤ x1 ≤ x2 ≤ · · · ≤ xn = b. Let f : [a, b]→ R be bounded on [a, b], i.e. ∃M ≥ 0 such that

∣∣∣ f (x)
∣∣∣ ≤ M for

all x ∈ [a, b]. For a given partition P of [a, b] we set

M j = sup
{

f (x)
∣∣∣∣ x ∈

[
x j−1, x j

]}
, m j = inf

{
f (x)

∣∣∣∣ x ∈
[
x j−1, x j

]}
.

We define the upper and lower sums of f on P respectively as

U
(
P, f

)
�

n∑
j=1

M j ∆ jx, L
(
P, f

)
�

n∑
j=1

m j ∆ jx,

where ∆ jx = x j − x j−1. In addition we define the upper and the lower Riemann integrals respectively as:

∫ b

a
f (x) dx = inf

P

U
(
P, f

)
,

∫ b

a
f (x) dx = sup

P

L
(
P, f

)
.

If
∫ b

a f dx =
∫ b

a f dx, we say that f is Riemann-integrable on [a, b] and we call the Riemann integral of f on [a, b] the
quantity ∫ b

a
f (x) dx �

∫ b

a
f (x) dx =

∫ b

a
f (x) dx.

Remark. The upper and lower integrals are well-defined for a bounded function. In fact if f is bounded in
[a, b] then there exist two constants m and M such that

m ≤ f (x) ≤M, ∀x ∈ [a, b] .

Hence for every partition Pwe have

m (b − a) ≤ L
(
P, f

)
≤ U

(
P, f

)
≤M (b − a) ,

so the quantities
∫ b

a f (x) dx and
∫ b

a f (x) dx are finite (but they might be different).

For the purpose of statistical applications is quite useful to use a slightly different version of the Riemann
integral.

Definition 2. Let α be a monotonically increasing function on [a, b]. For each partition P = {x0, . . . , xn} of [a, b] we
define ∆ jα � α

(
x j

)
− α

(
x j−1

)
, j = 1, . . . ,n and, accordingly, for every bounded function f on [a, b] we define

U
(
P, f , α

)
=

M∑
j=1

M j ∆ jα, L
(
P, f , α

)
=

M∑
j=1

m j ∆ jα.

We define the upper and the lower Riemann-Stieltjes integrals on the interval [a, b] of f w.r.t. the measureα respectively
as: ∫ b

a
f (x) α (dx) = inf

P

U
(
P, f , α

)
,

∫ b

a
f (x) α (dx) = sup

P

L
(
P, f , α

)
,

and we say that the function f is Reimann-Stieltjes integrable on the interval [a, b] w.r.t. the measure α, and we write
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f ∈ R (α) on [a, b], if: ∫ b

a
f (x) α (dx) =

∫ b

a
f α (dx) ≡

∫ b

a
f (x) α (dx) .

Remark. The Riemann integral is a special case of the Riemann-Stieltjes integral for α (x) = x. Nevertheless
note that α (x) is not required to be continuous.

Definition 3. We say that the partition P⋆ is a refinement of the partition P if P ⊂ P⋆. Given two partitions P1

and P2 we say that the partition P1 ∪ P2 is their common refinement.

Theorem 1.1. If P⋆ is a refinement of the partition P then:

L
(
P, f , α

)
≤ L

(
P
⋆, f , α

)
, U

(
P, f , α

)
≥ U

(
P
⋆, f , α

)
. (1.1)

Moreover: ∫ b

a
f (x) α (dx) ≤

∫ b

a
f (x) α (dx) .

Proof. Suppose that P⋆ contains one point more than P. Let x⋆ be this point. Suppose, without loss of
generality, that x j−1 < x⋆ < x j where x j−1 and x j are point of the partition P. Put

w1 = inf
x j−1≤x≤x⋆

f (x) , w2 = inf
x⋆≤x≤x j

f (x)

Since both
[
x j−1, x⋆

]
and

[
x⋆, x j

]
are subsets of

[
x j−1, x j

]
we get that m j ≤ w1 and m j ≤ w2. Whence

L
(
P
⋆, f , α

)
− L

(
P, f , α

)
= w1

(
α
(
x⋆

)
− α

(
x j−1

))
+ w2

(
α
(
x j

)
− α

(
x⋆

))︸                                                   ︷︷                                                   ︸
Appear in L(P⋆, f ,α) but not in L(P, f ,α)

