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Practice 1 - Tuesday, September 17, 2024 (11:00 - 13:00)

. Show that A L B = A¢ 1 B°¢.

Sol
If two events are independent, then

P(AN B) = P(A)P(B)

According to De Morgan’s Laws, (AU B)¢ = (A° N B°).

Hence
P(A°NB°) =1-P(AUB)
=1-P(A)—P(B)+ P(ANB)
=1—-P(A)— P(B)+ P(A)P(B)
=[1-P(A)][1-P(B)] = P(A°)P(B°)

. Throw a die two times. Which is the probability to get at least one six?

Sol

Taking into account the throw of the dice and its output to characterize the event A = 1(x = 6). A; and A, are independent,
and the range of the possible outputs is 36.

-1 11
P(A1+A221):P(A1:1)+P(A2:1)7P(A1:IOAQ:I)]:%:%

Another possible solution is to describe the problem as a binomial distribution of parameters n = 2 and p = %. Define



X;, i =1,2, as the random variable taking value 1 if the outcome is 6 and 0 otherwise, and let S =", X;. Then

P(S>1)= 22: (i)pk(l ek

k=1
2 2
= 1— 2
(Jp( p)+ (2)19
_l,1_u
T3 36 36

3. Define the events A = ill, B = smoker and define the probabilities P(B) = 0.4, P(A | B) = 0.25, P(A | B¢) = 0.07. What
is the probability of being ill? What is the probability of being a smoker given that you are ill?

Sol
Since the probability of not being a smoker is 0.6, the probability of being ill is

P(A)=P(B°)P(A| B°)+ P(B)P(A| B)
=0.6-0.07+04-0.25 =0.142

and the probability of being a smoker since you are ill is

P(B)P(A| B)
P(A)
0.4-0.25
0.142 0.7

P(B| A) =

4. Given a package with three balls, let X be the number of broken balls in the package and p = 0.2 the probability for a ball
to be broken. (We are assuming that the fact that a ball is broken is independent on the state of the other balls.) Which
is the probability that the number of broken balls is at most one?

Sol

P(X=0)+P(X=1)= (g) x 0.8 + G’) x 0.2 x 0.8% = 0.896

5. Calculate expectation for the geometric distribution.

Sol
_ rx—1 __ rx—1 __
E(X)—;pxq —p;xq —p; ry
__pr _1
(1-9* p



6. Calculate expectation, second moment and variance for the Poisson distribution.

Sol
X ~ Poisson(\), then P(X =x) = );—Te’)‘.
Expectation:
_ T A
E(X) = nge
=0
= Z e
z!
=1
oo /\rc—l
oy
= e Z @=1)
r=1
= A
Second moment and variance:
x T oo T
E(X?) = Z%ﬁge_’\ = z_:la?ge_*
o )\a:fl .
Ly
=) (k+1) e =A) k—e "4 A e~
2 a2
=2+

e Suppose that a monkey is allowed to randomly hit the keys on a typewriter keyboard for an infinite amount of time.
Suppose further that the keyboard has 50 keys. What is the probability that the monkey succeeds in typing the word
‘banana’?

Sol
The chance of the first six letters forming the word ‘banana’ is ﬁ. Define X, as the event not typing ‘banana’ in any of
the first n blocks of 6 letters. It follows that:
1 n
P(X,) = (1 )

506
from which:
. . ]_ n
Jm PO = Jim (1= 555)" =0
— lim P(X%) = lim 1 - P(X,) =1

n—roo n— oo

Hence, the monkey will type ‘banana’ almost surely. As a matter of fact, the monkey will type any finite text almost surely,
if given an infinite amount of time. This is known as the infinite monkey theorem.



Practice 2- Friday, September 20, 2024 (11:00 - 13:00)

1. Calculate second moment and variance for the geometric distribution.

Sol
Recall some facts: X ~ Geometric(p) & P(X =) = p(1 —p)*~! = pg®~1;
k
if g € (—=1,1), then Y ;2 ¢" = ﬁ , and this implies that Y ;- ddiq =3l kgt =
In order to solve the question, compute E(X):

(1—-q)?-

. rx—1 __ rx—1 __
E(X)f;pxq fp;xq fp;) i
__r _1
(1-9?* p
Same steps to recover E(X?):
E(X2) — prQQJ;—l
=0

=p» (@ —z+a)g""
=0

oo oo
=pg) (2®—2)g" P +p)Y wg""
z=0 z=0

oo

vy 1
=pgy (v" —x)g" 4 -
=0 p
N r—2 1
=pgy w(x—1)¢" "+ -
=0 p
= dPq® N 1 2 N 1
=pq — =pq -
—de® p (1-9¢)? »p
2 1 _2 1
= q = — —_
(1-¢? »p p* p
_2-p
p2

Using the previous results, we have:

2. 28 people booked a flight. The probability that each passenger is coming at the check-in is 0.7. Which is the probability
that more than 25 passengers come at the check-in? (We are assuming that each passenger is independent from the others).



