1 The Riemann and the Riemann-Stieltjes integrals

Definition 1. Let [a,b] be a given interval. A partition P of [a, b] is a collection of points P = {xo, x1, ..., X} such
thata =xg <x1 <xp <---<x, =b. Let f: [a,b] = R be bounded on [a, b], i.e. AM > 0 such that |f(x) < M for
all x € [a,b]. For a given partition P of [a, b] we set

M; = sup {f(x) ‘ X € [xj_l,xj]}, m;j = inf{f(x) ‘ X € [xj_l,xj]}.

We define the upper and lower sums of f on P respectively as
U@, f) =) MjAx, LP,f)=) miApx,
j=1 =1

where Ajx = xj — xj-1. In addition we define the upper and the lower Riemann integrals respectively as:
T b b
f f(x)dx = ing(P,f), f f(x)dx=supL(P,f).
a Ja P

If fa ! fdx = fib fdx, we say that f is Riemann-integrable on [a, b] and we call the Riemann integral of f on [a, b] the

quantity o
b b b
[rwas [fwa= [roaw

Remark. The upper and lower integrals are well-defined for a bounded function. In fact if f is bounded in
[a, b] then there exist two constants m and M such that

m< f(x) <M, Vx €a,b].
Hence for every partition # we have

m{b-a)<L(P,f)<UP,f)<M(({b-a),

so the quantities fu ’ f(x) dx and fa ! f (x) dx are finite (but they might be different).

For the purpose of statistical applications is quite useful to use a slightly different version of the Riemann
integral.

Definition 2. Let a be a monotonically increasing function on [a, b]. For each partition P = {xy, ..., x,} of [a,b] we
define Aja = (xj) -« (xj_l), j=1,...,nand, accordingly, for every bounded function f on [a, b] we define

M M
j=1 =1

We define the upper and the lower Riemann-Stieltjes integrals on the interval [a, b] of f w.r.t. the measure o respectively
as:

b b
f f(x) a(@dx)=infU(P, f,a), f f(x) adx)=supL(P,f,a),
a P Ja P

and we say that the function f is Reimann-Stieltjes integrable on the interval [a, b] w.r.t. the measure o, and we write



feR(a)on [a,b], if

b b b
ff(x)a(dx):ffa(dx)zff(x)oz(dx).

Remark. The Riemann integral is a special case of the Riemann-Stieltjes integral for a (x) = x. Nevertheless
note that a (x) is not required to be continuous.

Definition 3. We say that the partition P* is a refinement of the partition P if P C P*. Given two partitions Py
and P we say that the partition P1 U P, is their common refinement.

Theorem 1.1. If P* is a refinement of the partition P then:
L(P, f,a)<L(P*, f,a), U(P,f,a)>U(P*, f a). (1.1)

Moreover: -
b b
f f(x) a(dx) < f f(x) a(dx).
a a
Proof. Suppose that £* contains one point more than #. Let x* be this point. Suppose, without loss of
generality, that x;_; < x* < x; where x;_; and x; are point of the partition #. Put

wp= inf f(x), wp= inf f(x)

Xj1<x<x* X*<x<x;

Since both [x]-_l,x*] and [x*,x]-] are subsets of [xj_l,xj] we get that m; < w; and m; < w,. Whence

L(P*, f,a)—-L(P, f,«a) wy (a ) -« (xj_l)) + W, (ac (xj) - (x*)) —m; (a (x) -« (x,-_l))

Appear in L(P* ,f,ac) but not in L(‘P,f,a) vice versa
(01 — ;) (o (@) = @ (x74)) + (102 — ) (e(x5) — () 2 0,

If £* contains k more points we repeat this procedure k times. With an identical reasoning we prove
U(P, f,a) > U(P*, f, ). Now consider two arbitrary partitions $; and $, and consider P* = P; [ J P, their
common refinement. Hence

L(Py f,a) SL(P*, f,a) <U(P*, f,a) <U(P2, fo0),
whence for arbitrary partitions 1 and $» it holds that
L(P1, f,a) <U(Po, f,a).

Now fix P, and take the supremum on the left over all 1, obtaining

b
ff(x) a(dx) <U(Po, f,a).

Now take the infimum on the right over all $;, obtaining

b )
ff(x)a(dx)sff(x)a(x).