−m j

(
α (xi) − α

(
x j−1

))
︸                   ︷︷                   ︸

vice versa

=
(
w1 −m j

) (
α
(
x⋆

)
− α

(
x j−1

))
+

(
w2 −m j

) (
α
(
x j

)
− α

(
x⋆

))
≥ 0,

If P⋆ contains k more points we repeat this procedure k times. With an identical reasoning we prove
U

(
P, f , α

)
≥ U

(
P
⋆, f , α

)
. Now consider two arbitrary partitionsP1 andP2 and considerP⋆ � P1

⋃
P2 their

common refinement. Hence

L
(
P1, f , α

)
≤ L

(
P
⋆, f , α

)
≤ U

(
P
⋆, f , α

)
≤ U

(
P2, f , α

)
,

whence for arbitrary partitions P1 and P2 it holds that

L
(
P1, f , α

)
≤ U

(
P2, f , α

)
.

Now fix P2 and take the supremum on the left over all P1, obtaining∫ b

a
f (x) α (dx) ≤ U

(
P2, f , α

)
.

Now take the infimum on the right over all P2, obtaining∫ b

a
f (x)α (dx) ≤

∫ b

a
f (x) α (x) .

□
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Theorem 1.2. f ∈ R (α) on [a, b] if and only if ∀ε > 0 there exists a partition P of [a, b] such that:

U
(
P, f , α

)
− L

(
P, f , α

)
< ε. (1.2)

Proof. Suppose first that ∀ε > 0 there exists a partition P of [a, b] such that:

U
(
P, f , α

)
− L

(
P, f , α

)
< ε.

For every partition Pwe have

L
(
P, f , α

)
≤

∫ b

a
f (x) α (dx) ≤

∫ b

a
f (x) α (dx) ≤ U

(
P, f , α

)
.

Hence

0 ≤
∫ b

a
f (x) α (dx) −

∫ b

a
f (x) α (dx) ≤ U

(
P, f , α

)
− L

(
P, f , α

)
< ε.

Since ε is arbitrarily small we get ∫ b

a
f (x) α (dx) =

∫ b

a
f (x) α (dx)

whence f ∈ R (α) on [a, b]. To prove the other implication, assume that f ∈ R (α) on [a, b]. Let ε > 0 be given.
By definition of supremum and infimum we can say that there exists partitions such that

U
(
P2, f , α

)
−

∫ b

a
f (x) α (dx) < ε/2, and

∫ b

a
f (x) α (dx) − L

(
P1, f , α

)
< ε/2.

If P1 = P2 we have finished, if P1 , P2 then the common refinement P⋆ = P1
⋃
P2 contains more points

than both P1 and P2 and then inequalities (0.0.1) are strict. Then

U
(
P
⋆, f , α

)
< U

(
P2, f , α

)
<
ε
2
+

∫ b

a
f (x) α (dx) <

ε
2
+
ε
2
+ L

(
P1, f , α

)
= ε + L

(
P1, f , α

)
< ε + L

(
P
⋆, f , α

)
,

whence
U

(
P
⋆, f , α

)
− L

(
P
⋆, f , α

)
< ε.

□

Theorem 1.3. If f is continuous in [a, b] then f ∈ R (α) on [a, b].

Proof. For the Heine-Borel Theorem the interval [a, b] is compact and for the Heine-Cantor Theorem a
continuous function on a compact set is uniformly continuous, hence no matter how small we take a η > 0
we can always find a δ > 0 such that if |x − t| < δ then

∣∣∣ f (x) − f (t)
∣∣∣ < η. Now for all ε > 0 we look for a

partition P = {x0, . . . , xn} such that equation (0.0.2) holds. Take a partion P such that ∆x j = x j − x j−1 < δ for
all j = 1, . . . ,n. Therefore

M j −m j = sup
x∈[x j−1,x j]

f (x) − inf
x∈[x j−1,x j]

f (x) ≤ η.

As a consequence

U
(
P, f , α

)
− L

(
P, f , α

)
=

n∑
j=1

(
M j −m j

)
∆ jα ≤ η

n∑
j=1

∆ jα = η [α (b) − α (a)] .
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So it is enough to take an η such that η [α (b) − α (a)] < ε. □

Theorem 1.4. (Integral as a linear operator). If f1 ∈ R (α) and f2 ∈ R (α) on [a, b] then f1 + f2 ∈ R (α). Moreover
if f ∈ R (α) on [a, b] then c f ∈ R (α) for every constant c. We also have that∫ b

a

(
f1 + f2

)
(x) α (dx) =

∫ b

a
f1 (x) α (dx) +

∫ b

a
f2 (x) α (dx) ,

and that ∫ b

a
c f (x) α (dx) = c

∫ b

a
f (x) α (dx) .