Sol
Since a passenger can only either come at the check-in or not, then the distribution is S ~ Binomial(28,0.7). Then

28 28
P(S>25)= > (x )0.7””0.328—””

=26
o 28 26 2 28 27 1 28 28 0
= (26>0.7 0.3%2 + o7 0.7270.3" + 0 0.7%%0.3
282
82 70726032+28 0.7%70.3 + 0.7%® ~ 0.0157

3. Consider a random variable U with a density given by:

log z

fole) = 2—=1 (=)
with ¢ > 1. Compute ¢, E(U?) and P(0 < U < 1).

Sol
In order for fy to be a density, its mass must sum to 1, then (using the change of variable x = e¢¥ = dx = e¥dy)

—+oo c 1
/ fu(z)de = 2/ 87T i
— 00 1 x

log(c) 1 27¢
:2/ ydy:2[0g;y)]
0 0

=log(c)? =1=log(c) =+l=c=c¢

1 (&
/33 8Ty /xlog(w)daz
1
21 e
= { og(x ] 2/ de
1 2
e2—1 62+1
2 2

The second moment is:

where we used integration by parts.
Finally, PO<U <1)=P(0<U<1) fo fu(z)dz = 0, since fy(xz) =0 for z € [0, 1].

Re(e”) =™

Sol
True. Rewriting the exponential in the trigonometric form, we obtain:

e’™ = cos(m) +isin(n) = —14+4-0= —
Re(e'™) = Re(—1) = —1



3—4
Sol
1 1 3+4i 3+4i

34 3—-4i3+4i 25

. Prove that Re (1) =0
Prove that Re(e™*™ + 1) = 0.

Sol

and

el =[e"  +l=-1""41=—141=0

. If X ~ Poisson(\), then E(X) = log (m).

Sol
Since E(X) =X and P(X =0) = ’(\)—!Oe’)‘, then

log (ﬁ) = log (e/\) =\ =E(X) (1)

Practice 3 - Tuesday, September 24, 2023 (11:00 - 13:00)

. V ~ Poisson(2). Order the following three numbers from the smallest to the biggest.

20 P(V-E(V)23)

Sol

. 0
Since Fy(0) = %;e72 = e72, thus, because e <3 — 1 > 1 - 5 > 2,

Also E(V) =2, then P(|lV — E(V)| > 3) = P(|]V —E(V)| > 3)87 and by Chebyshev’s inequality

PV -E(V)[=3) <

To conclude, the order is



2. Prove directly that, given X L Y with X ~ Poisson(\) and Y ~ Poisson(u), then

X +Y ~ Poisson(\+ p)

Sol

Recalling that by the Binomial Theorem (a + b)™ = Z;’LO (7]”) a’b™=7 for m > 0, the probability function of X + Y is

P(X—l—Yzm):P(U;":O(ij)ﬂ(Y:m—j))

=Y P((X=5)n(Y =m-j)

§=0
=Y P(X =j)P(Y =m—j)
§=0
Mo m—j
= Z 76_A . e
S AR L)
—A—p ™ |
e ; . ml
= N ™ e
m! ;) Jlm — j)!

e A SN Im -
N ym—i
a2 (7
7=0
—A—p

€ m
= A+

= X +Y ~ Poisson(A+ p)

3. Characteristic function of the Gaussian: general case.

Sol

Note that X ~ N (u,0?) iff a Z ~ N(0,1) exists such that X = 0Z + . Remember that ¢(t) = exp(—t%/2). For a costant
R.V. equal to p we have that ¢, (t) = exp(iut). Moreover a constant R.V. is independent of any other R.V. Therefore

— 15242

x(t) = oz4u(t) = voz(t) - ‘Pu(t) = pz(ot) - ‘Pu(t) =e 2 e

i,utf%azt2

4. Prove that if X,, ~ N (p, L) then X,, — p in law as n — +oo.

Sol
Using the continuity theorem we can derive the conclusion using the characteristic functions. Indeed

vx, (1) = =3 at’ _y eint — wu(t) as n — +00



4

5. Using the characteristic function prove that the sum of independent Gaussian r.v. is Gaussian (not true without indepen-

dence).

Sol

Let X ~ N (p,0?), Y ~ N(f1,62) and let X,Y be independent. We have that

px(t) = itn— 5’ py (t) = it

Then

. . 2452
oxty (£) = px (B)py (1) = et =1

Since all the distributions with “similar” characteristic functions belong to the same distribution family, then X +Y ~
N(p+fr,0+0).
Recall that if X 1Y = ox1y(t) = ox(t)py(t) and X ~Y & ¢ox(t) = ¢y (¢).