Theorem 1.2. f € R(a) on [a,b] if and only if Ve > O there exists a partition P of [a, b] such that:

UP,f,a)-L(P,f,a)<e. (1.2)
Proof. Suppose first that Ve > 0 there exists a partition ¥ of [g, b] such that:

UP,f,a)-L(P, f,a)<e.

For every partition  we have

b b
L(P, fa)< f f(x) a(@dx) < f fx)adx)<U(@P, f a).
Hence -
b b
0< f f(x) a(dx) - f fx) a@x)<UP, f,a)-L(P, f,a)<e.
Since ¢ is arbitrarily small we get o

b b
f £ ald) = f £ () a(dn)

whence f € R(a) on [a, b]. To prove the other implication, assume that f € R («) on [a, b]. Let ¢ > 0 be given.
By definition of supremum and infimum we can say that there exists partitions such that

b b
U(Pa, f,a) - f f(x) a(dx) < ¢/2, and f fx)a(@dx)—L(P1, f,a)<e/2

If 1 = P, we have finished, if 1 # P, then the common refinement $* = $; | J $» contains more points
than both $; and #, and then inequalities (0.0.1) are strict. Then

b
U(P*, f,a) < U(Py, fa) < g +f £ () a(dr) < g + g +L(Py, f,a)=c+L(Py, fa)<e+L(P* fa),

whence
U(P*, f,a) = L(P*, f,a) <e.

Theorem 1.3. If f is continuous in [a, b] then f € R(a) on [a, b].

Proof. For the Heine-Borel Theorem the interval [a,b] is compact and for the Heine-Cantor Theorem a
continuous function on a compact set is uniformly continuous, hence no matter how small we take a n > 0
we can always find a 0 > 0 such that if [x — {| < 6 then |f (x) - f(t)l < 1. Now for all ¢ > 0 we look for a
partition # = {xy, ..., x,} such that equation (0.0.2) holds. Take a partion ¥ such that Ax; = x; — xj1 < 6 for
all j=1,...,n. Therefore

Mj-mj= sup f(x)— inf ]f(x)ST].

xe[x]',l,x]'] xe[x/-_l,x/-
As a consequence

n

U@, f,a)-LP,fa) =Y (Mj—mj) A< Y Aja =1 [a®b) - a@].

=1 j=1



So it is enough to take an 1 such that n [a () — a (2)] < €. O
Theorem 1.4. (Integral as a linear operator). If fi € R(«a) and f, € R(a) on [a,b] then f1 + f, € R(a). Moreover
if f € R(a)on [a,b] then ¢ f € R(a) for every constant c. We also have that

b b b
f (i + £)() aldy) = f £ () a(d) + f £0) a(dn),

and that

b b
fcf(x)a(dx):cff(x)a(dx).

Proof. Consider f = f; + f, and let P be a partition of [a,b]. We have
L(P fi,a) +L(P, fo,0) <L(P, f,a) <U(P, f,a) < U(P, f1,a) + U(D, fo, ).

The firstinequality follows from the identity inf (f;)+inf (f,) < inf (f; + f»), while the second is a consequence
of the trivial inequality inf (f) < sup (f). Finally, the last one follows from sup (fi + f>) < sup (f1) + sup (f2).
Since f; € R(a), j = 1,2, for all ¢ > 0 there exists a partition #; such that

u(Py, fia) = L(Pj, fiia) <&, j=1,2. (1.3)

Consider the common refinement £ = $; U $,. We know from the properties of the common refinement
that
L(Pj fi,a) <L(P, fa) and U(P, fi,a) 2 U(P, f,a), j=1,2.

Using these properties with (0.0.3) we get
U(Plﬁla) - L(Prfj/a) <g, ] = 1,2
Now we have that

U@, f,a)=L(P,f,a)

IA

U, f,a) = [L(P, fi,a) + L(P, fr,a)]
U(P, fi, @) + U(P, fr,a@) = L(P, fi,a) = L(P, fo, )
[UP, fi,a) = L(P, f1,)] + [U(P, fr,0) = L(P, fr,a)] < 2e.

IA

This proves that f € R(a) on [4, b]. With the same partition  we have that

b
u(so,fj,a)—f fix)a@dy)<e, j=1,2.

Therefore we can write

b b b
ff(x)a(dx)sU(P,f,a)sU(P,f1,a)+ll(?,f2,a)<ffl(x)a(dx)+ffz(x)a(dx)+2£.

Now let ¢ — 0, obtaining

b b b
ff(x)oz(dx)sf fl(x)oz(dx)+f fo(x) a(dx).