Proof. Consider f = f1 + f2 and let P be a partition of [a, b]. We have

L
(
P, f1, α

)
+ L

(
P, f2, α

)
≤ L

(
P, f , α

)
≤ U

(
P, f , α

)
≤ U

(
P, f1, α

)
+U

(
P, f2, α

)
.

The first inequality follows from the identity inf
(

f1
)
+inf

(
f2
)
≤ inf

(
f1 + f2

)
, while the second is a consequence

of the trivial inequality inf
(

f
)
≤ sup

(
f
)
. Finally, the last one follows from sup

(
f1 + f2

)
≤ sup

(
f1
)
+ sup

(
f2
)
.

Since f j ∈ R (α), j = 1, 2, for all ε > 0 there exists a partition P j such that

U
(
P j, f j, α

)
− L

(
P j, f j, α

)
< ε, j = 1, 2. (1.3)

Consider the common refinement P � P1 ∪ P2. We know from the properties of the common refinement
that

L
(
P j, f j, α

)
≤ L

(
P, f j, α

)
and U

(
P j, f j, α

)
≥ U

(
P, f j, α

)
, j = 1, 2.

Using these properties with (0.0.3) we get

U
(
P, f j, α

)
− L

(
P, f j, α

)
< ε, j = 1, 2.

Now we have that

U
(
P, f , α

)
− L

(
P, f , α

)
≤ U

(
P, f , α

)
−

[
L
(
P, f1, α

)
+ L

(
P, f2, α

)]
≤ U

(
P, f1, α

)
+U

(
P, f2, α

)
− L

(
P, f1, α

)
− L

(
P, f2, α

)
=

[
U

(
P, f1, α

)
− L

(
P, f1, α

)]
+

[
U

(
P, f2, α

)
− L

(
P, f2, α

)]
< 2 ε.

This proves that f ∈ R (α) on [a, b]. With the same partition Pwe have that

U
(
P, f j, α

)
−

∫ b

a
f j (x) α (dx) < ε, j = 1, 2.

Therefore we can write∫ b

a
f (x) α (dx) ≤ U

(
P, f , α

)
≤ U

(
P, f1, α

)
+U

(
P, f2, α

)
<

∫ b

a
f1 (x) α (dx) +

∫ b

a
f2 (x) α (dx) + 2 ε.

Now let ε→ 0, obtaining ∫ b

a
f (x) α (dx) ≤

∫ b

a
f1 (x) α (dx) +

∫ b

a
f2 (x) α (dx) .
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On the other side we also have ∫ b

a
f j dα − L

(
P, f j, α

)
< ε, j = 1, 2.

and of course ∫ b

a
f (x) α (dx) ≥ L

(
P, f , α

)
≥ L

(
P, f1, α

)
+ L

(
P, f2, α

)
.

Putting together the last two inequalities gives∫ b

a
f (x) α (dx) >

∫ b

a
f1 (x) α (dx) +

∫ b

a
f1 (x) α (dx) − 2 ε

Now let ε→ 0 ∫ b

a
f (x) α (dx) ≥

∫ b

a
f1 (x) α (dx) +

∫ b

a
f2 (x) α (dx) .

Concluding ∫ b

a
f (x) α (dx) =

∫ b

a
f1 (x) α (dx) +

∫ b

a
f2 (x) α (dx) .

□

Theorem 1.5. Let f be bounded function in R (α) on [a, b], i.e. m ≤ f ≤ M. Let g be a function continuous in
[m,M]. Therefore the composit function G � g ◦ f belongs to R (α) on [a, b].

Proof. We have to show that ∀ε⋆ > 0 there exists a partition P of [a, b] such that U (P,G, α)−L (P,G, α) < ε⋆.
As a first observation, note that the continuity of g on the compact set [m,M] implies its uniform continuity,
which means

∀ε > 0, ∃δ < ε : |t − s| < δ⇒
∣∣∣g (t) − g (s)

∣∣∣ < ε.
Notice that, we have added the condition δ < ε, which is fully compatible with uniform integrability and
will be useful at the end of the proof. Being f integrable, we can find a partition P = {x0, ..., xn} of [a, b] such
that U

(
P, f , α

)
− L

(
P, f , α

)
< δ2. Define, for j = 1, . . . ,n, the following quantities

M j � sup
{

f (x)
∣∣∣∣ x ∈

[
x j−1, x j

]}
,

m j � inf
{

f (x)
∣∣∣∣ x ∈

[
x j−1, x j

]}
,

M⋆
j � sup

{
g
(

f (x)
) ∣∣∣∣ x ∈

[
x j−1, x j

]}
,

m⋆j � inf
{
g
(

f (x)
) ∣∣∣∣ x ∈

[
x j−1, x j

]}
.