Practice 4 - Friday, September 27, 2024 (11:00 - 13:00)

Determine whether the following claims are TRUE or FALSE.

1. Given A, B,C € F, assume P(ANBNC) > 0. Then P(ANB|C)=P(A|BNC)P(B|C).

Sol

Puanp|o) = TELE0E S PEEBEE FEES — pa Bro)pB | ©)

2. Let Z ~ B(n,p). This implies that P(Z > 0) > P(Z > 0).

Sol
FALSE. Recall that the support of a binomial distribution is the set of positive integers, 0 included. Then the problem
can be restated as

P(Z>0)+P(Z=0)>P(Z>0)

However, P(Z =0)=p°(1—p)" >0 < 1—p>0.
Therefore, the claim is true if and only if p < 1. Since p € [0, 1], there is one case, p = 1, where the claim does not hold.

. Let X ~ exp(A). This implies that P(X > 0) > P(X > 0).

Sol



FALSE. Recall that the support of an exponential distribution is RT, and that P(X < k) = fok Xe *dz. Then the
problem can be restated as

P(X >0)+ P(X

I
Vv
,“E
>
v
NS/

However, since the exponential distribution is continuous, it has no mass points, and the following holds:
0
P(X =0)= / e Mdr =0
0

Hence, the claim is false.

4. Let Z ~ Poisson(\). Then —Z ~ Poisson(\).

Sol
FALSE. Recall that the support of a Poisson distribution is the set of positive integers (k € N).

P(-Z=k)=P(Z=-k)=0
5. Let X ~ exp(A). This implies that |X| ~ exp(A).

Sol
TRUE.

6. For any random variable X one has that ¢ < s implies Fx (t) < Fx(s).

Sol
FALSE. Although it is always true that ¢ < s implies F'x(¢) < Fx(s), the strict inequality is not always the case. Take as
an example the following distribution, U(0,1) and ¢ = 3 < § = 1000, the cumulative distribution of U is

0 we (—o00,0)
Fy(u)=<qu wuwel0l)
1 well,4+o00)
Since {t,5} € [1,+o0] then Fy (t) = Fy () = 1.

7. Let f,g: R — R be densities. Then h = %f + %g is a density.



10.

11.

Sol

TRUE. Since f and g are densities, then [, fdz = [, gdx =1, also f(x), g(x) > 0Vx € R. We have

1 2
hda;:f/fdx—&—f/gdx
/R 3 Jr 3 Jr
1 2

= — —:1
3+3

and h is a linear combination of non-negative functions, then it is non-negative as well.

. Suppose that P(A), P(B) > 0 and P(A| B) = P(B | A). Then P(A) = P(B).

Sol
FALSE.

P(A| B) = P(B | A) = P(A)P(AN B) = P(B)P(AN B)

In the last equality it is not forbidden that P(AN B) = 0. In such a case P(A) and P(B) could be any number, also

different from each other.

. For any discrete random variable X it holds P (X = F(X)) # 0.

Sol

FALSE. Take as an example X ~ B(3,0.5) that has F(X) = 2. It is also true that, since its support is N, then

2

P(X=3)=0.

Let X ~ B(n,p). Suppose that P(X = 0) = 1. This implies that P(X =n) = 0.

Sol
TRUE.

Let X ~ B(n,p). Then Fx(n+ 1) = ¢¥x(0).

Sol
TRUE. By definition of characteristic function, it holds

Ux(t) = B(e") = ¢x(0)=E(1) =Y P(X=k) =1

Also, since the cumulative distribution is non-decreasing and Fx € [0,1] with Fx(n) = > ;_, P(X

].:Fx(n)ng(n+1)§1:>Fx(n+1):1

10

k) = 1, then



12. The function f : R — R defined by f(x) = %x]l(m)[o V) is a density.

Sol
TRUE. In order to check if f is a density, check its sign

f(x) > 0& xel0,+00]

which is fine since [O, 5| C [0,400], and if it sums to 1

V5 2 1221Y% 5
dr=2 |21 =2 _9=1
[ re=25]

13. Let X ~ N (p,0?). Then P(X < p) = 3.

Sol
TRUE. Because f(r) = —— exp ( — (w_“)2) is symmetric with respect to u, it follows

2mo 202

PX<p)+PXZp)=PX <p)+PX <p)=1

1
:>P(XSH)=§

Practice 5 - Tuesday, October 1, 2024 (11:00 - 13:00)
1. The function f: R — R is defined by f(z) = ¢ sin(z)1p n

i Fix ¢ so that f is a density

ii Let X be a random variable such that f is its density: calculate the cumulative distribution function Fx ()

iii Solve the equation Fx (t) =

Sol

i For f to be a density it must be positive all over its domain and must sum to 1. The first condition is easily matched
for any positive c¢. For the second one, we have

c/ sin(x)dx =1
0
- 1
—cleos(z)]) =2¢ = c= 3

ii To calculate the CDF, keep in mind that before the lower bound Fx is 0 and above the upper bound is 1. Then only
calculate what happens inside these bounds.