On the other side we also have ,
f fjd(x—L(P,fj,a) <eg j=1,2.
and of course

fhf(x) a(@dx)=L(P,f,a)>L(P, f1,a)+L(P, fr,a).

Putting together the last two inequalities gives

b b b
ff(x)a(dx)>ffl(x)a(dx)+ffl(x)a(dx)—Ze

Now lete —» 0 , , ,
[rwaw: [iwaws [ poaw.
Concluding
ff(x)a(dx):fabﬁ(x)a(dx>+fﬂbfz<x>a<dx>.

O

Theorem 1.5. Let f be bounded function in R(a) on [a,b], ie. m < f < M. Let g be a function continuous in
[m, M]. Therefore the composit function G = g o f belongs to R («) on [a, b].

Proof. We have to show that Ye* > 0 there exists a partition # of [a, b] such that U (P, G,a) —L(P,G,a) < €*.
As a first observation, note that the continuity of g on the compact set [, M] implies its uniform continuity,
which means

Ve>0,B<e:|t—s|<o=|g(t)-g() <e

Notice that, we have added the condition 6 < ¢, which is fully compatible with uniform integrability and
will be useful at the end of the proof. Being f integrable, we can find a partition = {xj, ..., x4} of [4, b] such
that U (P, f,a) — L(P, f,a) < 6*. Define, for j = 1,...,n, the following quantities

M; = sup{f(x) | x € [xj, 5]},
m; = inf{f(x)|xe[xj—1'xf]}’
M: = supg(F ()| xe [x,3]),
mt = inf{g(f (x))|x€[x]'—1/xj]}-

Divide the integers {1, ..., n} into two classes A and B defined in this way
jEAS Mj—mj<dand j€ B o M;—m; 2 0.
For the uniform continuity of ¢ we have that
. * *
jeA= M —m; <e.
Now let K be defined as K = sup ., v | g(f (x))|. It is clear that

Mf= sup g(f(@)< sup [g(fW)|< sup[g(f ()| =K

XE[X/'_1,X/'] X€|Xj-1,X] x€la,b]



and that
mi= it $U @)= ik g(f@) = inf ~|g(f@)]= - sup |3 (f )] = K

xe Xj-1,Xj

where the second in equality follows from g > — | g). Thus
MF —m? <K-m7 <K+K=2K

By definition of the class B we have that

Z(Mj—m]‘) A]'CY >0 ZA]'CK. (1.4)

j€B j€B
Nevertheless U (P, f, ) — L(P, f,a) < &* is equivalent to

Z (M]' - m]') A]a < &% (1.5)

jeB

Putting together inequalities (0.0.4) and (0.0.5) gives

1o} ZA]'O( < Z(M] —m]‘) A]‘(X < 52,

jeB jeB
which, in turn, implies ). ;5 Aja < 6. Using the definition of the class A we get
Z(M]* —m]*) Aja < ¢ ZA]a <e¢ ZAJ-a =¢la®)-a@)].
jeA jEA j=1

Finally, we compute the difference between the upper and lower sums of G = g o f on P, obtaining

i (M —m*) Aja = Z (M —m?) Aja+ Z (M —m*) Aja

U(PI G/ 0() -L (P/ G/ 0[)

j=1 jeA jeB
< ¢ela)—a@]+2Kd
< ¢ela)—a@]+2Ke=¢la()—a)+2K].

Since ¢ is arbitrary the statement follows. m]

Theorem 1.6. Let f and f, be bounded functions such that f; € R(a) on [a,b], j = 1,2. Then fi - f € R(a) on
[a,b], |fi] € R(a) and

b
< [ hw]a@.

b
fﬁmmm

Proof. Since x — x? is a continuous function, from Theorem 0.0.5 we obtain that f].2 € R(a) on [a,b] for
j =1,2. Using the algebraic identity

fifr= (fi+f) ; (fi - fz)zl

we get that f1 f € R(a) on [a,b]. Similarly, being x — |x| continuous we obtain from Theorem 0.0.5 that
' f | € R(a) on [a,b]. Furthermore, given that

~lf@<f@<|fe

7



by integration on both sides we get

b b b
—fVumwmsffwaWKJWﬂMawy

which is equivalent to

b b
[(r@a@|< [ Ire|aw.