Divide the integers {1, ...,n} into two classes A and B defined in this way

j ∈ A⇔M j −m j < δ and j ∈ B⇔M j −m j ≥ δ.

For the uniform continuity of g we have that

j ∈ A⇒M⋆
j −m⋆j ≤ ε.

Now let K be defined as K = supx∈[m,M]

∣∣∣g (
f (x)

)∣∣∣. It is clear that

M⋆
j = sup

x∈[x j−1,x j]
g
(

f (x)
)
≤ sup

x∈[x j−1,x j]

∣∣∣g (
f (x)

)∣∣∣ ≤ sup
x∈[a,b]

∣∣∣g (
f (x)

)∣∣∣ = K,
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and that
m⋆j = inf

x∈[x j−1,x j]
g
(

f (x)
)
≥ inf

x∈[a,b]
g
(

f (x)
)
≥ inf

x∈[a,b]
−

∣∣∣g (
f (x)

)∣∣∣ = − sup
x∈[a,b]

∣∣∣g (
f (x)

)∣∣∣ = −K,

where the second in equality follows from g ≥ −
∣∣∣g∣∣∣. Thus

M⋆
j −m⋆j ≤ K −m⋆j ≤ K + K = 2 K.

By definition of the class B we have that∑
j∈B

(
M j −m j

)
∆ jα ≥ δ

∑
j∈B

∆ jα. (1.4)

Nevertheless U
(
P, f , α

)
− L

(
P, f , α

)
< δ2 is equivalent to∑

j∈B

(
M j −m j

)
∆ jα < δ

2. (1.5)

Putting together inequalities (0.0.4) and (0.0.5) gives

δ
∑
j∈B

∆ jα ≤
∑
j∈B

(
M j −m j

)
∆ jα < δ

2,

which, in turn, implies
∑

j∈B ∆ jα < δ. Using the definition of the class A we get

∑
j∈A

(
M⋆

j −m⋆j
)
∆ jα ≤ ε

∑
j∈A

∆ jα ≤ ε
n∑

j=1

∆ jα = ε [α (b) − α (a)] .

Finally, we compute the difference between the upper and lower sums of G = g ◦ f on P, obtaining

U (P,G, α) − L (P,G, α) =

n∑
j=1

(
M⋆

j −m⋆j
)
∆ jα =

∑
j∈A

(
M⋆

j −m⋆j
)
∆ jα +

∑
j∈B

(
M⋆

j −m⋆j
)
∆ jα

≤ ε [α (b) − α (a)] + 2 K δ

< ε [α (b) − α (a)] + 2 K ε = ε [α (b) − α (a) + 2 K] .

Since ε is arbitrary the statement follows. □

Theorem 1.6. Let f1 and f2 be bounded functions such that f j ∈ R (α) on [a, b], j = 1, 2. Then f1 · f2 ∈ R (α) on
[a, b],

∣∣∣ f1∣∣∣ ∈ R (α) and ∣∣∣∣∣∣
∫ b

a
f1 (x) α (dx)

∣∣∣∣∣∣ ≤
∫ b

a

∣∣∣ f1 (x)
∣∣∣ α (dx) .

Proof. Since x → x2 is a continuous function, from Theorem 0.0.5 we obtain that f 2
j ∈ R (α) on [a, b] for

j = 1, 2. Using the algebraic identity

f1 f2 =
(

f1 + f2
)2
−

(
f1 − f2

)2

4
,

we get that f1 f2 ∈ R (α) on [a, b]. Similarly, being x → |x| continuous we obtain from Theorem 0.0.5 that∣∣∣ f ∣∣∣ ∈ R (α) on [a, b]. Furthermore, given that

−

∣∣∣ f (x)
∣∣∣ ≤ f (x) ≤

∣∣∣ f (x)
∣∣∣ ,
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by integration on both sides we get

−

∫ b

a

∣∣∣ f (x)
∣∣∣ α (dx) ≤

∫ b

a
f (x) α (dx) ≤

∫ b

a

∣∣∣ f (x)
∣∣∣ α (dx) ,

which is equivalent to ∣∣∣∣∣∣
∫ b

a
f (x) α (dx)

∣∣∣∣∣∣ ≤
∫ b

a

∣∣∣ f (x)
∣∣∣ α (dx) .

