
COMPUTER SKILLS
LESSON 5

Valeria Cardellini
cardellini@ing.uniroma2.it

A.Y. 2015/16

Objectives of this lesson
We’ll discuss
• How to create matrices
• How to refer to and modify elements of matrices
•  Vectors and matrices as function arguments

Computer Skills - Lesson 5 - V. Cardellini 2 10/16/15

Matrices

Computer Skills - Lesson 5 - V. Cardellini

A matrix is a table of values. The dimensions of a matrix
are m x n, where m is the number of rows and n is the
number of columns.

10/16/15 3

Transposed matrix

Computer Skills - Lesson 5 - V. Cardellini 10/16/15 4

Matrix manipulation
We consider the following basic operations on matrices:
•  Create a matrix
•  Read and extract data from a matrix by indexing
•  Shorten a matrix
•  Mathematical and logical operations on matrices
•  In the past lesson: determine the matrix size

•  Note: when the operators apply to both vectors and
matrices with the same syntax, we use the term array
•  Vectors are 1-d arrays
•  Matrices are 2-d arrays

Computer Skills - Lesson 5 - V. Cardellini 5 10/16/15

Creating a matrix: constant values
•  Entering the values directly: the
semicolon identifies the next row
•  Be careful: always the same
number of elements in each row

• Using the functions
zeros(rows, cols),
ones(rows, cols),
rand(rows, cols) and
randn(rows, cols) to create
matrices filled with 0, 1, or
random values between 0 and 1
(from uniform or normal
distribution)

>> A=[2 4 5 6; 3 5 6 7]!

A =!

 2 4 5 6!

 3 5 6 7!

>> rand(3,2)!

ans =!

 8.1472e-01
9.1338e-01!

 9.0579e-01
6.3236e-01!

 1.2699e-01
9.7540e-02!

Computer Skills - Lesson 5 - V. Cardellini 10/16/15 6

Indexing a matrix
•  The process of referring to and

modifying elements in a matrix
•  Syntax:
•  A(row, col) returns the element(s)

at the location(s) specified by the
matrix row and column indices (called
subscripted indexing)

•  A(row, col) = value replaces
the elements at the location(s)
specified by the matrix row and
column indices

•  The index array may contain either
numerical or logical values

•  In MATLAB end is a built-in
expression to refer to the last
element of the row or column, e.g.,
the last element of 1st row
>> A(1,end) !
ans = 6!

>> A(2,3)!
ans =!
 6!
>> A(2,:) % 2nd row!
ans =!
 3 5 6 7!
>> A(2,2:4)!
ans =!
 5 6 7!
>> B=[3 4; 4 7]!
B =!
 3 4!
 4 7!
>> C=[true false; true
true]!
C =!
 1 0!
 1 1!
>> B(C) % apply C as mask!
ans =!
 3!
 4!
 7!

Computer Skills - Lesson 5 - V. Cardellini 10/16/15 7

See A values on
previous slide

Numerical indexing
•  The index vector may be of any length
• When it contains numerical values, use only integer
(non-fractional) numbers
•  The values in the index vector are constrained by the
following rules:
•  To refer to elements, all index values must be

 1 <= element <= length (row or column dimension)
•  To replace elements, all index values must be

 1 <= element

•  In MATLAB we can also use linear indexing: the matrix is
unwound column by column
>> A(3) % see A values on slide 6!
ans =!
 4!
>> A(3) % see A values on slide 6!
ans =!
 3

Computer Skills - Lesson 5 - V. Cardellini 10/16/15 8

Replacement rules for matrix elements
1.  Either:

•  There must be a single element
on the right side of the
instruction, or

•  All dimensions of the blocks on
either side of the assignment
must be equal

2.  If you replace beyond the
end of any dimension of the
matrix, its size is
automatically increased

•  Any element not specifically
replaced remains unchanged

•  Elements beyond the existing
dimension length not replaced
are set to 0

Computer Skills - Lesson 5 - V. Cardellini 10/16/15 9

>> A(1,3)=8!

A =!

 2 4 8 6!

 3 5 6 7!

>> A(:,1)=[9 7] %replace
1st column!

A =!

 9 4 8 6!

 7 5 6 7!

>> A(:,6) = [3 8]’ %add new
column!

A =!

