Corso di Matematica Generale

Esercitazione 4

Limiti di successioni numeriche - Serie geometrica

Dr. Stefano Guarino guarino@mat.uniroma3.it

16 Ottobre, 2014

Limiti di successioni numeriche

1. Calcolare, se possibile, il limite delle seguenti successioni:

(a)
$$a_n = \frac{n^2 - 5}{n - 173}$$

(b)
$$a_n = \frac{n^2 + 3n - 57}{3n^3 - 4n^2 + 3}$$

(c)
$$a_n = \frac{(n+3)(n-2)}{2n^2-4n-3}$$

(d)
$$a_n = \sqrt{2n^2 + 5n - 3} - \sqrt{n^2 + n}$$

(e)
$$a_n = \frac{n^3 + 8}{(2-n)^3}$$

(f)
$$a_n = (-1)^n \frac{n+2}{2n}$$

(g)
$$a_n = (-1)^n \frac{3}{5-n}$$

(h)
$$a_n = \sin(n+5)$$

(i)
$$a_n = \log(2n^2 + 5) - \log(n^2 + 3n + 5)$$

(j)
$$a_n = \exp\left(\frac{-3}{n+2}\right)$$

(k)
$$a_n = \left(1 + \frac{1}{3n}\right)^{2n}$$

(l)
$$a_n = \exp(n^2) \cdot \exp\left(\frac{-n^3 + n^2 + n + 5}{n - 1}\right)$$

(j)
$$a_n = \cos\left(\frac{2n}{(3+n)(n-1)}\right)$$

(k)
$$a_n = \sqrt{3}^{(n+2)}$$

(l)
$$a_n = \frac{2^n + 4^n}{3^n - 5^n}$$

(m)
$$a_n = \frac{(-1)^n n}{n^2 - 1}$$

(n)
$$a_n = \sqrt{3^n + 4^n}$$

(o)
$$a_n = \frac{\log(n+1)}{\log n}$$

$$(p) \ a_n = \sin \frac{n\pi}{2}$$

(q)
$$a_n = \left(\frac{n+1}{n-2}\right)^n$$

(r)
$$a_n = \left(\frac{4^n - 2}{2^n}\right) \left(\frac{1 + 3n - 2n^2}{3n + 5}\right)$$

$$(s) a_n = (-1)^n \cos n\pi$$

(t)
$$a_n = \frac{\sqrt{n} + \log n}{3 - \log n}$$

(u)
$$a_n = \frac{\sin(n)}{n}$$

2. Rispondere ai seguenti quesiti:

- (a) Se a_n è infinitesima, cosa si può dire di $b_n = a_n^{-1}$?
- (b) Se a_n tende a $-\infty$, cosa si può dire di $b_n = \frac{-2}{a_n}$?
- (c) Se il limite di a_n è 5, cosa si può dire di $b_n = \frac{1}{a_n-5}$?
- (d) É vero che, se a_n diverge, allora $b_n = na_n^{-1}$ converge?
- (e) Se a_n è infinitesima, cosa si può dire di $b_n = |a_n|^{-1}$?
- (f) Se a_n è infinitesima, cosa si può dire di $b_n = (-1)^n a_n$?

- (g) Se a_n diverge, cosa si può dire di $b_n = (-1)^n a_n$?
- (h) Se il limite di a_n è 5, il limite di b_n è 7, e $a_n < c_n < b_n$ per ogni n, cosa si può dire di c_n ?
- (i) Se il limite di a_n è 0, e il limite di b_n è $+\infty$, cosa si può dire di $c_n = a_n \cdot b_n$?
- (j) Sapere che il limite di a_n è 0 è sufficiente per affermare che $b_n = \sqrt{a_n}$ tende a 0?
- (k) Se il limite di a_n è $+\infty$ e il limite di b_n è l>0, cosa si può dire di $c_n=a_n^{b_n}$?
- (l) Se $\forall \epsilon > 0 \ \exists N > 0$ tale che $\forall n > N \ |a_n| < \epsilon$, cosa si può dire di a_n ?
- (m) Se $\forall L > 0 \; \exists N > 0 \; \text{tale che} \; \exists n_0 > N \; a_{n_0} > L$, cosa si può dire di a_n ?
- (n) Se $\forall \epsilon > 0 \; \exists N > 0$ tale che $\forall n > N \; l a_n < \epsilon$, cosa si può dire di a_n ?

$\mathbf{2}$ Serie geometrica

- 3. Studiare il carattere (e, ove possibile, calcolare la somma) delle seguenti serie:
 - (a) $\sum_{n=0}^{+\infty} \frac{3^n + 7^n}{11^n}$
 - (b) $\sum_{n=0}^{+\infty} (-1)^n \left(\frac{1}{4}\right)^n$
 - (c) $\sum_{n=0}^{+\infty} \left(\frac{\sqrt{19}-1}{3}\right)^n$ (d) $\sum_{n=0}^{+\infty} \frac{2^n-5^n}{3^n}$

 - (e) $\sum_{n=0}^{+\infty} \frac{3^n 2^n}{5^{n+1} 5^n}$
 - (f) $\sum_{n=0}^{+\infty} (-1)^n \left(\frac{8}{125}\right)^{\frac{n}{3}}$ (g) $\sum_{n=0}^{+\infty} \left(\frac{1}{n+2}\right)^n$
- 4. Studiare il carattere (e, ove possibile, calcolare la somma) delle seguenti serie, al variare di $x \in \mathbb{R}$:
 - (a) $\sum_{n=0}^{+\infty} (\ln x)^n$
 - (b) $\sum_{n=0}^{+\infty} (\log_{\frac{1}{2}} x)^n$

 - (c) $\sum_{n=0}^{+\infty} \left(\frac{1}{2-x}\right)^n$ (d) $\sum_{n=0}^{+\infty} \frac{(x-1)^{2n}}{(x^2+x+1)^n}$
 - (e) $\sum_{n=0}^{+\infty} \left(\sin x + \frac{\sqrt{3}}{2} \right)^n$
 - (f) $\sum_{n=0}^{+\infty} (-1)^n \left(\frac{x^2+x-3}{(x-2)(x+3)} \right)^n$
 - (g) $\sum_{n=0}^{+\infty} (e^{2x} e^x + 1)^n$