□

Observation 1. Note that if the absolute value of a function belongs to R (α) on [a, b] we cannot say that f belongs
to R (α) on [a, b]. Consider the function defined as

f (x) =

 1 x ∈ Q
−1 x ∈ R/Q

.

Therefore
∣∣∣ f ∣∣∣ = 1 is integrable while f it is clearly not integrable.

The following theorem provides the correspondence between Riemann and Riemann-Stieltjes integrals:

Theorem 1.7. Assume that α is monotonic and that α′ is Riemann integrable on [a, b]. Let f be a bounded real
function on [a, b]. Then f ∈ R (α) on [a, b] if and only if g (x) = f (x) α′ (x) is Riemann integrable on [a, b]. In that
case: ∫ b

a
f (x) α (dx) =

∫ b

a
f (x) α′ (x) dx,

which is written unformally as:
α (dx) = α′ (x) dx.

Theorem 1.8. Suppose that φ is a strictly increasing function from [A,B] into [a, b] with φ (A) = a and φ (B) = b.
Suppose that α is monotonically increasing on [a, b] and f ∈ R (α) on (a, b). Define the new function

g
(
y
)
� f

(
φ

(
y
))

: [A,B]→ R,

and the new measure
β
(
y
)
= α

(
φ

(
y
))
.

Then g ∈ R
(
β
)

on [A,B] and ∫ B

A
g
(
y
)
β
(
dy

)
=

∫ b

a
f (x) α (dx) . (1.6)

In particular if α (x) = x then β = φ and applying Theorem 0.0.7 to the left side of equation (0.0.6) gives∫ b

a
f (x) dx =

∫ φ−1(b)

φ−1(a)
f
(
φ

(
y
))
φ′

(
y
)

dy. (1.7)

Remark 1. Let f be in R (α) on [a, b]. We know that for all ε > 0 there exists a partition P = {x0, ..., xn} such
that

U
(
P, f , α

)
− L

(
P, f , α

)
< ε. (1.8)

By simply adding new points to the partition Pwe can assume that the partition P is the uniformly spaced
partition

x j = a + j
b − a

n
, j = 0, ...,n.
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Having added more points and given the monotone behaviour of the upper and lower sums with respect
to a refinement of the partition, the relationship (0.0.8) still holds. Now note that

L
(
P, f , α

)
≤

n∑
j=1

f
(
x j

)
∆ jα ≤ U

(
P, f , α

)
,

where, as usual, ∆ jα = α
(
x j

)
− α

(
x j−1

)
. It should be also obvious that

L
(
P, f , α

)
≤

∫ b

a
f (x) α (dx) ≤ U

(
P, f , α

)
.

Therefore ∫ b

a
f (x) α (dx) −

n∑
j=1

f
(
x j

)
∆ jα ≤ U

(
P, f , α

)
− L

(
P, f , α

)
< ε,

an, simultaneously, ∫ b

a
f (x) α (dx) −

n∑
j=1

f
(
x j

)
∆ jα ≥ L

(
P, f , α

)
−U

(
P, f , α

)
> −ε.

In summary ∣∣∣∣∣∣∣∣
∫ b

a
f (x) α (dx) −

n∑
j=1

f
(
x j

)
∆ jα

∣∣∣∣∣∣∣∣ < ε,
which means

lim
n→0

n∑
j=1

f
(
x j

)
∆ jα =

∫ b

a
f (x) α (dx) .

It is straightforward to verify that the same result holds if in the sum
∑n

j=1 f
(
x j

)
∆ jα we replace each of the

f
(
x j

)
with a new f

(
t j

)
, but with t j ∈

[
x j, x j−1

]
In practical applications, integrals are computed using the fundamental theorem of calculus, stated below.
Here, we propose a list of solved exercises that exploit the results in Remark 1 to obtain explicit expression
for some simple integrals.

Exercize 1. Compute
∫ b

a K dx, where K is a real constant.

Solution. The constant function is integrable, so using Remark 1 we can write∫ b

a
K dx = lim

n→∞

n∑
j=1

(
x j − x j−1

)
K = lim

n→∞
K

n∑
j=1

(
x j − x j−1

)
= lim

n→∞
K

n∑
j=1

b − a
n
= lim

n→∞
K n

b − a
n
= K (b − a) .

