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Point Estimation

" What! you have solved it already?’
" Well, that would be too much to say. | have discovered a
suggestive fact, that is all.”

Dr. Watson and Sherlock Holmes
The Sign of Four
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Fisher Information
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The Information Matrix

Fisher Information

Information about the parameter is obtained from a sample of data
coming from the underlying probability distribution
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The score vector
The Information Matrix

Fisher Information

Information about the parameter is obtained from a sample of data
coming from the underlying probability distribution

How much information can a sample of data provide about the

unknown parameter?

V.
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Fisher Information

The score vector
The Information Matrix

Fisher Information

Information about the parameter is obtained from a sample of data
coming from the underlying probability distribution

How much information can a sample of data provide about the
unknown parameter?

This section introduces such a measure for information

This information measure can be used to find bounds on the
variance of estimators, and it can be used to approximate the
sampling distribution of an estimator obtained from a large sample,
and further be used to obtain an approximate confidence interval
in case of large sample

Mezzetti Fisher Information and Cramer-Rao Bound



Fisher Information
The score vector

The Information Matrix

Intuitive explanation of Fisher Information

logL(0) is the log-likelihood function where 6 is the parameter of
interest

The observed Fisher information is the curvature at the peak of
this function )
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Fisher Information

The score vector
The Information Matrix

Intuitive explanation of Fisher Information

logL(0) is the log-likelihood function where 6 is the parameter of
interest

The observed Fisher information is the curvature at the peak of
this function

Observed Fisher Information: %é()(ﬁ,\//u:-)

intuitively tells us how peaked the likelihood function is or how well

we know the parameter after data has been collected )
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Fisher Information

The score vector
The Information Matrix

Intuitive explanation of Fisher Information

logL(0) is the log-likelihood function where 6 is the parameter of
interest

The observed Fisher information is the curvature at the peak of
this function

Observed Fisher Information: —%(éw_t—)

intuitively tells us how peaked the likelihood function is or how well
we know the parameter after data has been collected

A log-likelihood which is not terribly peaked is somewhat spread
out, and we don't really have much confidence in what 6 is after
having collected data and conversely, a very peaked likelihood
implies we have a great deal of "confidence” of the precise value of
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Fisher Information
The score vector

The Information Matrix

Intuitive explanation of Fisher Information

526

Expected Fisher Information Ey (

_ 52/ogL(9))

applies the same concept except we average out the data, and we
treat 6 as a constant
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Fisher Information
The score vector

The Information Matrix

Intuitive explanation of Fisher Information

Expected Fisher Information Ey (—%)

applies the same concept except we average out the data, and we
treat 6 as a constant )

It tells us on average how curved or peaked the likelihood function
will be after the data has been collected, for a prescribed value of 0}
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Fisher Information
The score vector

The Information Matrix

Intuitive explanation of Fisher Information

526

Expected Fisher Information Ey (—M)

applies the same concept except we average out the data, and we
treat 6 as a constant

It tells us on average how curved or peaked the likelihood function
will be after the data has been collected, for a prescribed value of 0}

In the multi-dimensional setting, we simply take the Hessian as
opposed to the second derivative to measure curvature
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Log likelihood for the population mean in the Gaussian
case - varying the sample size

Log likelihood
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Fisher Information
The score vect

The Information Matrix

Log likelihood for the population mean in the Gaussian
case - varying the sample size

Log likelihood
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Fisher Information
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The Information Matrix

The score vector

The first derivative of the log-likelihood function is called Fisher's
score function, and is denoted by

o(0) 8/og8L§0\x)
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Fisher Information
The score vector

The Information Matrix

The score vector

Note that the score is a vector of first partial derivatives, one for
each element of 6.
dlogL(0]x)
001
u(f) = :

OlogL(0]x)
00y
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The Information Matrix

The score vector

Important results for the score vector:

Let Oy be the MLE for 0

u(Omie) =0

Mezzetti Fisher Information and Cramer-Rao Bound



Fisher Information

The score vector
The Information Matrix

The score vector

Important results for the score vector:

Let Oy be the MLE for 0

u(Omie) =0

Under some regular conditions (see Casella Berger):

E[u(6)] = 0

\

V.
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Fisher Information

The score vector

The Information Matrix

The score vector

Important results for the score vector:

Let Oy be the MLE for 0

u(Omie) =0

Under some regular conditions (see Casella Berger):

E[u(6)] = 0

under some regular conditions (see Casella Berger):

(alogaLécﬂx))z] _ {82lo§g§0|x)]

E[u?(0)] = E
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Fisher Information
The score vector

The Information Matrix

Properties of the score vector

Let X, ..., X, with pdf f(x|0) and likelihood function L(6|x)
derivable with respect to 0 at least two times (and some regular
conditions are satisfied (see Casella Berger):). Then

Elu(0)] = E [ak)ggg(mx)] =0

Moreover,

2
E[(6)] = E <8|og L(0|X)>

4 _ [82 log L(9|X)]

06?
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Fisher Information
The score vector

The Information Matrix

Remarks

If & € R then E[u(#)] is a number
If & € Rk then E[u(6)] is a k-dim vector
If € R then E[u(#)?] = Var(u(f)) is a number

If & € R¥ then E[u(6)?] is a k x k-dim matrix called variance
covariance matrix of the score function:

Olog L(6]X)
o0
E[u(0)?] = E :1 Jlog L(6]X) dlog L(0]X)
Dlog L 0601 90,
Olog L(]1X)
90,
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Fisher Information
The score vector

The Information Matrix

The score function

Measures the sensitivity of the likelihood to changes of the
parameters for given X J
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Fisher Information
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The Information Matrix

The score function

Measures the sensitivity of the likelihood to changes of the
parameters for given X J

Plays an important role in many applications of ML estimation J
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Fisher Information
The score vector

The Information Matrix

The score function

Measures the sensitivity of the likelihood to changes of the
parameters for given X J

Plays an important role in many applications of ML estimation J

The ML estimatex of 6 is the value GAMLE that makes the
realization of the score equal to its expected value at the true 6
(under regularity conditions)
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Fisher Information

The score vector
The Information Matrix

Since f(x|0) is a pdf: [*_f(x|0)dx
Taking the derivative:

8[ f(x|0)dx 01

90 Y,

/°° of (x|0)dx 0
e 00 B

/°° of(x|0) F(xI6) ,  _ /OO Mf(xw)dx =0

90 f(x|9) 90
Dlogf (x|6)\
(20 _ g
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Fisher Information

The score vector
The Information Matrix

%/j; %%ylmf(xw)dx = 0
/j:o %fw@)dx N /:: Blogaféfx|9) 8Iog8f€(x|6') F(x[6)dx = 0
/j:o (%{@)2 f(x|0)dx = — /j:o %f@de)dx
E[u?(0)] = -—E {%}
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Fisher Information
The score vector

The Information Matrix

The score function for the Geometric distribution

Considering for n observations from a Geometric distribution:
px|r) = m(1 —m)*

The score function is

OlogL(m|x dlogL(m|x
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Fisher Information
The score vector

The Information Matrix

The Information Matrix

@ The Fisher Information (sometimes simply called information)
is a way of measuring the amount of information that an
observable random variable X carries about an unknown
parameter 6 if its distribution.

1) = E <689Iog(f(x;9)>2>

2
1n(6) = € ( g 1oe(1(01)) )

@ The observed Information or observed Fisher information
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Fisher Information
The score vector

The Information Matrix

The Information Matrix

@ Fisher Information matrix represents the variance covariance
matrix of the score function

1,(6) = var (u(9))

2 X
In(0) = —E (a /Ogéée’ ))

o that is (see Casella and Berger for conditions):

OlogL(6|x)\ 02logL(0|x)
Var <80 =—E — 0
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The Information Matrix

The Information Matrix

Let us denote the joint pdf of (Xi,...,X,) as
f(x|0) = H f(xi0)

o logl(x|0) =>"7_; log f(xi|0)
o E (Blogg,,e(x|9)> —0

o2 x|0 n  0%log f(x|0
° In(0) = _Eé’( IO%LZQ( | )> —Ep (Zi 1 10529( | )) nl(0)
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Fisher Information
The score vector

The Information Matrix

The Information Matrix

020
2 X n 2 X
o 1y(0) = —Ey (Zo8RCI) — _ g, (op, Zosf0)  ny(p)

o I(0) = —F (M)
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Fisher Information

The score vector
The Information Matrix

Fisher Information

Definition
Given X with pdf f(x|f), the quantity

EL2(9)] = £ !<8Iogaf9(9|x))2] _; [32 |o§g§9\><)}

is called Fisher Information of X and denoted with /().

