
Bachelor of Science in Business & Economics
Mathematics
Academic year 2014-2015
Teachers: P. Gibilisco, A. Carnevale

Lecture 1 – Monday, February 16, 2015 (11:00-13:00)

Introduction to the course.
An example on the applications of mathematics in economics: risk aver-

sion and concavity of utility functions.
Mathematics as art. Suggested readings and activities:

• Eugene Wigner. ”The Unreasonable Effectiveness of Mathematics in
the Natural Sciences,” in Communications in Pure and Applied Math-
ematics, vol. 13, No. I (February 1960).

• A Mathematicians Lament by Paul Lockhart.

• Chagrin d’école, Daniel Pennac.

• Escher exposition at the Chiostro del Bramante

The three main argument of the course: integration, optimization in
several dimensions, linear systems.

A short track to the fundamental theorem of calculus.

• Zeros of a continuous function.

• The image of a closed interval by a continuous function is a closed
interval.

• The extreme value theorem (Weierstrass).

• The mean value theorem (Lagrange).

• If f ′(x) = 0 on an interval the function is constant.

• The fundamental theorem of calculus.

• Antiderivatives: indefinite integration.

• Definite integrals.

• Example and exercises.
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Lecture 2 – Wednesday, February 18, 2015 (11:00-13:00)

Linearity of integral.
Antiderivatives for elementary functions.
The change of variable formula.∫

f ′(x)

f(x)
dx = log |f(x)|+ c

Integration by parts.
Improper integrals.
Exercises

• ∫ (
1
3
√
x

+ 3

)
dx =

3

2

3
√
x2 + 3x+ c

• ∫ (
x− 3

2

)2

dx =
2

3

(
x− 3

2

)3

+ c

• ∫
cos3 xdx = −1

4
cos4 x+ c

• ∫
ex

ex + 1
dx = log(ex + 1) + c

• ∫
tanxdx = log | cosx|+ c

• ∫
1

x log x
dx = log | log x|+ c

• ∫
x+ 1

x− 1
dx = x+ 2 log |x− 1|+ c

• ∫
x sin(x2)dx = −1

2
cosx2 + c

• ∫
x cosxdx = x sinx+ cosx+ c
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• ∫
xe−xdx = −e−x(x+ 1) + c

• ∫
log xdx = x(log x− 1) + c

• ∫ +∞

1

1

x
dx = +∞

Exercise session 1 – Monday, February 23, 2015 (11:00-13:00)

Definite and indefinite integrals. Integration by parts and integration by
substitution.

Exercises:

• ∫
(5x3 + 2x2 + 3x)dx

• ∫
16e−4xdx

• ∫
xe3xdx

• ∫
x lnxdx

• ∫
(x+ 1) sin

x

2
dx

• ∫ √
x lnxdx

• ∫ ( x
ex

)2
dx

• ∫
x

(4x2 + 1)3
dx
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• ∫
cosx

sin2 x
dx

• ∫
sin
√
x√

x
dx

• ∫
e2x sin(e2x)dx

Exercise session 2 – Wednesday, February 25, 2015 (11:00-13:00)

Integrals of rational functions. Improper integrals.
Exercises:

• ∫
x
√
x+ 1dx

• ∫
2 + x

x− 1
dx

• ∫
dx

x2 − 3x+ 2

• ∫
1− 2x

x2 − 2x− 15
dx

• ∫ 3

2

x2 + 1

x2 − 1
dx

• ∫ 2

1

x2 + 1

x2 − 1
dx

• ∫ 0

−∞

ex

1 + ex
dx

• ∫ +∞

1

lnx

x3
dx
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• ∫ 3

−2

(
1√
x+ 2

− 1√
3− x

)
dx

Lecture 3 – Friday, February 27, 2015 (11:00-13:00)

Domains of functions f : R2 → R. Examples:

•
log

(
x2 + y2 − 1

x− y

)
• √

y − x2
2x− y + 1

Rn as a vector space. Linear combination of vectors. Trivial and non-
trivial subspaces of R3 and of R2.