Exercize 2. Compute
∫ b

a x dx.

8



Solution. The function x→ x is integrable, so using Remark 1 we can write∫ b

a
x dx = lim

n→∞

n∑
j=1

(
x j+1 − x j

) (
a +

b − a
n

j
)
= lim

n→∞

b − a
n

n∑
j=1

(
a +

b − a
n

j
)
= lim

n→∞

b − a
n

a n +
b − a

n

n∑
j=1

j


= lim

n→∞

b − a
n

(
a n +

b − a
n

(n + 1) n
2

)
= lim

n→∞

[
a (b − a) +

(b − a)2

n
n + 1

2

]
= a (b − a) +

(b − a)2

2

= a b − a2 +
1
2

b2 +
1
2

a2
− a b =

1
2

(
b2
− a2

)
.

Note that using the identity
n∑

j=1

j2 =
n (n + 1) (2 n + 1)

6
,

and proceeding in the exact same way it is possible to show that∫ b

a
x2 dx =

1
3

(
b3
− a3

)
Theorem 1.9. (First fundamental theorem of calculus). Let f be Riemann-integrable in [a, b] and F be defined as:

F (x) =
∫ x

0
f (t) dt,

then F (x) is uniformly continuous (and thus continuous) on [a, b]. Moreover if f is continuous in x0 ∈ [a, b] then F
is differentiable and

F′ (x0) = f (x0) .

Proof. Boundedness of f implies
∣∣∣ f (t)

∣∣∣ ≤ M for all t ∈ [a, b] for some constant M > 0. Take two points x and
y such that a ≤ x ≤ y ≤ b to have∣∣∣F (

y
)
− F (x)

∣∣∣ = ∣∣∣∣∣∫ y

x
f (t) dt

∣∣∣∣∣ ≤ ∫ y

x

∣∣∣ f (t)
∣∣∣ dt ≤M

∫ y

x
1 dt =M

(
y − x

)
.

Now for all ε > 0 it is enpugh to take x and y such that
∣∣∣y − x

∣∣∣ < ε
M to have uniform continuity of F . Suppose

that f is continuous in x0. Therefore ∀ε > 0 there exists δ > 0 such that
∣∣∣ f (t) − f (x0)

∣∣∣ < εwhenever |t − x0| < δ

or, equivalently, for all t ∈ (x0 − δ, x0 + δ). For h positive, but sufficiently small, we get x0 + h ∈ (x0 − δ, x0 + δ)
and, accordingly, that

∣∣∣∣∣F (x0 + h) − F (x0)
h

− f (x0)
∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∫ x0+h

x0
f (t) dt

h
− f (x0)

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
∫ x0+h

x0

[
f (t) − f (x0)

]
dt

h

∣∣∣∣∣∣∣∣ ≤
∫ x0+h

x0

∣∣∣ f (t) − f (x0)
∣∣∣ dt

h
< ε.

Taking the limit h → 0+ we obtain F′
(
x+0

)
= f (x0) and, with a specular argument, F′

(
x−0

)
= f (x0). In

summary F′ (x0) = f (x0). □

Theorem 1.10. (Second fundamental theorem of calculus). Let f be a function in R (α) on [a, b]. If there exists a
differentiable function F on [a, b] such that f = F′ then∫ b

a
f (t) dt = F (b) − F (a) .

The function F is called a primitive of f .

9



Proof. Let P = {x0, x1, ..., xn} be a partition of [a, b]. The mean value theorem and the first fundamental
theorem of calculus applied to F assert that, for all j = 1, ..,n, there exists a point t j ∈

[
x j−1, x j

]
such that:

F
(
x j

)
− F

(
x j−1

)
= F′

(
t j

)
∆ jx = f

(
t j

)
∆ jx.

Summing across all the indexes gives

n∑
j=1

f
(
t j

)
∆ jx =

∑[
F
(
x j

)
− F

(
x j−1

)]
= F (b) − F (a) .

Note that the left-hand side depends on n while the right-hand does not. Taking the limit for n → ∞ and
using Remark 1 we find that

F (b) − F (a) = lim
n→∞

n∑
j=1

f
(
t j

)
∆ jx =

∫ b

a
f (x) dx.

□

In what follows we shall use the notation
∫

f (x) dx to indicate all the primitives of the function f . Sometimes
the integral

∫
f (x) dx is called the indefinite integral of the function f . Accordingly, computing the indefinite

integral of f amounts to find all of its primitives.