Definition
Given Xi, ..., X, with pdf f(x|6) and likelihood L(6]X) the
quantity
dlog L(0]x)\? & log L(A]X)
2 _ _
Elu (9)]—E[< 59 E 502
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Fisher Information
The score vector

The Information Matrix

Independent and identically distributed r.v.

Theorem Let Xi,..., X, i.i.d. r.v. with pdf f(x|@). Then
1,(6) = nl(0).
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Fisher Information

The score vector
The Information Matrix

Independent and identically distributed r.v.

Theorem Let Xi,..., X, i.i.d. r.v. with pdf f(x|@). Then

1»(8) = nl(6).

The likelihood is

L(6x) = ] f(xil6)
=1

and
log L(6|x) = Zlogf xi|6)
Now:
0% log L(6]X) ", 52 log f(X;|6)
h(0) = =& (820> =6 |2 20

Mezzetti
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Fisher Information
The score vector

The Information Matrix

The Fisher Information for the Geometric distribution

Considering for n observations from a Geometric distribution:
p(x|m) = m(1 —m)*
The score function is

dlogL(m|x)

n
dm T 1-—m

The second derivative:
d?logl(w|x)  n DoiXi

dm? w2 (1-7)2
Since E(x) = 1_7“ the Fisher information will be:

E( d2/ogL(7r]x)> n n n

dm? T r(l-n) w(l-n)
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Fisher Information
The score vector

The Information Matrix

Information Matrix for Bernoulli distribution

Let us calculate Fisher Information for a Bernoulli(¢) distribution

f(x|9) = 1 -6)> xeco0,1
I(x,0) = xlogh+ (1— x)log(1—6)

N(x,0) _ x 1-—x

00 8 1-46
O%l(x,0) o x  1-x
202~ T2 (1-0)

0 1-6 1
0) = @+ a=om " sa—9
n
hO) = Ga—p
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Fisher Information
The score vector

The Information Matrix

The Fisher Information for the Geometric distribution

Considering for n observations from a Geometric distribution:
p(x|m) = m(1 —m)*
The score function is

dlogL(m|x)

n
dm T 1-—m

The Fisher information:
d?logl(w|x)  n DX

dm? w2 (1-7)2
Since E(x) = 1_7“
£ _dzlogL(ﬁ]x) _n n B n
dm? 2 r(l-7) w(l-m)
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Fisher Information
The score vector

The Information Matrix

Information Matrix for Gaussian distribution

Let us calculate Fisher Information for an N(y, 0?) distribution
where o2 known

1 C(x=w)?
) = 75z ®® ( T207
1 x — p1)?
I(x,pn) = —Elog (2mo?) — (202”)
D) _ (x—p)
o o?
0?I(x, ) 1
o2 o2
1
n
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Fisher Information _
The score vector

The Information Matrix

Information Matrix for Gaussian distribution

n
2

2
° 3%{2/(”70’2|X) B

2
° ﬁ’(“’ o?|x) = — & iy (xi — )

2
o Ll 0?x) = o — L Y01 (x5 — )2
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Fisher Information _
The score vector

The Information Matrix

Information Matrix for Gaussian distribution
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Fisher Information

The score vector
The Information Matrix

Under some regular conditions (see Casella Berger)

VA0 —06) —sg N (o, ,(;O))

(0 —6) —gq N (o, In(160)>
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Fisher Information
The score vector

The Information Matrix

To remember about the likelihood function

@ The MLE does not give the "most probable” value of 6. It
gives the value 6 under which the sample is the most likely:
i.e., the likelihood is maximised.

@ MLE is not magic: all the problems of inference from sample
remain with us.