The intersection of two subspaces is a subspace (not true for the union).
Linear transformations.
The scalar product. Orthogonality. Modulus of vector.

Exercise session 3 – Monday, March 2, 2015 (11:00-13:00)

Weekly test, 1
Exercise 1.
Compute the following definite integral∫ 3

2
x ln (x2 − 1)dx

Exercise 2.
a) Compute the following indefinite integral∫

x− 1

x2 − 2x+ 1
dx

b) Determine whether the following improper integral exists and, if so,
evaluate it. ∫ +∞

2

x− 1

x2 − 2x+ 1
dx
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Domain of functions of two variables.
Exercises. Domain of:

•
f(x, y) =

√
x+
√
y

x+ xy

•
f(x, y) =

ln (x2 − 2x+ 1)

1− x2 − y2

•
f(x, y) =

√
1

1− x− y

•
f(x, y) =

ln (1− x2 − y)

y2 − 1

•

f(x, y) =

√
xy − y2

exy(2 + x− y)

Linear combinations of vectors in Rn. Examples.
A subspace of a vector space contains the vector 0.

Lecture 4 – Wednesday, March 4, 2015 (11:00-13:00)

The vector subspace spanned by a family of vectors. Generators.
Linear dependence and independence.
For a subsetB of a vector space V the following conditions are equivalent:
i) B is minimal set of generators;
ii) B is a maximal set of linearly independent vectors.
Bases for vector spaces. All the bases have the same cardinality. Dimen-

sion of a vector space.
Exercises. The linear span of a family of vectors is denoted by Span(v1, ..., vn)

or by 〈v1, ..., vn〉.

• Describe 〈(1, 0, 0), (0, 1, 0), (1, 1, 0)〉.

• Describe 〈(1, 0, 0), (0, 1, 0), (0, 0, 1)〉.
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• Establish if the following sets of vectors are linearly independent or
not:

a) (0,0), (1,-1);

b) (1,1) (-1,2);

c) (-1,1), (1,,2), (0,-1);

d) (1,0,1), (1,1,-1), (2,4,0), (1,0,7);

e) (1,0,1), (1,1,1), (2,1,2).

• Write the vector (-1,2) as a linear combination of the vectors (1,1)
(1,2).

• Write the vector (-1,2) as a linear combination of the vectors (1,1)
(1,2), (2,1).

• Write the vector (1,2,-1) as a linear combination of the vectors (1,0,0)
(1,1,0), (1,1,1).

• For which k are the vectors (1, k, k) and −1, 1, 3) orthogonal?

Lecture 5 – Friday, March 6, 2015 (11:00-13:00)

Sum and composition of linear transformations.
Matrices and linear transformations. The row by column product.
Algebra of matrices. The transpose of a matrix.
Exercises:

• Let

A =

(
1 1
1 0

)
B =

(
2 1
−1 1

)
C =

(
0 2
−2 1

)
Calculate:

a) A−B
b) 3A+ 2B − 4C

c) 2A−Bt + 3C2

• Let

A =

(
1 −1 0
−1 1 1

)
B =

−2 1 −1
2 1 1
1 1 0

 C =

0 1
1 1
0 −1


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Calculate (when possible):

a) AC;

b) (BC)A;

c) B + (CA);

d) BA;

e) BAt;

f) 3At +BC.

Area of a parallelogram. Determinant of 2×2 matrices and its geometric
meaning.

Properties of determinant:

• det(I) = 1

• det(At) =det(A).

• If A has a column (row) of zeros then det(A) = 0

• Summing to a row (column) a multiple of another row (column) does
not change the determinant.

• det(AB) =det(A)· det(B).