Fx(t) = 1/0 sin(x)dz = 1= cos(t)

11



iii

Then

t<0
Fx(t) = = 4 ¢ (0,7)
1 t>

12



2. Suppose that you flip a fair coin which has 0 and 1 on its faces and that you roll, independently, a fair die. Let us denote
by X the result of the coin and by Y the result of the die. Let Z = XY

i Which is the distribution of Z?

ii Calculate E(Z)
iii Calculate Var(Z)

Sol

i Z has a distribution which combines the features of a die and those of a coin. Hence, when the coin is 1, the die results
do not change, while they degenerate to 0 when the coin is 0. Since the events are independent (and to get 0, the only
requirement is that the coin be 0) then, for k € {1,2,3,4,5,6}, the distribution is

ii To calculate E(Z)

Alternatively, since the two events are independent, E[XY] = E[X]E[Y] = 2L .

iii To calculate Var(Z2)

Thus, the variance is

3. Calculate

1
P(Z=0)=P(X =0)= 7
1
P(Z=kK)=PX=D)PY =k=5;=1
6
E(Z)=0-P(Z=0)+Y k-P(Z=k)
k=1
6
1 7
=2k =g
k=1
1_7
2 4
6
E(Z%) =0°P(Z=0)+ > k*P(Z=k)
k=1
1o 91
= 2= —[1+4 16 + 2 =—
12;/@ (1444941642536 = 75
Var(Z):9717§73647147:217

12 16 48 48

/A (g — xy) dxdy

where A = {(z,y) € R? |y > 2? — 4,y < —a? + 4}.

13



Sol
The extremes of integration of y are defined in the set A and depend on x, whose extremes are to be found. Check for
which values of x the conditions in A are respected, by imposing the inequality

—2?+4>2 —4— 22+ 4>0 -2 (-2,2)

Now, the integral can be solved by firstly integrating with respect to y

2 712+4 x
/ / — —zydy| dx
—2 x274 2

Notice that the function xy is odd in y, while 5 is even in y. Moreover, the extremes of integration are opposite. Under

such condition, the integral of an odd function is 0, while that of an even function is twice the integral from 0 to the top
extreme. Hence, we obtain

—x244 —x24+4
/ E—anydyz/ rdy =x(—2*+4) = -2 + 4z
x2—4 2 y=0

Once again, z2 and = are odd functions of  and the extremes are opposite, then

2
/ — 23 4 dxdr =0
-2

. The domain of the function

glz,y) = V12 =2+ /~(y + 22 +2)

contains the point (0,1). True or false?

Sol
FALSE. Just plug the coordinates in the function

9(0,1) =v/1-02— 124+ /—(1+ 02 +2)
=V0+V-3=v-3

Practice 6 - Thursday, October 3, 2024 (11:00 - 13:00)
. X ~ Poisson(\), Y ~ Poisson(u) and X 1 Y implies E(X | X4+Y) = ﬁ(X—l—Y). Check the law of iterated expectation.

Sol

E[E(XXJrY)}E[/\j\_M(XJrY)} :ﬁ)\M(A+u):/\:E(X)

14



2. X1,X5,..,X, iidrv. and S, = X1+ Xo+...4+X,,. Provethat E(X; | S,) = Sn—"7 and check the law of iterated expectation.

Sol
Since {X;}], are i.i.d., E[X,|S,] is the same for all j. Hence

ELXIS0) = 3 BIXiIS,]

1 n

~ Lgs,18.]

Finally, we check the law of iterated expectation

BIE (G| Sl =F | 22| = 2~y Bx) v

3. Calculate

/ ﬁdxdy
B

)
where B = {(z,y) € R* |1 <y < e,z € [1,5]}.

Sol

1

L]

Il
zﬁ\a

)

S

|

Q

)

I
[T

Ul Ot
ot

4. Calculate

where C' = {(z,y) € R* | 2% + y* < 2z}.

Sol

15



To find the extremes, rewrite the set C' as y? < 2z — 2. Since y? is always positive, the condition 22 — 22 > 0 must hold,
which is satisfied for z € (0,2). Applying the square root to y?, we get —v/2x — 22 < y < v/2x — 22. Then

2 V2x—x2 2 27 V2r—a?
_ Y _
/ x / y dy d;v—/ x[} der =0
=0 y=—+2x—x2 =0 2 —V2x—x2

since f(y) =y is an odd function integrated over opposite extremes.