@ For example: | tossed a coin 10 times and got 9 heads. Using
this data, the MLE gives p = 0.9. MLE does not eliminate
sampling noise, or give us the truth. Its just a decent
estimator.
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Fisher Information
The score vector

The Information Matrix

the (log-)likelihood function depends on two type of
arguments

Sample ( Parameter 8 \
(X 00 =iach) \\ //

/ Log likelihood \

\ function L(9,x) /
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Fisher Information

The score \ or
The Information Matrix

8MLE
asymtotically
Gaussian

Log likelihood MLE estimator
L(6.x) Buie

-
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Fisher Information _
The score vector

The Information Matrix

Non-differentiable likelihood

o (Xi,...,X,)iid U(0,0) 6>0

e (Xi,...,Xp,) iid exponential location parameter with pdf
f(x]0) = exp(—(x—0)), if6>0

o (X1,...,X,)iid U(®—2,0+1/2)

Mezzetti Fisher Information and Cramer-Rao Bound



Cramér-Rao inequality

Cramér-Rao inequality

Theorem: Let Xi, Xp, ..., X, be a sample with pdf f(x,8) and let
W(X) = W(Xu,...,Xp)) be an estimator where EgW(X) is a
differentiable function of 6. Suppose the joint pdf

f(x]0) = f(xa,...,xn|0) satisfies:

da// F(x|0)dsa, ..., dx // F(x|0)dsa, ..., ds

for any function h(x) with Eg|h(X)| < co. Then:

(& EW(X))”

£ ((51(x10)°)

Varg (W(X)) >

d 2
vara (W) > ()
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Cramér-Rao inequality

Cramér-Rao inequality: Corollary

Theorem: Let Xi, Xo,..., X, be an i.i.d. sample with pdf 7(x, 0)
and let T(X) = T(Xi,...,X,) be an unbiased estimator where
f(x|0) satisfies some regularity conditions, then:

1
Varg (T(X)) >
’ nky ((% log f(x|9))2>
Vary (T(X)) > nlt 5
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Cramér-Rao inequality

Cramér-Rao inequality: Remarks

@ Although Cramér-Rao Lower Bound is stated for continuous
random variables, it also applies to discrete random variables.
The main key in the proof that allows interchange of
integration and differentiation needs to be modified. Even
thought p(x|@) is a probability distribution function and not
differentiable in x, it is differentiable in 6

@ Even if Cramér-Rao Theorem is applicable, this does not
guarantees that the lower bound is reached by any estimator.
Some conditions guarantee the existence of estimator reaching
lower bound (exponential family does)

@ If we cannot find an estimator that attains the lower bound,
how can we asses the existence of the best estimator?
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Cramér-Rao inequality

Cramér-Rao inequality: Remarks

If an unbiased estimator attains the Cramér-Rao Lower Bound , it
must be the minimum-variance unbiased estimator
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Cramér-Rao inequality

Cramér-Rao inequality: Remarks

If an unbiased estimator attains the Cramér-Rao Lower Bound , it
must be the minimum-variance unbiased estimator

The converse is not always true
Not all the MVU estimators attain the CRLB
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Cramér-Rao inequality

Cramér-Rao inequality: Remarks

If an unbiased estimator attains the Cramér-Rao Lower Bound , it
must be the minimum-variance unbiased estimator

The converse is not always true
Not all the MVU estimators attain the CRLB

An estimator that is unbiased and attains the CRLB is said to be

efficient
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Cramér-Rao inequality

Rao-Blackwell Theorem

Theorem: Rao-Blackwell : Let W be any unbiased estimator of
7(0), and let T be a sufficient statistic for 6. Define
&(T) = E(W|T). Then:

Eop(T) = 7(0)

and
Vargp(T) < VargW, Vo

that is: ¢(T) is a uniformly better unbiased
estimator of 7(6)

Theorem: If W is a best unbiased estimator of 7(6), then W is
unique.
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Cramér-Rao inequality

Rao-Blackwell Theorem: Proof

Since T is sufficient for 6, h(t) = E(W|T = t) does not depend
on 6 and so W* = h(T) is a statistic with

Eo(W*) = Eg(E(W|T)) = Eg(W) = g(6), i.e. W* is an unbiased
estimator of g(#). We note also that

Varg(W) = Varg(E(W|T)) + Eg(Var(W|T))
> Varg(E(W|T)) = Varg(W*)

and so Varg(W) > Vary(W*)

Mezzetti Fisher Information and Cramer-Rao Bound



Delta Method
Asymptotic Distribution MLE

Asymptotic Distribution

Let us consider the MLE 8 of 6, to make notations clear, let us
assume the true value of 4 is y. We shall prove that as the sample
size n is very big, the distribution of MLE estimator is
approximately normal with mean 6y and variance 1/[nl(6)]. Since
this is merely a limiting result, which holds as the sample size
tends to infinity, we say that the MLE is asymptotically unbiased
and refer to the variance of the limiting normal distribution as the
asymptotic variance of the MLE.
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Delta Method
Asymptotic Distribution MLE

