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“What! you have solved it already? ”
“Well, that would be too much to say. I have discovered a
suggestive fact, that is all.”

Dr. Watson and Sherlock Holmes
The Sign of Four
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History

The likelihood principle was first introduced by R.A. Fisher in
1922. The law of likelihood was identified by Ian Hacking.
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History

“Modern statisticians are familiar with the notion that any finite
body of data contains only a limited amount of information on any
point under examination; that this limit is set by the nature of the
data themselves the statistician’s task, in fact, is limited to the
extraction of the whole of the available information on any
particular issue. ” R. A. Fisher
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The Likelihood

Definition The likelihood function is a function of the parameter
with an observed sample, and is given by
L(θ|x) = f (x |θ).
Same expression, but now x is fixed and θ is variable.
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Discrete Distributions

If (X1, . . . ,Xn) are discrete iid random variable with probability
function p(x |θ), then, the likelihood function is given by

L(θ|x) = P(X1 = x1, . . . ,Xn = xn|θ)

=
n∏

i=1

P(Xi = xi |θ)

=
n∏

i=1

p(xi |θ)
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Likelihood

For a given value of the parameter, the likelihood tells us how
likely it is to see what we see, not viceversa.

The notation f (x |θ) is only for convenience. It is not a
conditional density. If X1, . . . ,Xn is an IID sample, then:

L(θ|x) = f (x|θ) =
n∏

i=1

f (xi |θ)
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Continuous Distributions

If (X1, . . . ,Xn) are continuous iid random variable with probability
density function f (x |θ), then, the likelihood function is given by

L(θ|x) =
n∏

i=1

f (xi |θ)
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The Likelihood Principle

The Likelihood Principle: If x and y are two sample points such
that L(θ|x) is proportional to L(θ|y), that is, there exists a
constant C (x , y) such that

L(θ|x) = C (x , y)L(θ|y) ∀θ,

then the conclusions drawn from x and y should be identical.
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Intuition

Suppose I tell you I have 100 cookies in my backpack. The cookies
are of two types: chocolate chip cookies and fortune cookies.
Moreover, I tell you that the number of fortune cookies is either 10
or 90. You draw a cookie out of my backpack at random and see
that it is a fortune cookie.

Mezzetti Point Estimation
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Intuition

Based on this data, what is more likely: there are

1 10 fortune cookies and 90 chocolate chip cookies, or

2 90 fortune cookies and 10 chocolate chip cookies?

Based solely on one sample (fortune cookie), 2 is more likely.
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Intuition

This is exactly the idea behind maximum likelihood estimation.

The method asks: what value of the a parameter is most
consistent with the data?

In other words, what value of a parameter makes the data most
likely?
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Estimator

Definition (Casella Berger): A point estimator is any function
T (X1, . . . ,Xn) of a sample. Any statistic is a point
estimator.

Note: The definition makes no mention of any
correspondence between the estimator
and the parameter it is to estimate.

Definition: A point estimator or estimator of parameter θ is a
statistic whose purpose is to estimate the value of
the parameter θ

An estimator is a function of the sample, while an
estimate is the realized value of an estimator (that is,
a number).
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Estimation Property

What should we require to a good estimator? We will be
considering various qualities that a “good” estimator should
possess, but firstly, it should be KEPT IN MIND that, by virtue of
it being a function of the sample values, an estimator is itself a
random variable. So its behavior for different random samples will
be described by a probability distribution.
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Estimation Property

It seems reasonable to require that the distribution of the estimator
be somehow centered with respect to the parameter θ (accuracy).
If it is not, the estimator will tend either to under-estimate or
over-estimate θ. A further property that a good estimator should
possess is precision, that is, the dispersion of the distribution
should be small.
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Unbiased Estimator

Definition The bias of a point estimator T , of a parameter θ, is
the difference between the expected value of T and
θ. Bθ(T ) = E (T )− θ. An estimator whose bias is
identically equal to zero (in θ) is called unbiased
estimator of θ and satisfies: Eθ(T ) = θ.

Example If X1, . . . ,Xn are i.i.d. Bernoulli with parameter p,
the (silly) estimator T = 1/2 is biased, since
Ep[T ] = 1/2 ̸= p. The sample mean
T = (X1 + . . .+ Xn) /n is unbiased, since Ep[T ] = p.
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Possible undesirability of unbiasedness

It is easy to see graphically and intuitively that unbiasedness
may not be desirable if it comes at the cost of a higher
estimation error.

Biased but more precise estimators may be preferable to
unbiased estimators

Moreover, within the class of unbiased estimators we need to
define other criteria to choose which estimator we prefer

We now turn to the property of Mean Squared Error, which
allows us to rank the desirability of a set of unbiased
estimators.