. X~B(1,p),Y ~B(l,p)and X LY implies E(X | X +Y) = 5(X +Y). Calculate

2
i Var(X | X +Y) and E[Var(X | X +Y)]

i Var(B(X | X +Y))

iii Check the Law of the Total Variance

Sol

i Notice that if X ~ B(1,p), then X2 ~ B(1,p). Now, write the conditional variance as

Var(X | X +Y)=EX? | X +Y) - E(X | X +Y)?
EX|X+Y)-EX|X+Y) =EX | X+Y)1-EX|X+Y))
X+Y 2-X-Y 2X+2Y—X?-2XY —Y?

2 2 B 4

Moreover, recall that E(X?) = Var(X) + E(X)? = p(1 — p) + p*> = p. Then

4

_+2%-p-2p"—p p(l-p)
4 2

2X +2Y — X2 -2XY —Y?
E[Var(X | X +Y)] :E[ + ]

ii

Var (B(X | X +Y) = Var (X“/)

2
_ Var (X +Y) :p(l—p)
2

=~

iii Recall that the Law of Total Variance states that Var(X) = E[Var(X | X +Y)] + Var (E(X | X +Y)). Plugging the
corresponding elements of our exercise, we obtain

E[Var(X | X +Y)]+ Var(E(X | X +Y)) = 217(1% = p(1 — p) = Var(X)

16



Practice 7 - Tuesday, October 8, 2024 (11:00 - 13:00)

. If X is an absolutely continuous random variable with density fx, then |X| has as density

(o) = {fx<x> +fx(-a) ©>0

0 otherwise

i‘?te. Since X is absolutely continuous, its density is well-defined. Consider Y = | X/, then
PY <0)=0— fix(0)=0 Vx>0
Moreover, for x > 0,
PY<z)=P(-z<X<z)=PX<z)—PX<—-2x)
S i (@) = dP(Z(x< z) dP(Xd; —)
= fx(z) + fx(—z) Vx>0

. Compute the eigenvalues and the associated eigenvectors of the following matrices
5 4
=0 2)

det(A—XI)=(5-X)(2-)\) —4
=N —-TA+6=0
— A={1,6}

Sol

To find the eigenvector associated to each eigenvalue, solve

G 20)-C)

~ e (t)
6960

and



In addition, one can find the spectral decomposition of A, by choosing an arbitrary value for o and 5. For instance, let

a = 3 =1. Then, A can be written as
Ao (LAY (oY (-1
“\1 1)\0 6 1 1

. Fix the parameter h so that the matrix

h 1 0
D=[1-h 0 2
1 1 h

has an eigenvalue equal to 1.

Sol
Since the eigenvalue must solve Z = D — Al =0, set A = 1, so that
h—1 1 0
Z=|1-h -1 2
1 1 h-1

and impose

det(Z2) = —(h—1)*+2+ (h—1)2=2(h—1)
—4-2h=0 < h=2

. Find the spectral decomposition of

Sol

By imposing the condition det(A — A\I) = 0, we obtain

det(A—X)=(3-N?—-16=0
= A={-1,7}

The eigenvector corresponding to A = —1 is

Jx+4dy=—-—2 = r=—y
()
:>U71:
-«

18



The eigenvector corresponding to A = 7 is

3x+4dy=Tr = =y

- (3

To make the eigenvector matrix orthonormal, o and 8 must be such that the norm of the associated eigenvector is equal
to 1. Hence, set

1

4 (—a)=1—a=—

1

2, 32
+82=158=—
e v V2
Finally
1 1 1 1
A:<ﬁ ﬁ> (1 0) (ﬂ _\/§>

_1 1 0 7 1 1
V2 V2 V2 V2

Practice 8 - Tuesday, October 15, 2023 (11:00 - 13:00)

. Find the Choleski decomposition A = LL! of

1 2 3
A=12 8 8
3 8 19
and solve the system LX = b where
x 1
X=1ly b=10
z 5
Sol
Define
a 0 0
L=1|b ¢ O
d e f
Then
a 0 0 a b d
LI'=(b ¢ 0 0 ¢ e
d e f 0 0 f
a? ab ad

=|ab b+ bd + ce
ad bd+ce d?+e?+ f2

19



Then

a?=1—>a=1

ab=2—>b=2

ad=3—=d=3

V+cl=8—c=2
bd+ce=6+2e=8—>e=1
e+ fP=94+1+f2=19—>f=3

Thus
1 00
L=|2 2 0
3 1 3

Finally, we can solve the system by backward substitution:

1 0 0 T T 1
LX=12 2 0 y| = 2x + 2y =10
3 1 3 z 3z +y+ 32 5
x 1
z 1
1. Consider the function
Ty
:1 _—_—
f(x,y) n<(1+m2)ey)

Find
i the domain

ii the stationary points

iii the character of the stationary points (local max, min, saddle)

Sol

i Since the denominator is always strictly positive, then for the logarithm to have positive inputs it only matters that
D = {(z,y) € R? | xy > 0}

ii Let us rewrite our function in a more convenient form, keeping all the positive terms together
Ty 2
z,y) =In| ———— ) =In(zy) — In(1 + z°) —
fz,y) <(1+x2)ey) (zy) — In( )=y