Exercise session 4 – Monday, March 9, 2015 (11:00-13:00)

Weekly test, 2
Exercise 1.
Determine and draw the domain of

f(x, y) =
2 ln(x− 1) + 2 ln(y + 1)

xy + y2

Exercise 2.
Determine and draw the domain of

g(x, y) =
e

x2+y2

2

√
x−2y

x2 + y2 − 9

Vector spaces, subspaces, linear dependence/independence. Exercises.
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• Given
A = {v ∈ R3 | 2nd coordinate is zero }

B = {v ∈ R3 | 2nd coordinate is 1}

C = {v ∈ R3 | 1st coordinate is the double of the 3rd}

determine if A, B, C are subspaces of R3. Describe A ∩ C.

• a) Is {v = (1, 2)} a basis of R2? If not complete v to a basis of R2.

b) Write (3, 2) as linear combination of v and e2 = (0, 1).

c) Find all the vectors that are orthogonal to v in R2.

• Determine if S = {(2, 1, 0), (2, 2, 0), (0, 1, 0), (1, 1, 3)} is a set of lin-
early independent vectors.

Extract a maximal subset of linearly independent vectors from S.
What is the dimension of their span?

Algebra of matrices. Product of matrices. Examples.

Lecture 6 – Wednesday, March 11, 2015 (11:00-13:00)

The inverse of a 2× 2 matrix.
Exercise: calculate the inverse of the matrix

A =

(
2 −3
1 1

)
How to find the solution of a 2× 2 system of linear equations: geometry.
How to find the solution of a 2× 2 system of linear equations: by hands

(substitution-elimination of variables); using Cramer’s rule; using the inverse
of a matrix.

Exercise: find the solution of the system{
2x− 3y = 0

x+ y = 1

using the afore mentioned techniques.
The determinant for 2×2 matrices as an alternating, multilinear function

such that det(I) = 1.
Theorem: on n×n matrices there exists only one alternating, multilinear

function ”det” such that det(I) = 1.
Cofactor of a matrix entry.
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Theorem: the determinant of a n × n matrix it is given by the Laplace
formula.

Geometric meaning of the determinant.
Calculate the determinant of the matrix

A =

−2 2 −3
−1 1 3
2 0 −1


Lecture 7 – Friday, March 13, 2015 (11:00-13:00)

Cofactor matrix and adjugate matrix.
The inverse of an n× n matrix:

A−1 =
1

det(A)
adj(A)

Find the inverse of the matrix

A =

−2 2 −3
−1 1 3
2 0 −1


Cramer’s rule for an arbitrary linear system.
Solve the system 

−2x+ 2y − 3z = 1

−x+ y + 3z = 0

2x− z = 0

by hands (substitution-elimination of variables); using Cramer’s rule; using
the inverse of a matrix.

Properties of determinant (reprise):

• det(I) = 1;

• det(At) =det(A);

• if A has a column (row) of zeros then det(A) = 0;

• summing to a row (column) a multiple of another row (column) does
not change the determinant;

• det(AB) =det(A)· det(B);
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• det(cA) = cndet(A);

• If A is triangular then det(A) = a11 · a22 · · · ann.

Exercise. Let

A =

−2 2 −3
−1 1 3
2 0 −1


Calculate det(A) transforming A in triangular matrix.
Exercise: is A+At symmetric?
Exercise. A matrix is said idempotent if A2 = A. Prove that if AB = A

and BA = B then A,B are idempotent.
Exercise. Let

A =

1 0 1
k 1 2
0 2 1


For which k ∈ R is A invertible?

Exercise. Let

B =

k k − 1 k
0 2k − 2 0
1 k − 1 2− k


For which k ∈ R is B invertible?

The solutions of an homogeneous linear system

AX = 0

form a vector space.

Exercise session 5 – Monday, March 16, 2015 (11:00-13:00)

Weekly test, 3
Exercise 1.
Let V = 〈(1, 0, 2), (0, 0, 1), (1, 0, 1)〉. What is the dimension of V ? De-

termine a basis of V .
Write, if possible, the vectors (3, 1, 0) and (1, 0, 0) as linear combinations

of elements of the chosen basis.
Exercise 2.

Let A =

(
2 1
−1 −1

)
, B =

(
1 0
4 2

)
.