Mezzetti Point Estimation



Outline
The Likelihood Principle

Method of Evaluating Estimators
Method of Finding Estimators

Definition of Efficiency

Let θ̂1 and θ̂2 be two unbiased estimators of θ. If

Var(θ̂1) < Var(θ̂2)

then θ̂1 is more efficient than θ̂2.

The relative efficiency or relative precision of θ̂1 with respect
to θ2

Var(θ̂1)

Var(θ̂2)

Within the set of unbiased estimators we clearly prefer the
most efficient ones
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Mean Squared Error

The most well-known criteria to evaluate an estimator is
based on the mean squared error (MSE) which is a measure
of the performance of an estimator T = t(X) defined as the
expected value of the (squared) estimation error, i.e.

MSEθ(T ) = Eθ

[
(T − θ)2

]
According to this criterion, the estimator T ⋆ of θ is better
than another estimator T if the MSE of T ⋆ is uniformly
smaller than that of T , i.e.

MSEθ(T
⋆) ≤ MSEθ(T ), ∀θ

with at least one value of θ such that:

MSEθ(T
⋆) < MSEθ(T ).
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Mean Squared Error

The MSE is easier to treat analytically with respect to other
measures of goodness of an estimator as, since it may be
expressed as

MSEθ(T ) = Varθ(T ) + (Bθ(T ))2 ,

where Bθ(T ) = E (T )− θ is the Bias of the estimator.

MSE incorporates two components, one measuring the
variability of the estimator (precision), and the other
measuring its bias (accuracy). An estimator that has good
MSE properties has small combined variance and bias

Mezzetti Point Estimation
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Example

If X1, . . . ,X3 are i.i.d. as X , with expected value E (X ) = µ and
Var(X ) = σ2, consider the following estimators of µ

T1 = X1 + X2 − X3

T2 = X1+X2+X3
4

T3 = 0

Which estimator would you prefer?

E (T1) = E (X1 + X2 − X3) = µ Var(T1) = Var(X1 + X2 − X3) = 3σ2

E (T2) =
E(X1+X2+X3)

4 = 3µ
4 Var(T2) =

Var(X1+X2+X3)
16 = 3

16σ
2

E (T3) = 0 Var(T3) = 0
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Example

T1 is the only unbiased estimator, T3 is biased but it is the one
with the lowest variance, let’s compare the MSE.

MSEµ(T1) = 3× σ2

MSEµ(T2) =
3
16σ

2 + µ2

16
MSEµ(T3) = µ2
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Best Unbiased Estimator

Comparing two estimators on the basis of the MSE is not
always possible since it may happen that, between T1 and T2,
the first estimator is better for certain values of θ, while the
second is better for other values of θ.

In general, it is not possible to find an estimator with
uniformly minimum MSE and so the best estimator for a given
inferential problem usually does not exist.

The reason why there is not one best estimator of θ according
to the MSE criterion is that the class of all the possible
estimators is too large. To make the problem of finding the
best estimator tractable, we can restrict the class of possible
estimators, the class of unbiased estimators.

Mezzetti Point Estimation
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UMVUE Estimator

Definition: within the class of the unbiased estimators of θ, the
estimator with minimum MSE corresponds to the
uniform minimum variance unbiased estimator
(UMVUE), i.e. the estimator T ⋆ such that:

Varθ(T
⋆) ≤ Varθ(T ), ,∀θ ∈ Θ

for any other unbiased estimator T of θ.
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Consistency

Some criteria of evaluating an estimator take into account the
so-called asymptotic properties, i.e. the behavior of the
estimator when the sample size becomes infinite. In contrast,
the criteria previously illustrated (unbiasdness, efficiency) are
referred to as finite-sample criteria.

To introduce the main asymptotic criteria, we have to
consider a sequence of estimators:

Tn = T (X1, . . . ,Xn)

with n growing indefinitely.
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Consistency

Weak consistency: A sequence of estimators {Tn} is a
consistent sequence of estimators of θ if, for every ε > 0 and
every θ ∈ Θ:

limn→∞Pθ (|Tn − θ| < ε) = 1

In practice, this means that when the sample size becomes
infinite, and so the information increases indefinitely, the
estimator will be arbitrarily close to the parameter with high
probability.

Strong consistency: A sequence of estimators {Tn} is a
consistent sequence of estimators of θ if, for every θ ∈ Θ:

limn→∞MSEθ(Tn) = 0

Mezzetti Point Estimation
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Example

Let (X1, . . . ,Xn) be a random sample of i.i.d. random variables
distributed as N(µ, σ2). Consider the following estimator of µ:

Tn =
1

2
(X1 + X̄n)

where X1 is the first observed random variable and X̄n is the
sample mean based on n observations.