We now proceed to illustrate implications of the two fundamental theorems of calculus with a collection of
solved exercises.

Exercize 3. Find a function such that f is integrable, but ∄g such that f = g′.

Solution. If an integrable function is changed in one point, or in a finite number of points, the function
remains integrable and, moreover, the integral does not change value. Now take a function f continuous in
a closed interval [a, b] and modify it as follows:

f̃ (x) =

 L , f (x0) x = x0

f (x) x , x0.

The function f̃ is integrable but has a simple discontinuity and for Theorem ?? a function that is the derivative
of another function cannot have simple discontinuities. Therefore ∄g such that f = g′.

Exercize 4. Compute the derivative of F (x) =
∫ x3

a
(sin (t))3 dt.

Solution. Note that F (x) = h
(
g (x)

)
, where h

(
g
)
=

∫ g

a sin3 (t) dt and g (x) = x3. Therefore:

F′ (x) = h′
(
g (x)

)
g′ (x) = sin3

(
x3

)
3 x2.

Exercize 5. Compute the derivative of

F (x) =
∫ b

x

1
1 + t2 + sin (t)

dt.

10



Solution. Write F (x) = −
∫ x

b dt/
(
1 + t2 + sin (t)

)
. Then

F′ (x) = −
1

1 + x2 + sin (x)
.

Exercize 6. Find all the primitives of the function f (x) = 1/x.

Solution. Since, for x > 0, we have
(
log (x)

)′ = 1/x and, for all x , 0, we have |x|′ = |x| /x, we get that
F (x) = log (|x|) + c is a primitive for all c ∈ R.

Exercize 7. Find all the primitives of the function f (x) =
√

e3 x.

Solution. Observing that (ex)′ = ex it is immediate to verify that F (x) = 3
2 e

3
2 x + c is a primitive for all c ∈ R.

Exercize 8. Compute
∫ π

2

0 x sin (x) dx.

Solution. We introduce the so-called integration by part method. Let a < b be two real numbers. If f and g
are two integrable functions such that f ′ and g′ exist and are integrable on [a, b], from the derivative of the
product (

f g
)′ = f ′ g + f g′

we derive
f ′ g =

(
f g

)′
− f g′

whence ∫ b

a
f ′ (x) g (x) dx = f (b) g (b) − f (a) g (a) −

∫ b

a
f (x) g′ (x) dx. (1.9)

To solve the exercise, we use the integration-by-part formula (0.0.9) with f ′ (x) = sin (x) and g (x) = x. Hence
g′ (x) = 1 and f (x) = − cos (x), whence∫ π

2

0
x sin (x) dx = (−x cos (x))| π

2
− (−x cos (x))|0 −

∫ π
2

0
(− cos (x)) dx = sin

(
π
2

)
= 1,

where we used the notation f (x)
∣∣∣
x0

to indicate that the function f must be computed in x0. Sometimes we

use the short-hand notation (quite common)
[

f (x)
]x1

x0
= f (x)

∣∣∣
x1
− f (x)

∣∣∣
x0
= f (x1) − f (x0).

Exercize 9. Compute
∫ 1

−1 x arcsin (x) dx.

Solution. It is convenient to use the change-of-variable formula (0.0.7). Call x = sin (ϑ), from which
dx = cos (ϑ) dϑ and so ∫ 1

−1
x arcsin x dx =

∫ π
2

−
π
2

ϑ sin (ϑ) cos (ϑ) dϑ.

Using the trigonometric identity cos (ϑ) sin (ϑ) = 1
2 sin (2ϑ) we get∫ π

2

−
π
2

ϑ sin (ϑ) cos (ϑ) dϑ =
1
2

∫ π
2

−
π
2

ϑ sin (2ϑ) dϑ.
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Using formula (0.0.9) with g (ϑ) = 1
2 ϑ and f ′ (ϑ) = sin (2ϑ), that is f (ϑ) = − 1

2 cos (2ϑ), we get

1
2

∫ π
2

−
π
2

ϑ sin (2ϑ) dϑ =
[
−

1
4
ϑ cos (2ϑ)

] π
2

−
π
2

−
1
4

∫ π
2

−
π
2

(−) cos (2ϑ) dϑ =
[
−

1
4
ϑ cos (2ϑ)

] π
2

−
π
2

+
[1
8

sin (2ϑ)
] π

2

−
π
2

=
π
4
−

(
−
π
4

)
=
π
2
.