20



Now, compute the partial derivatives and set them to 0:

af 1 2x

or x 1422 0 ==
0 1

—f:f—lzo — y=1
dy y

Since the solution (—1,1) ¢ D, then the only one acceptable is (1,1) € D.
iii To characterize the nature of the unique stationary point, compute the second derivatives and evaluate them at (1,1)

21 _ 1 _242%%—de_
ox2 TV T T2 T 1y g2 gt
0% f 1
T ey = —— = —1
dy Yy
0% f B 0%f B
0xdy  Oydxr
Construct the Hessian matrix
-1 0
i=ly

Since H is symmetric and diagonal, its diagonal elements are its eigenvalues. Because the latter are all negative, (1, 1)
is a local maximum.

e Study the stationary points of the function

flay) =2 +y* —ay

Sol
of
_— = 2 — =
or T
of oo

From the second equation, z = 3y2. Plugging this into the first equation, we obtain

1
6y° =y < y—{0,6}

11

Let us now compute the second derivatives

% f

e

82f

o Y

>f _f _ |
oxy  Oyxr

21



Construct the Hessian matrix and evaluate it at A

The eigenvalues are
det(H(A) = AI) = (2= X)(=N) -1
=M 20— 1=0 < A={1+£V2}
Since the signs of the eigenvalues are opposite, then A is a saddle point. For B we have
H(B) = [—2 1 11]
which has eigenvalues

det(H(B) — M) = (2—-N)(1—\) —1

+
=A2_3\+2-1=0 < )\:{3 2\/5}

Since the signs of the eigenvalues are both positive, B is a local minimum.

Practice 9 - Tuesday, October 15, 2024 (11:00 - 13:00)

. Consider the function

2?—y?
oy = {5 @0 %00
0 (z,y) = (0,0)
and show that f5 ,(0,0) # fy +(0,0). What can you deduce for the mixed derivatives of second order?

Sol

Let us first rewrite f(x,y) as f(z,y) = ng;;g >, Then the general partial derivatives are
ﬁ _ f _ (3l’2y - yg)(l'z -+ y2) — 2$(1’3y — ;L'yj) _ x4y + 4x2y3 o y5
Ox ¢ (22 +y?)? (22 + y2)2
of _ p _ (@ =3ey?)(@® +4?) — 2y(aty —ay?) _ a® —day? — oyt
oy Y (22 +y?)? - (22 + y2)2

In order to compute the derivatives in (0,0), apply the definition:

-0
. x
lim axl ‘ = y‘ =0
z—0 xT y=0 y=0

3
z’y—zy” 0
2 2

lim =Y =z =0
y—0 Y =0 =0
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Using again the definition, the mixed derivatives are
o*f afy fy(0+h,0) — £,(0,0)
_7J — 1 Y ? Y\
Oxdy ox (0,0) 0 h
fy(h,0)

(07 0) =

f2(0,0+ k) — £.(0,0)
im
or k—0 k
f2(0,k)
k—0 k

= 1i 1 -k _

T
The mixed derivatives are not equal in (0,0), hence they are not continuous in (0,0). This follows from Schwarz-Young’s
theorem. Indeed, in this case, the Hessian matrix is not symmetric in (0,0) (although it is symmetric everywhere else in

the domain).

. Find the (local) maxima and minima of the function
fla,y) =2y —y* +3
subject to the constraint
gla,y) =z +y>-1=0
using
i a parametric representation of the constraint
ii Lagrange multipliers

Are they global?

Sol

i In order to parametrize the constraint and make it always binding, choose y = t — x = 1 —t2. This allows us to rewrite
the maximization problem as

max h(t) = f(1 ) =(1—-tHt—t>+3
=—t3—t*+t+3

Recall that a sufficient condition for a stationary point z* to be a local max (min) is that f”(z*) < 0 (> 0). Hence, in
order to find the stationary points, we first solve the F.O.C.
dh

— =3t -2t +1=0
di *

1
= t*={-1,=
{ 73}
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and evaluate the second derivative, % = —6t — 2, at t*

2h(-1)
dM) 6940
a2 >
d2h(1/3)
GRAB) 9 9 4
a2 <

Therefore, (z,y) = (0,—1) is a local minimum and (z,y) = (%, 1) is a local maximum.

ii In order to use the Lagrange multipliers method, define the Lagrangean function
L=xy—y*+3-Nz+y°—1]

and compute the FOC with respect to =, y and A

a—L:y—)\:O—>y:)\

ox
a—L:x—Zy—2)\y:O—>a;:2y—|—2y2
oz

oL 9 9

B r+y 00—z Y

Equating the second and third lines, we obtain y = {—17 %}, from which x = {0, %} (by plugging the results into the
constraint).