1 Find MSE of the estimator Tn and compare with MSE of X̄n

2 Is Tn a consistent estimator of µ?
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Why are properties of estimators interesting?

We choose between estimators comparing their properties.
It is useful to distinguish between:

Finite sample properties that hold for a given sample size n.

Unbiasedness
Efficiency
(Sufficiency)

Asymptotic properties that hold when sample size goes to ∞:

Consistency
Asymptotic unbiasedness
Asymptotic efficiency
Asymptotic normality

Other properties (e.g. Invariance)

Mezzetti Point Estimation
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Why are asymptotic properties important

We obviously always work with finite samples, but:

we would feel unconfortable in using an estimator that had
undesirable properties in the hypothetical case in which the
sample size could go to ∞ (we reach the whole population).

A finite sample may be sufficiently large for asymptotic results
to hold with a very good approximation, even if its actual size
is effectively not so large.

Small sample properties are often difficult to characterize and
less attractive than asymptotic properties.

Asymptotic hypothesis testing is easy to define and perform,
while it may be more problematic in a small sample.

Mezzetti Point Estimation
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Method of Finding Estimators

In some cases it is an easy task to decide how to estimate a
parameter, and often intuition alone can lead us to a very good
estimators. For example, estimating a parameter with its sample
analogue is usually reasonable. In more complicated models, it is
needed a more methodological way of estimating parameters. The
most popular method of finding estimators:

Method of Moments

Least Squares Estimation

Maximum Likelihood Estimation
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Method of Moments

This is one of the oldest and simplest methods of finding
estimators. It dates back to K. Pearson in the late 1800s.

Suppose that the random sample, X = (X1, . . . ,Xn), is drawn
from a statistical model in which the parameter θ has
dimension k ,

θ = (θ1, . . . , θk)

The method of moments consists in equating the first k
population moments to the corresponding sample moments
and solving the resulting system of equations with respect to
θ.
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Method of Moments

The population and the sample moments of order r are
defined, respectively, as:

µr (θ) = Eθ(X
r ) =

∫ ∞

∞
x r f (x ; θ)dx

Mr =
1

n

∑
i

X r
i

The system of equations to be solved with respect to θ is then:

µi (θ) = Mi

Mezzetti Point Estimation



Outline
The Likelihood Principle

Method of Evaluating Estimators
Method of Finding Estimators

Method of Moments
Least Squares Estimation
Maximum Likelihood

Method of Moments

Step 1 : Identify how many parameters the distribution has.
(Let’s say m).

Step 2 : Find the first m population moments.

Step 3 : Equalize each of the population moments to the
corresponding sample moment.

Step 4 : Solve the system to find solutions to the
parameters.

Step 5 : The solutions are the MoM estimators.
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Example of Method of Moments

Example: for uniform distribution U(a, b), two unknown
parameters. Equate the first 2 population moments to the
corresponding sample moments

E (X ) =
a+ b

2
Var(X ) =

(b − a)2

12

Solve for a and b (can be a bit messy)

x̄ =
a+ b

2
s2 =

(b − a)2

12
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Least Square Estimation

The method of least squares is about estimating parameters by
minimizing the squared discrepancies between observed data, on
the one hand, and their expected values on the other.
Application: linear regression (see other slide)
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The Likelihood Function

Recall the definition of likelihood function:
Suppose that (X1,X2, . . . ,Xn) are random variables with joint
density or frequency function f (x |θ) where θ ∈ Θ. Given outcomes
X = x ,

L(θ|x) = f (x |θ)

for each possible sample x = (x1, . . . , xn), the likelihood function
L(θ|x) is a real-valued function defined on the parameter space Θ.
Since we are under the hypothesis of independent variables the
likelihood function is

L(θ|X ) = L(θ|X1, . . . ,Xn) =
n∏

i=1

f (xi |θ)

Mezzetti Point Estimation
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Maximum Likelihood Estimation (MLE)

By far the most popular estimation method

MLE is the parameter point for which observed data is most
likely under the assumed probability model

In practice, L(θ|x) is the probability (or density) of the
observed data as a function of θ. So, it provides the evidence
of the data in favor of any single value of θ in Θ: if for two
values of θ, say θ(1) and θ(2), we have that L(θ(1)) > L(θ(2)),
the probability of the observed sample is larger under θ(1) and
so more evidence exists in favor of this value of θ.
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Maximum Likelihood Estimation (MLE)