Exercize 10. Compute
∫ 1/

√
2

0
x2
√

1−x2
dx.

Solution. Substitute x = sin (ϑ)⇒ dx = cos (ϑ) dϑ, obtaining∫ 1
√

2

0

x2

√

1 − x2
dx =

∫ π
4

0

sin2 (ϑ)
cos (ϑ)

cos (ϑ) dϑ =
∫ π

4

0
sin2 (ϑ) dϑ.

Use sin2 (ϑ) = 1−cos(2ϑ)
2 to have∫ 1

√
2

0

x2

√

1 − x2
dx =

∫ π
4

0

1 − cos (2ϑ)
2

dϑ =
1
2

[
ϑ −

1
2

sin (2ϑ)
] π

4

0
=

1
2

[
π
4
−

1
2

]
=
π − 2

8
.

Exercize 11. Compute all the primitives of the function f (x) = x−1
x (x+1)2 .

Solution. We look for constants A, B and C such that

x − 1

x (x + 1)2 =
A
x
+

B
x + 1

+
C

(x + 1)2 .

Straightforward computations show that A = −1, B = 1 and C = 2. Whence

F (x) = − log |x| + log |1 − x| −
2

(x + 1)
+ c,

is a primitive for all c ∈ R.

Exercize 12. Compute all the primitives of the function f (x) = 2 x−1
2 x2−2 x+3 .

Solution. Put g (x) = 2 x2
− 2 x + 3 and note that

2 x − 1
2 x2 − 2 x + 3

=
1
2

g′ (x)
g (x)

,

whence F (x) = 1
2 log

∣∣∣2 x2
− 2 x + 3

∣∣∣ + c is a primitive for all c ∈ R.

Exercize 13. Compute all the primitives of the function f (x) = x3
−1

x2−3 x+2 .

Solution. The function f is a fraction in which the degree of the numerator is greater than the degree of the
denominator. We can thus proceed using the Ruffini’s decomposition algorithm:

x3
− 1 x2

− 3 x + 2

(+x) ·
(
x2
− 3 x + 2

)
= x3

− 3 x2 + 2 x x3

x2 = x

x3
− 1 − x3 + 3 x2

− 2 x = 3 x2
− 2 x − 1

12



and we continue till division is not more allowed, obtaining

x3
− 1 x2

− 3 x + 2

x3
− 3 x2 + 2 x x + 3 x2

x2 = x + 3 ≡ Q (x)

3 x2
− 2 x − 1

3 ·
(
x2
− 3 x + 2

)
= 3 x2

− 9 x + 6

3 x2
− 2 x − 1 −

(
3 x2
− 9 x + 6

)
= 7 x − 7 ≡ R (x)

.

In summary

x3
− 1

x2 − 3 x + 2
= (x + 3) +

7 x − 7
x2 − 3 x + 2

= (x + 3) + 7
x − 1

(x − 1) (x − 2)
= (x + 3) + 7

1
x − 2

,

whence
F (x) =

1
2

x2 + 3 x + 7 log |x − 2| + c,

is a primitive for all c ∈ R.

Exercize 14. Compute the indefinite integral
∫ √

2 x − x2 dx.

Solution. Note that
√

2 x − x2 =

√
1 − (x − 1)2. Change variable u = x − 1, obtaining

√

2 x − x2 dx =
√

1 − u2 du. Now change again with u = sin (ϑ), which gives du = cos (ϑ) dϑ and so
√

2 x − x2 dx =
√

1 − u2 du = cos2 (ϑ) dϑ.

Remember that cos2 (ϑ) = 1+cos(2ϑ)
2 . Therefore∫

√

2 x − x2 dx =

∫
√

1 − u2 du =
∫

cos2 (ϑ) dϑ =
∫

1 + cos (2ϑ)
2

dϑ =
ϑ
2
+

1
4

sin (2ϑ) + c

=
ϑ
2
+

1
2

sin (ϑ) cos (ϑ) + c =
arcsin (u)

2
+

1
2

sin (arcsin (u)) cos (arcsin u) + c

=
arcsin (u)

2
+

1
2

u cos (arcsin (u)) + c,

where c is any real constant. Now note that cos (arcsin (u)) =
√

1 − sin2 (arcsin (u)) =
√

1 − u2 =

√
1 − (x − 1)2.

Therefore ∫
√

2 x − x2 dx =
arcsin (x − 1)

2
+

1
2

(x − 1)
√

1 − (x − 1)2 + c.
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