Notice that % <0Vte (—oo, —I)U(%7 +00) and % >0Vte (-1, %) Moreover, lim;_, o h(t) = —oo and lim;, _ o A(t) =
+o00. Hence, the stationary points are only local max and min for the constrained function.

Also the unconstrained function has no global maximum nor minimum. Indeed, consider the following restriction y = 1,
so that f(z,1) = z + 2, which clearly has no global maximum nor minimum.

. Calculate (also using polar coordinates)

/ 2y dxdy
A

where A = {(z,y) € R? |y > 0,(z — 1)+ y* < 1}.

Sol
The domain implies that (x—1)% < 1—y?2, but since the left side is positive then so must be the right side, then 1—y2 > 0 —
—1 < y < 1. Combining with the second condition of the domain, y > 0,0 <y < 1,and —/1 —y?+1 < x < /1 —y2+1.

1 T—y2+1 1
/ 2y/ dxdy = / 4y/1 — y2dy
y=0 rz=—1/1-y2+1 y=0

Using t? = 1 — y? — 2t dt = —2y dy, also the extremes of integration are reversed.
0
4
/ —4t?%dt = —
t=1 3
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If one wants to use polar coordinates then
x—1=pcos(d)
y = psin(0)

Then y > 0 — 0 < 6 < 7, while (z — 1)%2 + y? < 1 — p2[cos(#)? + sin(h)?] = p> <1 — 0 < p < 1. Recall that for the
trigonometric transformation the scale factor is p, hence

/ / " opsin(0)dpdd = 2[p*b[— cos(O)]5
p=0 J0=0

[— cos(m) + cos(0)]§

Wk Wiy Wi

10 Practice 10 - Thursday, October 17, 2024 (11:00 - 13:00)

1. Prove that if A is symmetric and positive definite then it is invertible and A~! is symmetric.

Sol

A is positive definite iff A; > 0. Recalling that the determinant of a matrix is equal to the product of its eigenvalues, it
follows that det(A) = [[, A > 0. Hence, A is invertible.
Moreover,

A=At
— AAT = (AT =1
— A4 = AT (AT = A (AT
— A =(47Y)

t

that is, A~! is symmetric.

1. Find the spectral decomposition of the matrix

Sol

det(A—XI) = (3=XN)2(6—-\)—(6—)\) =
A ={2,4,6}

The eigenvector of A = 2 solves 3z —y = 2x — x = y. For instance, choose z = 1/v/2 — y = 1/\/5,2 = 0 and
Vo = (1/v/2,1/v/2,0)".
The eigenvector of A\ = 4 solves 3z —y = 4o — = = —y. For instance, choose z = 1/v/2 — y = —1/v/2z = 0 and

Vi = (1/v2,-1/v/2,0)".

25



The eigenvector of A = 6 solves 6z = 6z — z = z and 3x — y = 6z with —x + 3y = 6y — = = y = 0. For instance, choose
z=1and V5 = (0,0,1)".
The spectral decomposition is then

1/vV/2 1/v/2 0\ /2 0 0\ [/1/V2 1/v/2 0
A=11/vV2 -1/v2 0| |0 4 0] (1/vV2 -1/v2 0
0 0 1/ \0 0 6 0 0 1
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e Suppose that P is a projection. Prove that

i P=1— P is a projection
i Ker(P) = Range(P)

i Range(P) = Ker(P)

iv PP=PP =0

v The only invertible projection is P=I

—-

—-

i
Sol

P?=(I-P)I-P)=I-2P+P*=1-2P+P=I-P=P
ii
Ker(P)={veV|P(w) =0}
Range(P) = {v€V|Elw€V:]5(w):v}

Any vector v € V can be rewritten in terms of P and P by v = Pv + Pu.

If v € Ker(P), then Pv = 0, which implies v = Pv => v € Range(P).

On the other hand, if v € Range(P), then v = Pw = w — Pw, which implies Pv = Pw — P?w =0 = v € Ker(P).
Therefore, Ker(P) = Range(P).

Ker(P) = {v eV |P(v) = o}
Range(P)={v eV |3w eV : P(w) =v}

Ifve Ker(p) — Puv =0, which implies v = Puv, that is, v € Range(P). ) } }
On the other hand, if v € Range(P) = v = Pw = w — Pw, which implies Pv = Pw — P?w =0, that is, v € Ker(P).
Therefore, Ker(P) = Range(P).