Calculate AB, BA, det(AB2), det(At +B).
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Linear systems: Cramer’s rule and inverse matrix. Exercises{
2x+ y = 1

−x− y = −2

Determinant of a 3× 3 matrix: Sarrus rule:

det

a11 a12 a13
a21 a22 a23
a31 a32 a33

 = a11a22a33+a21a32a13+a12a23a31−(a13a22a31+a12a21a33+a23a32a11)

Determinant of 1 2 3
4 5 −1
0 3 1


using Sarrus rule and Laplace theorem.

Determinant of a matrix with a row (or a column) which is a multiple
of another row (or column) is zero.

The vector space of the solutions of the homogeneous linear system
AX = 0 when A is invertible is the zero vector.

Lecture 8 – Wednesday, March 18, 2015 (11:00-13:00)

Minors of a matrix A = determinants of square submatrices.
Theorem. For any matrix A the following are equal:
- size of the largest non-vanishing minor;
- dimension of the vector space generated by columns;
- dimension of the vector space generated by rows.
Rank of a matrix A.
If A is an n× k matrix then rank(A) ≤min(n, k).
Examples: find the rank of the following matrices:1 2 1

1 −1 −1
2 1 0

 1 2 1 1
1 −1 −1 2
2 1 0 3


How to solve a system of linear equations.
Examples: {

2x+ 3y − z = 0

2x+ 3y − z = 1
No solutions
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{
2x+ 3y = 0

2x− 3y = 0
Unique solution

{
2x− 3y + z = 0

x+ y − z = 1
∞1solutions

{
2x− 3y + z = 1

4x− 6y + 2z = 2
∞2solutions

The Rouché-Capelli theorem: a linear system with n variables

AX = b

has solutions iff the coefficient matrix and the augmented matrix have the
same rank, namely iff Rank(A)=Rank(A|b) = p. The dimension of the space
of the solution is n− p.

How to find the solutions of linear system using Rouché-Capelli and
Cramer theorem.

Example 1. Solve the system
x+ 2y + z = 1

x− y − z = 2

2x+ y = 3

Steps:

• RankA =Rank(A|b) = p =2 and n = 3. Therefore there are ∞3−2

solutions.

• Choose a non-vanishing minor of the largest possible size. Example(
1 2
1 −1

)
• Cancel the rows outside the minor.{

x+ 2y + z = 1

x− y − z = 2
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• Treat the variables outside the minor as ”parameters”.{
x+ 2y = 1− z
x− y = 2 + z

• Solve the system using Cramer (or any other method){
x = 1

3(z + 5)

y = 1
3(−1− 2z)

• The ∞1 solutions are given by

(
1

3
(z + 5),

1

3
(−1− 2z), z)

Example 1. Solve the system
x− 2z = 1

−y + 2z = −1

−x+ y = 0

Steps:

• RankA =Rank(A|b) = p =2 and n = 3. Therefore there are ∞3−2

solutions.

• Choose a non-vanishing minor of the largest possible size. Example(
1 0
0 −1

)
• Cancel the rows outside the minor.{

x− 2z = 1

−y + 2z = −1

• Treat the variables outside the minor as ”parameters”.{
x = 1− 2z

−y = −1− 2z
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• Solve the system using Cramer (or any other method){
x = 1 + 2z

y = 1 + 2z

• The ∞1 solutions are given by

(1 + 2z, 1 + 2z, z)

Lecture 9 – Friday, March 20, 2015 (11:00-13:00)

Exercise. Find the solutions of the following linear systems.
x+ dy + z = 0

dx+ dz = 1

y + dz = 0
cx+ cy + cz = 0

(c+ 2)x+ 2y + z = 0

x+ cy + z = 1

Educational Intermezzo: Werner Heisenberg, matrix mechanics, non-
commutativity and the uncertainty principle.

The diagonal little heaven. Diagonal matrices. Products of diagonal
matrices, commutativity. Diagonal matrices with positive or non-negative
entries: square root, exponential and logarithm for this class of matrices.