 9 4 8 6 0 3!

 7 5 6 7 0 8!

See A values on
slide 6

Logical indexing
•  Logical arrays use relational expression that result in
true/false values
•  The index array length must be less than or equal to the
original array dimension
•  It must contain logical values (true or false)
•  Access to the matrix elements is by their relative
position in the logical array
•  When reading elements, only the elements corresponding to

true index values are returned
•  When replacing elements, the elements corresponding to true

index values are replaced

Computer Skills - Lesson 5 - V. Cardellini 10/16/15 10

Logical indexing
>> vec = [5 9 3 4 6 11]!
vec =!
 5 9 3 4 6 11!
>> isg = vec > 5 ! !%if vec[i]>5 then isg[i]=true!
isg =!
 0 1 0 0 1 1!
>> vecisg = vec(isg) !%only elements > 5!
vecisg =!
 9 6 11!

10/16/15 Computer Skills - Lesson 5 - V. Cardellini 11

•  Note that in MATLAB logical vectors echo in the
Command window as 1 or 0, but they are not the same
thing! See next slide

Logical data type is different from
double data type!
>> mask = [0 1 0 1]!
mask =!
 0 1 0 1!
!
>> whos mask!
 Attr Name Size Bytes Class!
 ==== ==== ==== ===== ===== !
 mask 1x4 32 double!
>> A!
A =!
 1 4 7 10!
>> A(mask)!
error: subscript indices must be either positive integers
less than 2^31 or logicals.!
 !
!

Computer Skills - Lesson 5 - V. Cardellini 10/16/15 12

Operating on vectors and matrices
Three techniques extend directly from operations
on scalar values:
•  Arithmetic operations
•  Logical operations
•  Applying library functions

Two techniques are unique to arrays in general,
and to vectors in particular:
•  Concatenation
•  Slicing (generalized indexing)

Computer Skills - Lesson 5 - V. Cardellini 10/16/15 13

Operators precedence
• Operator description and precedence
www.mathworks.it/help/matlab/matlab_prog/operator-
precedence.html

Computer Skills - Lesson 5 - V. Cardellini 14 10/16/15

Arithmetic operations
•  Arithmetic operations (e.g., addition and multiplication)
can be done on entire vectors or matrices
•  Some examples of scalar operations (add a scalar,
multiply or divide by a scalar)
>> A = [2 5 7 1 3]; !
>> A + 5 ! !% add 5 to every element of A!
ans =!
7 10 12 6 8!
>> A * 2 ! !% multiply by 2 every element of A!
ans =!
4 10 14 2 6!

Computer Skills - Lesson 5 - V. Cardellini 10/16/15 15

Arithmetic operations (continue)
• Some examples of array operations, that are
performed on vectors or matrices element by
element
• Be careful: a dot must be placed in front of the
operator for array operations (.*, .^, ./, .\)

>> B = -1:1:3!
B =!
-1 0 1 2 3!
>> A .* B % element-by-element multiplication!
ans =!
-2 0 7 2 9!
>> C = [1 2 3]!
C =!
1 2 3!
>> A .* C % A and C must have the same length!
error: product: nonconformant arguments (op1 is 1x5,
op2 is 1x3)!

Computer Skills - Lesson 5 - V. Cardellini 16 10/16/15

Matrix multiplication
• Matrix multiplication does not mean multiplying term by
term

•  You’ll study it in the Mathematics course

•  Be careful to the dimension of the matrices
•  In MATLAB: C = A * B!
•  The number of columns of A must be equal to the number of rows

of B

[A]m x n * [B]n x p = [C]m x p

•  Each element cij of the product matrix C is defined as:

Computer Skills - Lesson 5 - V. Cardellini 17 10/16/15

Matrix multiplication (continue)
>> A = [2 5 7 1 3];!
>> B = -1:1:3!
B =!
-1 0 1 2 3!
>> A * B!

error: operator *: nonconformant arguments (op1 is
1x5, op2 is 1x5)!
>> A = [2 4; 1 5];!
>> B = [1 3; 2 7];!
>> C=A*B!
C =!
 10 34!
 11 38!