Definition The maximum likelihood estimator (MLE) θ̂ of θ is
the location at which L(θ|x) attains its maximum as
a function of θ. Its numerical value is often called the
maximum likelihood estimate.
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Maximum Likelihood Estimation

For an observed sample x, it is natural to estimate θ as the
value of the parameter that maximizes L(θ). This leads to the
maximum likelihood estimate (MLE) of θ that, formally, may
be defined as the value:

θ̂ = θ̂(x) such that L(θ̂) = supθ∈ΘL(θ)

Consequently, the maximum likelihood estimator (MLE) is
θ̂(X )

In practice, the mle is the parameter value for which the
observed sample is most likely.
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How to find Maximum Likelihood Estimation (MLE)

There are essentially two distinct methods for finding MLEs:

Direct maximization: Examine L(θ|x) directly to determine
which value of θ maximizes L(θ|x) for a given sample
x1, . . . , xn. This method is particularly useful when the range
(or support) of the data depends on the parameter.

Likelihood equations: If the range of the data does not
depend on the data, the parameter space Θ is an open set,
and the likelihood function is differentiable with respect to
θ = (θ1, , θp) over Θ, then the maximum likelihood estimate θ̂
satisfies the equations

∂

∂θk
L(θ̂|x) = 0 for k = 1, . . . , p

These equations are called the likelihood equations.
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How to find MLE

Most of the times, to find MLE require to solve an
optimization problem making use of differential calculus. It is
usually simpler to maximize the log-likelihood, since the
logarithm is a monotonic increasing transformation, the two
problems are equivalent.

In the uniparametric case, to maximize likelihood we have first
to solve the likelihood equation:

d

dθ
l(θ) =

∑
i

f ′(xi ; θ)

f (xi ; θ)
= 0
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How to find MLE

Equating to zero the likelihood equation, we find one or more
candidates for the mle since the first derivative being zero is
only a necessary condition for a maximum.

A way to verify if a root of the equation above is indeed a local
maximum, we can check if the second derivative is negative.

Although, even if we have found only one local maximum, to
be sure that it is also a global maximum we have to check the
value of l(θ) at the boundary of the parameter space.
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Example Maximum Likelihood Estimation

Suppose that X ∼ N(µ, 1), with µ unknown. The likelihood
function for the parameter θ = µ is:

L(µ) =
∏
i

1√
2π

exp

(
−1

2
(xi − µ)2

)
=

=

(
1√
2π

)n

exp

(
−1

2

∑
i

(xi − µ)2

)

Let, for example, the observed sample be:

x = (2, 2.5, 1.5, 3, 1)
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Example Maximum Likelihood Estimation: continue

As it is evidenced by the figure likelihood reaches its maximum
when µ is equal to 2, that is the sample mean.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

Likelihood for
the Normal model with known variance

µ

L(
µ)
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Example Maximum Likelihood Estimation: continue

dlogL(µ)

dµ
=
∑
i

(xi − µ)

dlogL(µ)

dµ
= 0 when µ = x̄

d2logL(µ)

d2µ
= −n

Mezzetti Point Estimation
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Example Maximum Likelihood Estimation: Bernoulli

For a Bernoulli distribution, the probability distribution is:

p(x |θ) = θx(1− θ)1−x

Given a sample of N observations, the joint distribution of

p(x1, . . . , xN |θ) =
n∏

i=1

θxi (1− θ)1−xi

Suppose we have observed the sample
x = (0, 0, 0, 1, 0, 0, 1, 1).
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Example Maximum Likelihood Estimation: Bernoulli

The likelihood for the Bernoulli distribution

L(θ|x1, . . . , xN) =
n∏

i=1

θxi (1− θ)1−xi

L(θ|x1, . . . , xN) = θ
∑n

i=1 xi (1− θ)1−
∑n

i=1 xi

Given the observed sample, the likelihood can be written as:

L(θ|x1, . . . , xN) = θ3(1− θ)5

Sometimes is easier to deal with logarithm of likelihood

log L(θ|x1, . . . , xN) = 3× log (θ) + 5× log (1− θ)
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Example Maximum Likelihood Estimation: Bernoulli
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Example Maximum Likelihood Estimation: Bernoulli

Maximise the function for θ differentiating it with respect to θ:

log L(θ|x1, . . . , xN |θ) = 3× log (θ) + 5× log (1− θ)

∂log L(θ|x1, . . . , xN |θ)
∂θ

=
3

θ
− 5

1− θ

0 =
3

θ
− 5

1− θ

θ̂ = 3/8 = 0.375
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How to find MLE: multiparametric case

When we have a vector of parameters we have to maximize a
function of several variables and so the problem is more
complex.