PP=(1-P)P=P—-P>=P—-P=0
PP=P(1-P)=P-P*=P-P=0

P=P/PP )= (PP)P'=PP'=PP'=1]
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e Solve the Cauchy problem

Yy =Vry x>0
y(0) =2
Sol
Recall that y = y(x). Rewrite the problem as
yi/ — \/5
Y
dlny
de Ve

Then

2 .
= Iny(zr) —In2= gx%
2
= In y(;) = gx%

11 Practice 11 - Tuesday, October 22, 2024 (11:00 - 13:00)

1. Let X be a n x k matrix. Suppose that XX is non-singular. Define H = Hx = X (X'X)~1X".

i Prove that H is an n X n matrix

ii Calculate Hx for

i

I
[ R
O = O

iii Prove that for the previous case H is a projection
iv Prove that H is a projection in general
v Prove that if n = k then H = I,

Sol

i In terms of dimensions H is

(nxk)kxk)(kxn)=nxn
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ii

_ o
o = O
|
X\
S N
=)
N————
1
—
b
&

B
S~—

L
I
7 N\

O
)
N~

Then

7N\
(eI
=)
N~
N\
S =
— O
O =
~—__

N\
O =
—= O
O =
~_

o, O O o QOO

I
N~ ON- - O~ = O =

= Ol
I

iii To prove that H is a projection matrix, evaluate H? and check that H? = H.
iv To prove that H is a projection in general,
H? = X(X'X)"'X'X(X'Xx)"'X*!
=X(X'X)"'X'"=H
v If n = k, then X is a square matrix. Recall that if two matrices A and B are square, then (AB)~! = B~1A~!. Thus
H=X(X'X)"'Xx!
—xx ' (x)'xt=1,
2. Study the function F(z,y,2) = = + 3y — z under the constraints
224+1y?—2=0
z—2x—4y =0
Sol

Before proceeding, notice that the constrained domain is a closed and bounded set. Indeed, putting together the two
constraints yields the circle 22 + y? — 2z — 4y = 0, which is closed and bounded. Since the objective function is continuous

on R3, then by Weierstrass it attains a maximum and a minim value. Hence, the critical points of the Lagrangean function
must be max and min.

Writing down £ and solving the F.O.C. we obtain

L=x+3y—2z—Na*+y* — 2] — p[z — 2z — 4y]

%21—2)\1}4—2#:0

Ox

%:3—2)\31—&-4;1:0

oy
%:—1—1—)\—;1:0—”1:)\—1
0z
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1

Plugging 1 = A—1 into the first two lines, we obtain x = 1— % and y = 2— 55,

Combining these results with the first constraint yields the values of A

and from the second constraint, z = 10— %

2\ 2\ A

1
<= A=1+—

V10

Then, plugging the points into the objective function, (z,y,z) = (1 + @7 2+ @, 10 + 3V 10) is a (global) minimum

and (x,y,2) = (1 - @, 2— \/TTo’ 10 — 3v/ 10) is a (global) maximum.
Finally, notice that the problem could be solved by focusing on the equivalent problem:

[—1+4)\r [—1+2)\r_ 10\ — 3

optimize x4+ 3y — 2x — 4y
st. z2+y =22 —4y=0

obtained by putting together the constraints and substituting z = 2z + 4y into the objective function. Simply solve for z
and y and then substitute back into the equation for z.

. Find the maximizer of f(x,y) = 2? + y?, subject to the constraints 2z +y < 2, z > 0, y > 0 using

(a) parameterizations of the segments of the boundary

(b) using Lagrangian formulation
Sol

i The constraints define a triangle. Also, since

of
89572%70
of .
a—nyny

is solved for just one point (xg, yo) = (0, 0), which also lies within the boundaries. This means that the maximum must
lie on the constraints. Thus, parametrize each segment and solve for each of them.

Ifz=0—0<t<2— f(0,t) =2, then the maximum is at y = 2, that is (z1,%1) = (0, 2).

Ify=0—0<t<1- f(t,0) =¢2, then the maximum is at = 1, that is (x2,y2) = (1,0).

If 2 # 0 and y # 0, then set x =t and y = 2 — 2¢, so that f(t,2 — 2t) = t? + (2 — 2t)? = 5t — 8¢ + 4. From this, we
obtain ¢t = % = (z3,y3) = (%, %)

Plugging in f all the results, the maximum is attained at (xz1,y1) = (0, 2).

ii

L=a2+y> A2z +y—2|+ px+yy
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Recall that A, u,v > 0.

a—'C:Zx—Z\—&—u:O
ox

a—ﬁ:Qy—)\—i—v:O
Jy

A2z +y—2]=0

pr =20

7y =0

Check case-by-case among the possible values of x and y.

Ife=y=0—>A=p=v=0, all is fine and (z9,yo) = (0,0) is a stationary point.
Ifr=0andy#0—-~7v=0—-A#0—y=2and =2\ >0, then (z1,y1) = (0,2).
Ify=0andz#0—->pu=0—->A#0—=2=1and v >0, then (z2,y2) = (1,0).

Ifx#0and y #0, then p=y=0and x = X # 0 — 22+ y — 2 = 0 with 2y = z, which is solved by (z3,y3) = (%,%)
The maximum is attained at (x1,y1).
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