Computer Skills - Lesson 5 - V. Cardellini 18 10/16/15

Matrix multiplication for vectors
•  To multiply vectors they must have the same number of
elements, but one must be a row vector and the other a
column vector
>> r = [6 2 3 4]; !% r is a row vector!
>> c = [5 3 7 1]’; !% r is a column vector!
>> c * r !% the result is a 4x4 matrix!
ans =!
 30 10 15 20!
 18 6 9 12!
 42 14 21 28!
 6 2 3 4!
>> r * c !% dot product: the result is a scalar!
ans = 61!
!

10/16/15 Computer Skills - Lesson 5 - V. Cardellini 19

Logical operations
>> A = [2 5 7 1 3];!
>> B = [0 6 5 3 2];!
>> A >= 5!
ans =!
0 1 1 0 0!
>> A >= B!
ans =!
1 0 1 0 1!
>> C = 1:3;!
>> A > C!
error: mx_el_gt: nonconformant arguments (op1 is
1x5, op2 is 1x3)!

Computer Skills - Lesson 5 - V. Cardellini 10/16/15 20

Logical operations (continue)
>> A = [true true false false];!
>> B = [true false true false];!
>> A & B!
ans =!
1 0 0 0!
>> A | B!
ans =!
1 1 1 0!
>> C = [1 0 0]; % C is NOT a logical vector!
>> A(C) % you can index logical vectors, but ...!
error: subscript indices must be either positive
integers less than 2^31 or logicals!

Computer Skills - Lesson 5 - V. Cardellini 10/16/15 21

A footnote: the find function
•  Continuing the code in the previous slide:
>> C = find(B) % C is a vector of indices of
elements of B which are true!

ans = !
 [1 3]!

•  The find(...) built-in function returns the indices of a
vector that meet some given criterium; it also works for
matrices
>> vec = [11 -5 33 2 8 -4 25];!
>> find(vec<0) % find the indices of the negative
elements of vec!
ans =!
 2 6!

!

!

Computer Skills - Lesson 5 - V. Cardellini 10/16/15 22

Applying library functions
All MATLAB functions accept vectors of numbers
and return a vector of the same length.
Special functions:
•  sum(v) and mean(v) return a number, which is either

the sum or the mean of the vector elements
•  min(v) and max(v) return a number, which is either

the minimum or maximum value in a vector
•  round(v), ceil(v), floor(v), and fix(v)

remove the fractional part of the numbers in a vector
by conventional rounding (round), rounding up (ceil),
rounding down (floor), and rounding toward zero (fix)

Computer Skills - Lesson 5 - V. Cardellini 10/16/15 23

minßv(1)

read: v, N

N = 1

ißi+1

End

Start

No minßv(1)

iß1

v(i)<min minßv(i)

i<N

Yes

10/16/15 Computer Skills - Lesson 5 - V. Cardellini 24

Flow diagram: min(v)

Yes

Yes

No

No

•  v is the vector, N
its length

•  The algorithm
assumes first
element as
minimum and
then compares it
with other
elements

•  If an element is
smaller than the
current
minimum, it
becomes the new
minimum

•  This process is
repeated till
complete array is
scanned

Find the minimum
value of a vector

maxßv(1)

read: v, N

N = 1

ißi+1

End

Start

Yes maxßv(1)

iß1

v(i)>max maxßv(i)

i<N

Yes

Computer Skills - Lesson 5 - V. Cardellini 25

Flow diagram: max(v)

10/16/15

Yes

No

No

No

Find the maximum
value of a vector

A skeleton to process vector’s elements

…

read: v, N

N = 1

ißi+1

End

Start

Yes …

iß1

…

i<N
Yes

1: Check if there is more
than one element

2: Inizialize
vector index and
other variables

3: Increment elements index

4: Do the specific task

…

6: Post processing (if needed)

Computer Skills - Lesson 5 - V. Cardellini 26 10/16/15

No

No
5: Check if there are still

elements in the vector

sumßv(1)

read: v, N

N = 1

ißi+1

End

Start

Yes sumßv(1)

iß1

sumßsum+v(i)

i<N
Yes

Computer Skills - Lesson 5 - V. Cardellini 27

Flow diagram: sum(v)

10/16/15

No

No

Sum the elements
of a vector

Exercise: mean of the vector elements

• Write the flow diagram to compute the mean of
the elements of vector v; the length of v is N
•  Read v and N from input

• Suggestion: start from the sum algorithm

10/16/15 Computer Skills - Lesson 5 - V. Cardellini 28

Vector concatenation
•  In MATLAB we can build a new vector by
concatenating other vectors:
•  A = [B C ... Y Z]!
Individual items within brackets may be vectors: the
length of A will be the sum of the lengths of the
individual vectors
>> B = 3:-2:1;!
>> C = [4 9 2];!
>> D = linspace(1,2,3);!
>> A = [B C D]!
A =!
3.0000 1.0000 4.0000 9.0000 2.0000
1.0000 1.5000 2.0000!