O

Observation 1. Note that if the absolute value of a function belongs to R (&) on [a, b] we cannot say that f belongs
to R («) on [a, b]. Consider the function defined as

a 1 xeQ
fm_{—lxeMQ'

Therefore | f | = 1is integrable while f it is clearly not integrable.

The following theorem provides the correspondence between Riemann and Riemann-Stieltjes integrals:

Theorem 1.7. Assume that « is monotonic and that o’ is Riemann integrable on [a,b]. Let f be a bounded real
function on [a,b]. Then f € R(a) on [a,b] if and only if g (x) = f (x) o’ (x) is Riemann integrable on [a, b]. In that
case:

b b
[ rwaw= [ ro e
which is written unformally as:
a(dx) = o (x) dx.

Theorem 1.8. Suppose that @ is a strictly increasing function from [A, B] into [a, b] with ¢ (A) = a and ¢ (B) = b.
Suppose that a is monotonically increasing on [a, b] and f € R(a) on (a, b). Define the new function

W =fle):[ABl >R,
and the new measure
B(y) =ale(y)).
Then g € R(B) on [A, B] and

B b
ngmm=fmeM- (1.6)
In particular if a (x) = x then B = @ and applying Theorem 0.0.7 to the left side of equation (0.0.6) gives

b P (b)
ffmﬂ:fmf@@MMww (1.7)
a o a
Remark 1. Let f be in R () on [a,b]. We know that for all ¢ > 0 there exists a partition £ = {xo, ..., x,,} such
that
UP,f,a)—L(P,f,a)<e. (1.8)

By simply adding new points to the partition  we can assume that the partition # is the uniformly spaced
partition

_ . a .
xj—a+]7, j=0,..,n.



Having added more points and given the monotone behaviour of the upper and lower sums with respect
to a refinement of the partition, the relationship (0.0.8) still holds. Now note that

L@P,fa)< ) f(x) A < U@, fa),
=1
where, as usual, Aja = a (x]-) - (x]-,l). It should be also obvious that

b
L(P,f ) Sf f)ad)<UP,fa).

Therefore

b n
f f () a(dx)—Zf(x,-) Aja <U(P,f,a)-L(P, f,a) <e,

=1

an, simultaneously,

b n
f £ (%) a(dx) - Zf(xj) Aja > L(P, f,a) - U(P, f,a) > —e.
a =1
In summary

b n
f F@ a@) - f(x) Aa

=

<eg,

which means
n

b
L%Zf(x,-) Aja = f F @) a(d).

j=1
It is straightforward to verify that the same result holds if in the sum X7, f (x ]-) Aja we replace each of the
f(x]-) with a new f(tj), but with t; € [xj, x]-_l]

In practical applications, integrals are computed using the fundamental theorem of calculus, stated below.
Here, we propose a list of solved exercises that exploit the results in Remark 1 to obtain explicit expression
for some simple integrals.

b .
Exercize 1. Compute fa Kdx, where K is a real constant.

Solution. The constant function is integrable, so using Remark 1 we can write

b n n n
fakdngg (x = xj1) K= lim K Y (x; = xj4) = lim K bT”:ggKnbn”:K(b—a).

j=1 =1 j=1

b
Exercize 2. Compute fa xdx.



Solution. The function x — x is integrable, so using Remark 1 we can write

n n

’ b—a b—a b—a b—a b—a &
fxdx lim (x]-+1—x]-)(a+—])—hm ” Z(&l T]):]jm - {an+TZ]’J

j=1 =1

2 2
~ lim 221 (an+b_a (n+1)n)= lim[a (b—a)+(b;a) n+1]=a(b—a)+(b_2a)

n—oo n n 2 n—o00

1 1 1
_ 2,44y Lo Ly 9
= ab-a +2b +2a ab—z(b a).

Note that using the identity

S, n(n+1) 2n+1)
)= 6 ’
j=1

and proceeding in the exact same way it is possible to show that

bZd_le 3
[ =3 ()

Theorem 1.9. (First fundamental theorem of calculus). Let f be Riemann-integrable in [a, b] and F be defined as:

Fm=£fwﬁ

then F (x) is uniformly continuous (and thus continuous) on [a, b]. Moreover if f is continuous in xq € [a, b] then F
is differentiable and

F' (x0) = f (x0) -

Proof. Boundedness of f implies ( f (t)| < M for all t € [a,b] for some constant M > 0. Take two points x and
y such thata < x < y < b to have