Asymptotic Distribution

Theorem Let Xi,..., X, be a sample of size n from a
distribution for which the pdf is f(x|@), with 6 the
unknown parameter. Assume that the true value of ¢
is 0, and the MLE of 6 is §. Then the probability

distribution of /n/(6)(f — o) tends to a standard
normal distribution. In other words, the asymptotic
distribution of 6 is

v (o )
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Delta Method
Asymptotic Distribution MLE

Reminder: Taylor Expansion

Taylors Theorem

If fis a function continuous and n times differentiable in an
interval [x, x + h], then there exists some point in this interval,
denoted by x + Ah for some A € [0, 1], such that

hn—l
(n—1)!

Fcth) = £+ b0+ 2F" () .+ £ () +

Mezzetti Fisher Information and Cramer-Rao Bound



Delta Method
Asymptotic Distribution MLE

Asymptotic normality of MLE: Proof

Since MLE @ is maximizer of logl(f) = S_7_, log f(X;|), we have

(logLY () = 0
By Taylor expansion we have:

0 = (logl)'(A) = (loglL)'(6o) + (logL)" (80)(A — bo)
so that Ji(logL) (60)
A _ n(/og 0
V(0= 00) = = ogLy(go)

(logL) (60) = > <3’/0g;é><!00)
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Delta Method
Asymptotic Distribution MLE

Asymptotic normality of MLE: Proof

For the central limit theorem
1
%logL/(Ho) — N (0,/(6))

For the WLLN
L/,;(eo) — I,,(Ho)

Mezzetti Fisher Information and Cramer-Rao Bound



Delta Method
Asymptotic Distribution MLE

Asymptotic normality of MLE:Proof

Vi~ 60) —ra N(o, ! )

O—0)) —sq /v(o,l1 )
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Delta Method
Asymptotic Distribution MLE

Delta Method

Let Y,, n=1,2,..., be asequence of random variables such
that
V(Yo —0) —q N(0,0?)

Furthermore let g() be a twice differentiable real function defined
on R such that g’(6) # 0. Then

Vi (g(Ys) — g(0)) —4 N(O, (¢'(0))* 0°)
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Delta Method
Asymptotic Distribution MLE

Approximation of Mean and Variance

Let X a r.v. with E(X) = ux, and Var(X) = 0%.

The following approximations hold:

and

v
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Delta Method
Asymptotic Distribution MLE

Approximation of Mean and Variance

Let X a r.v. with E(X) = ux, and Var(X) = 0%.

The following approximations hold:

and
Var(g(X)) = [g'(1)]* 0%

The theorem follows from the Taylor approximation of the function
g in the point p:

g(x) = g(u) + &'(u)(x — p)

Mezzetti Fisher Information and Cramer-Rao Bound



Numerical algorithms

Numerical algorithms

@ Sometimes it is not possible to find an explicit solution of the
likelihood equations and so we have to use iterative algorithms
to maximize /(#), as the Newton-Raphson or the
Fisher-scoring, which at any iteration update the parameter 6
in appropriate way until convergence.

o Let 9(t) denote the value of § after the t — th iteration of the
algorithm. Then at the (t + 1) — th iteration the
Newton-Raphson updates 0 as:

p(t+1) — (1) 4 {( t))} s(0())

where s(0(*)) is the score vector, i.e. the vector of the first
derivatives of /(6), and [J(0)] is the observed information.

Mezzetti Fisher Information and Cramer-Rao Bound



Numerical algorithms

Numerical algorithms

@ The Fisher-scoring is a variant of the Newton-Raphson that
updates 6 as

ple+1) — (o) {|n(9(f))} (00

where 1,(6(Y)) is the expected information matrix or Fisher
information.

@ Through these algorithm it is usually possible to find a local
maximum of /(f) , but, in general, there is not guarantee that
it corresponds also to a global maximum. At this regard, a
crucial point is that of the choice of the starting value of the
algorithm, 9(0)

Mezzetti Fisher Information and Cramer-Rao Bound
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