Linear transformations that preserve angles and distances. Example:
the symmetry with respect to the y-axis.

Exercise session 6 – Monday, March 23, 2015 (11:00-13:00)

Weekly test, 4
Exercise 1.
Let

A =

2 0 0
1 −1 0
2 0 −3

 and B =

1
0
2

 .
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Write At, calculate detAt. Write explicitly the linear system

AtX = B, where X =

xy
z


and determine its solution, if it exists.

Exercise 2.

Let A =

(
1 k
−1 k2

)
, B =

(
0
1

)
.

a) Find the values of k for which A is invertible.

b) For k = 1 find the solutions of AX = B where X =

(
x
y

)
.

Rank of a matrix. Calculate the rank of0 1 0 1 3
0 1 2 1 1
1 0 1 2 0

 , and

1 2 3 k
k 2 1 0
0 1 0 k

 .

Rouch-Capelli. Determine the solutions, if they exist, of the system
AX = Bi where

A =

2 2 1
1 0 2
0 2 −5

 B1 =

1
1
1

 B2 =

1
0
1

 .

Gauss elimination method: the rank of a matrix is invariant under certain
operations

• exchange rows (or columns)

• linear combinations of rows (or columns)

• multiplication of a row (or column) by a nonzero scalar.

Dimension of the space of columns of a matrix: determine the dimension
and a basis of:

V = 〈


1
0
2
1

 ,


2
1
2
1

 ,


1
1
1
1

 ,


0
1
0
0

〉, W = 〈


1
0
2
1

 ,


2
1
2
0

 ,


1
1
1
1

 ,


0
1
0
0

〉.
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Lecture 10 – Wednesday, March 25, 2015 (11:00-13:00)

Transpose matrix and the scalar product:

〈Av,w〉 = 〈v,Atw〉

Orthogonal matrices (At = A−1).
If A is orthogonal then det(A) = ±1.
Orthogonal matrices preserve angles and distances.
Examples of orthogonal matrices: rotations and symmetries in the plane.(

cos θ sin θ
− sin θ cos θ

) (
1 0
0 −1

) (
−1 0
0 1

)
Eigenvalues an eigenvectors. Eigenspaces. Eigenvalues for diagonal ma-

trices.
Non-trivial solutions for homogeneous systems.
Eigenvalues as roots of characteristic polynomials.

Lecture 11 – Friday, March 27, 2015 (11:00-12:00)

Complex numbers.
Find the eigenvalues for  3 2 0

−1 0 0
0 0 1


Find the eigenvalues for (

0 1
−1 0

)
Symmetric matrices have real eigenvalues.

Find the eigenvalues for 1 0 0
0 0 −1
0 −1 3



Exercise session 7 – Monday, March 30, 2015 (11:00-13:00)

Weekly test, 5
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Exercise 1. Determine the rank of

A =

k 0 1 2
k 1 k 1
k 0 k 2


for k ∈ R.

Exercise 2. Determine, if they exist, solutions of
2x− y + x = 3

x+ y − z = 1

x− 2y + 2z = 2

Complex numbers. Sum and product of complex numbers. Complex
conjugation.

If z ∈ C then zz̄ and z − z̄ are real numbers.
Real polynomials of degree 2 have real or complex conjugate roots.

Eigenvalues, eigenvectors, characteristic polynomial.
Exercise. Find the eigenvalues of the rotation of π/3 in R2.

Exercise. Let A =

(
1 2
2 1

)
and suppose that there exists an invertible

matrix C such that C−1AC =

(
λ 0
0 3

)
. Which value(s) can take λ?

Exercise. Let A =

2 2 2
2 2 2
2 2 2

. Which among v1 =

1
0
2

, v2 =

1
1
1

,

v3 =

 1
0
−1

 are eigenvectors of A? What are the corresponding eigenvalues?