Yy Y y
IF(y) - F(x)| = U F(b) dt| < f |f ()] dt <M f 1dt=M (y—x).
Now for all € > 0 it is enpugh to take x and y such that |y - x| < 3 to have uniform continuity of F . Suppose
that f is continuous in xg. Therefore Ve > 0 there exists 6 > 0 such that | f)-f (xo)l < e whenever |t — xg| < 6
or, equivalently, for all t € (xyg — 6, x9 + 6). For h positive, but sufficiently small, we get xo + 1 € (xo — 5, x9 + )
and, accordingly, that

ﬁ”V@ ﬂmwt
- h

F(xo +h) - F (xo) L ar ot f (0ar

2 = f(x0)| =

LT O - f o) d

X0 2

Taking the limit # — 0" we obtain F’ (xar ) = f(xp) and, with a specular argument, F’ (x6 ) = f(x). In
summary F’ (xg) = f (xo). O

Theorem 1.10. (Second fundamental theorem of calculus). Let f be a function in R (a) on [a, b]. If there exists a
differentiable function F on [a, b] such that f = F’ then

b
f f()dt=F@®)-F).

The function F is called a primitive of f.



Proof. Let P = {xo,x1,...,x,} be a partition of [4,b]. The mean value theorem and the first fundamental
theorem of calculus applied to F assert that, for all j = 1, .., n, there exists a point ¢; € [x -1, X j] such that:

F(x]-) - F(x]-_1) =F (tj) Ajx = f(t]-) Ajx.

Summing across all the indexes gives

]Z:f (t) Ax = Y [F(x) - F(x)] = FO) - F@.

Note that the left-hand side depends on # while the right-hand does not. Taking the limit for # — co and
using Remark 1 we find that

n b
F(b)—F(a)z&i_rEOZf(tj) A]-xsz(x) dx.
= a
O

In what follows we shall use the notation f f (x) dx to indicate all the primitives of the function f. Sometimes
the integral f f (x) dx is called the indefinite integral of the function f. Accordingly, computing the indefinite
integral of f amounts to find all of its primitives.

We now proceed to illustrate implications of the two fundamental theorems of calculus with a collection of
solved exercises.

Exercize 3. Find a function such that f is integrable, but Ag such that f = ¢'.

Solution. If an integrable function is changed in one point, or in a finite number of points, the function
remains integrable and, moreover, the integral does not change value. Now take a function f continuous in
a closed interval [4, b] and modify it as follows:

= | L#f(x) x=xp
f(x)_{ F)  x#x.

The function fis integrable but has a simple discontinuity and for Theorem ?? a function that is the derivative
of another function cannot have simple discontinuities. Therefore Ag such that f = ¢’.

Exercize 4. Compute the derivative of F (x) = fa " (sin (¥))° dt.

Solution. Note that F (x) = h (g (x)), where h (g) = fﬂ ¢ sin3 (t) dt and g (x) = x*. Therefore:
F (x) =K (g(x)) ¢ (x) = sin® <x3) 3x2.

Exercize 5. Compute the derivative of

b
1
F(x) = —dt
) j,:1+t2+sin(t)

10



Solution. Write F (x) = — fbx dt/ (1 + ? + sin (t)). Then

1

F =
() 1+ x2 + sin (x)

Exercize 6. Find all the primitives of the function f (x) = 1/x.

Solution. Since, for x > 0, we have (log(x))’ = 1/x and, for all x # 0, we have [x|" = |x| /x, we get that
F (x) = log (Jx]) + c is a primitive for all c € R.

Exercize 7. Find all the primitives of the function f (x) = Ve3*.

Solution. Observing that (¢*)’ = ¢* it is immediate to verify that F (x) = 3 e2* +cisa primitive for all c € R.

Exercize 8. Compute fog x sin (x) dx.

Solution. We introduce the so-called integration by part method. Let a < b be two real numbers. If f and g
are two integrable functions such that f” and g’ exist and are integrable on [4, D], from the derivative of the

product

(f8) =fg+fg
we derive

fg=(f8) -f¢
whence

b b
f £ () dr= F &) g0)— f@) g(@) f F0) ¢ () d. 19)

To solve the exercise, we use the integration-by-part formula (0.0.9) with f” (x) = sin (x) and g (x) = x. Hence
g’ (x) =1and f (x) = — cos (x), whence

hud

j(;z x sin (x) dx = (—=x cos (x))lg — (—=x cos (x))ly — [)2 (—cos (x)) dx = sin(g) =1,

where we used the notation f (x)LC0 to indicate that the function f must be computed in xy. Sometimes we
use the short-hand notation (quite common) [ f (x)]ill) =f (x)|x1 - f (x)|x[) = f(x1) — f (x0).