In simple cases, the maximization at issue may be performed
by solving the system of linear equations:

∂

∂θk
l(θ) = 0

Then, it is necessary to check that the matrix of the second
derivatives is negative definite.

In this case, verifying that we have really found a global
maximum may be a difficult task.
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How to find MLE: multiparametric case

To use two variate case, to verify log L(θ1, θ2) has a local
maximum, it must ne shown the following three conditions hold:

1 The first-order partial derivatives are 0,

∂

∂θ1
logL(θ1, θ2)

∣∣∣θ1=θ̂1,θ2=θ̂2
= 0

∂

∂θ2
logL(θ1, θ2)

∣∣∣θ1=θ̂1,θ2=θ̂2
= 0

2 At least one second-order partial derivative is negative,

∂2

∂2θ1
logL(θ1, θ2)

∣∣∣θ1=θ̂1,θ2=θ̂2
< 0

∂2

∂2θ2
logL(θ1, θ2)

∣∣∣θ1=θ̂1,θ2=θ̂2
< 0
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How to find MLE: multiparametric case

3 The Determinant of Hessian matrix of the second-order partial
derivative is positive,∣∣∣∣∣ ∂2

∂2θ1
logL(θ1, θ2)

∂2

∂θ1∂θ2
logL(θ1, θ2)

∂2

∂θ1∂θ2
logL(θ1, θ2)

∂2

∂2θ2
logL(θ1, θ2)

∣∣∣∣∣
θ1=θ̂1,θ2=θ̂2

> 0
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Properties of Maximum Likelihood

Maximum likelihood estimators have many interesting
properties (see Casella Berger)

MLE of θ depends on the sample only through the sufficient
statistic for this parameter (recall Factorization Theorem).

Invariance property (see next slide): is that if θ̂ is the MLE of
θ, then, for any function τ(θ), the MLE of λ = τ(θ), is
λ̂ = τ(θ̂)
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Induced Likelihood

If η = τ(θ) is a parametric function, then the
likelihood for θ is defined by

L⋆(η|x) = sup
θ:τ(θ)=η

L(θ|x)

Theorem (Invariance Principle) If (θ̂) is the MLE of θ, then for
any function τ(θ), the MLE of τ(θ) is τ(θ̂).
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Properties of Maximum Likelihood Estimator

Maximum likelihood estimation is:

Asymptotically unbiased
Consistent
Asymptotically normally distributed

When the sample is large enough, we can approximate the
variance covariance matrix V with inverse of information
matrix (the expected value of the matrix of the second
derivatives of l(θ) with negative sign):

V = [In]
−1

If exists an estimator which is Best Unbiased Estimator (BUE)
this is the maximum likelihood estimator (see Cramer Rao
inequality)

Mezzetti Point Estimation



Outline
The Likelihood Principle

Method of Evaluating Estimators
Method of Finding Estimators

Method of Moments
Least Squares Estimation
Maximum Likelihood

Example of Maximum Likelihood Estimator

In a experiment on DNA sequencing we know that we can obtain
four possible sequences with probabilities p1 = 1− θ, p2 = θ − θ2,
p3 = θ2 − θ3 and p4 = θ3 respectively, where 0 ≤ θ ≤ 1.
Let’s consider n independent realizations of this experiment, where
n1, n2, n3, n4, with

∑4
i=1 ni = n are observed occurrences for each

of the 4 possible sequences.
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Example of Maximum Likelihood Estimator

Find the joint distribution of (n1, n2, n3, n4).

Show that the Maximum Likelihood Estimator of θ is given by

θ̂ =
n2 + 2n3 + 3n4

n1 + 2n2 + 3n3 + 3n4
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Example of Maximum Likelihood Estimator: Solution

L(θ) = (1− θ)n1 × (θ − θ2)n2 (θ2 − θ3)n3θn43

l(θ) = n1 × log(1− θ) + n2 × log(θ − θ2) + n3 × log(θ2 − θ3) + n4 × log(θ3)

l(θ) = n1 × log(1− θ) + n2 × log(θ) + n2 × log(1− θ) + 2n3 × log(θ) +

+n3 × log(1− θ) + 3n4 × log(θ)

l(θ) = (n1 + n2 + n3)× log(1− θ) + (n2 + 2n3 + 3n4)× log(θ)

∂l(θ)

∂θ
= −

(n1 + n2 + n3)

1− θ
+

(n2 + 2n3 + 3n4)

θ

∂l(θ)

∂θ
= 0

θ̂ =
(n2 + 2n3 + 3n4)

(n1 + 2n2 + 3n3 + 3n4)
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