•  A = [1 2 3 42]!
is a special case of concatenation where all the
elements are scalars

Computer Skills - Lesson 5 - V. Cardellini 29 10/16/15

Replacement rules for vectors
1.  Either:

•  All dimensions of the blocks on
either side of the replacement
instruction must be equal, or

•  There must be a single element
on the right side of the
replacement

2.  If you replace beyond the end
of the existing vector, the
vector length is automatically
increased

•  Any element not specifically
replaced remains unchanged

•  Elements beyond the existing
length not replaced are set to 0

>> A=1:3:12!
A =!
 1 4 7 10!
>> A(7)!
error: A(I): index out
of bounds; value 7 out
of bound 4!
>> B=[2,4];!
>> A(B)=[0,0]!
A =!
 1 0 7 0!
>> A(4)=99!
A =!
 1 0 7 99!
>> A(7)=99!
A =!
 1 0 7 99
0 0 99!

Computer Skills - Lesson 5 - V. Cardellini 10/16/15 30

Generalized indexing for arrays

• A(4) actually creates an anonymous 1×1 index
array, 4, and then use it to extract the specified
element from array A
•  In general,

 B(<rangeB>) = A(<rangeA>)!
where <rangeA> and <rangeB> are index arrays, A is
an existing array, B can be an existing array or a new
one
The values in B at the indices in <rangeB> are
assigned the values of A from <rangeA>

Computer Skills - Lesson 5 - V. Cardellini 10/16/15 31

Generalized indexing for arrays
>> A = [5 3; 2 4];!
>> B = ones(2);!
>> B(:,2) = A(:,1)!
>> B =!
 1 5!
 1 2!
>> C = -1:2:7!
C =!
 -1 1 3 5 7!
>> C(2:3)=A(1,:)!
>> C =!
 -1 5 3 5 7!
!
!

Computer Skills - Lesson 5 - V. Cardellini 10/16/15 32

Operating on matrices
Four techniques extend directly from operations
on vectors:
•  Arithmetic operations
•  Logical operations
•  Applying library functions
• Generalized indexing

Concatenation and reshaping need some
additional words

Computer Skills - Lesson 5 - V. Cardellini 10/16/15 33

Matrix concatenation
• Matrix concatenation can be
accomplished either horizontally or
vertically:
•  R = [A B C] succeeds as long as A, B and

C have the same number of rows; the
columns in R will be the sum of the columns
in A, B and C.

•  R = [A; B; C] succeeds as long as A, B
and C have the same number of columns;
the rows in R will be the sum of the rows in
A, B and C.

Computer Skills - Lesson 5 - V. Cardellini 10/16/15 34

Reshaping matrices
• Matrices are actually stored in
column order in MATLAB. So
internally, a 2 × 3 matrix is
stored as a column vector:
A(1,1)!

 A(2,1) !
 A(1,2)!
 A(2,2)!
 A(1,3)!
 A(2,3)!
!
•  Any n × m matrix can be
reshaped into a p × q matrix
as long as n*m = p*q using the
built-in reshape function!
!

>> A=[2 4 5 6; 3 5 6 7]!
A =!
 2 4 5 6!
 3 5 6 7!
>> idx=find(A>5)!
idx =!
 6!
 7!
 8!
>> A(idx)=A(idx)+3!
A =!
 2 4 5 9!
 3 5 9 10!
>> A(6)!
ans =!
 9!
>> B=rand(2)!
B =!
 2.7850e-01 9.5751e-01!
 5.4688e-01 9.6489e-01!
>> reshape(B,1,4)!
ans =!
 2.7850e-01 5.4688e-01
9.5751e-01 9.6489e-01 !

Computer Skills - Lesson 5 - V. Cardellini 10/16/15 35