Exercize 9. Compute f_ 11 x arcsin (x) dx.

Solution. It is convenient to use the change-of-variable formula (0.0.7). Call x = sin(9), from which
dx = cos (9) d9 and so

1 3
f X arcsinx dx = f J sin (9) cos () dI.

1 3

Using the trigonometric identity cos (9) sin (9) = % sin (2 9) we get
fz 9 sin (9) cos (9) 49 = % f 9 sin(2.9) ds.

s s
2 2

11



Using formula (0.0.9) with g (9) = % Y and f’ (9) =sin(29), thatis f(9) = —% cos (2 9), we get

1 1 i1 1 3 1 3
5 f dsin(29)ds = [_Z 9 cos (2 S)] ~1 (=) cos(29) dd = [_Z 9 cos(ZS)] + [§ sin(ZS)]
-3 -3 -3 -3 -3
_ (_E) _z
4 4) 2
Exercize 10. Compute fol/ﬁ \/%dx.

Solution. Substitute x = sin () = dx = cos (9) d9, obtaining

v A2 fz sin? (9) fz .5
dx = cos(9) dd = sin” (9) d9.
fo V-2 o ¢€os(9) (9) 0 (9)

Use sin® (9) = 1_%5(28) to have

¥ 2 C(f1-cos@9) 17, 1 . P 1m 1] _n-2
[ om [0 Lo Lanea] - [2-1]- 552

N i 2l
Exercize 11. Compute all the primitives of the function f (x) = - (’;11)2.

Solution. We look for constants A, B and C such that

x—1 A B C

—_—=—+ + —.
x(x+1)? x x+1  (x+1)

Straightforward computations show that A = -1, B =1 and C = 2. Whence

F(x) = —loglx| +log|l — x| - m +c,
is a primitive for all c € R.
Exercize 12. Compute all the primitives of the function f (x) = 73251—.
Solution. Put ¢ (x) = 2x? — 2x + 3 and note that
2x-1 1 g (x)

2x2-2x+3 2 ¢(x)’

whence F (x) =  log |2 x?—2x+ 3| + c is a primitive for all c € R.

-1
x2-3 x+2°

Exercize 13. Compute all the primitives of the function f (x) =

Solution. The function f is a fraction in which the degree of the numerator is greater than the degree of the
denominator. We can thus proceed using the Ruffini’s decomposition algorithm:

X -1 X2 —-3x+2

(+x)-(x2—3x+2):x3—3x2+2x L =x

WB-1-x343x2-2x=3x2-2x-1

12



and we continue till division is not more allowed, obtaining

-1 x> —-3x+2
x®—3x%+2x x+3x—’§2:x+35Q(x)
3x2-2x-1

3-(x2—3x+2)=3x2—9x+6

3x2-2x-1-(322-9x+6)=7x-7=R(x)
In summary

¥ -1 7x-7 x—1 1
xX2-3x+2 (x+3)+x2—3x+2 (e+3)+ x=1) (x-2) (c+3)+ x-2’

whence

F(x):%x2+3x+7log|x—2|+c,

is a primitive for all ¢ € R.

Exercize 14. Compute the indefinite integral f V2x — x2dx.
Solution. Note that V2x—x2 = /1 —(x— 1)2. Change variable © = x — 1, obtaining V2x —x2dx =
V1 — u? du. Now change again with u = sin (9), which gives du = cos (9) 49 and so

V2x —x2dx = V1 — udu = cos? (9) d9.

Remember that cos? (9) = H%S(ZS)‘ Therefore

f\/Zx—xzdx f«/1—u2du:fcos2(9)d9:f“%s(zs)ds:§+31sin(zs)+c

S 1 . :
= 5 t5sin®) cosd)+c= %n(u) + 5 sin (aresin (1)) cos (arcsinu) + ¢
i 1
%n(u) + 5 u cos (arcsin (1)) +c,

where cis any real constant. Now note that cos (arcsin (1)) = V1 = sin? (arcsin (1)) = V1 —u2 = J1-(x—1)>2

Therefore .
f V2x—x2dx:%(x_l)+% (x—-1) \J1-(x-1)*+c.
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