Lecture 12 – Wednesday, April 1, 2015 (11:00-13:00)

Topology of R and R2: balls; open, closed, bounded, compact sets.
Continuous functions in R2. The Weierstrass theorem.
Planes in R3.
What is a good definition of differentiability in dimension n > 1? Wanted:

differentiability should imply: i) continuity, ii) existence of a tangent plane.
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Partial derivatives. Directions. Directional derivatives.
The mother of all counterexamples: the function

f(x, y) =


(

x2y
x4+y2

)2
(x, y) 6= (0, 0)

0 (x, y) = (0, 0)

i) has the partial derivatives in (0,0);
ii) has the directional derivatives in all directions in (0,0);
iii) is discontinuous in (0,0).
Linear transformation L : R2 → R by scalar product.
Cauchy-Schwartz inequality.

Exercise session 8 – Monday, April 13, 2015 (11:00-13:00)

Weekly test, 6
Exercise 1.
Let

A =

 1 −1 0
−1 1 0
0 0 3

 .

• Determine the eigenvalues of A.

• Compute Ae1, Ae2, Ae3, A(e1 + e2), A(e1 − e2), where e1 =

1
0
0

,

e2 =

0
1
0

, e1 =

0
0
1

.

• Determine A(2e1 + 2e2 + 3e3) without calculating explicitly the row
by column product.

Exercise 2.
Let z = 3 + i. Determine all z1 ∈ C such that the real part of z + z1 is

4 and such that z1z̄1 = 5.

Partial derivatives of functions of two variables. Exercises.
Determine the domain and the first partial derivatives of
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• f(x, y) = x− ln(10 + 4y2)

• f(x, y) =
√
x+ 3y

• f(x, y) = y2 + xe10+2y

• f(x, y) = xy
x−y

• f(x, y) = x
y

• f(x, y) = ln(x2 + y2)

Level curves of a function of two variables. For any c ∈ R, what kind of
curve is f(x, y) = c ?

Examples.
Level curves of f(x, y) = x2+y2 are circles for c > 0, the origin for c = 0,

empty for c < 0.
Level curves of f(x, y) = ln( y

x2 ) are parabolas for all c ∈ R.

Lecture 13 – Wednesday, April 15, 2015 (11:00-13:00)

The gradient.
Exercise: find the gradient of f(x, y) = ey + sin(x + y) in the point

(π/2, 0) (Answer (0,1)).
Differentiable functions.
If f is differentiable then ∂f

∂v (P0) = 〈∇f(P0), v〉.
Verify the above formula for the function g(x, y) = −x2 − y2 in (-1,0).

w.r.t. direction (1,0).
Continuity of differentiable functions.
The tangent plane.
Find the tangent plane of the function f(x, y) = ey + sin(x + y) in the

point (π/2, 0) (answer: y − z + 2 = 0).
Stationary points.
Exercise. Find the stationary points of the following functions:

2x3 + y3 − 3x2 − 3y + 5

x2 + y3 − xy

x2 + y4 + y2 + z3 − 2xz
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Lecture 14 – Friday, April 17, 2015 (11:00-13:00)

A sufficient criterion for differentiability (existence of partial derivatives
in a neighborhood of P0 and their continuity in P0).

The Schwartz (or Young) theorem: conditions for the symmetry of the
Hessian matrix (existence of mixed partial derivatives in a neighborhood of
P0 and their continuity in P0).

Necessary and sufficient conditions for local maxima and minima using
the eigenvalues of the Hessian matrix. Saddle points.

Examples and counterexamples. Study the following functions in the
origin (0.0).

x2 − y4

x2 + y4

−x2 − y4

Find the character of the stationary points of the functions:

2x3 + y3 − 3x2 − 3y + 5

x2 + y3 − xy

Find the stationary points of the following function and discuss the be-
havior of the function in those points (using two different arguments)

h(x, y) = ex
2

+ xy − y2 − 5.

Consider the function

f(x, y) = log

(
xy

(x2 + 1)(y2 + 1)

)
.

Find: i) the domain; ii) the stationary points; iii) the character of the sta-
tionary points (local max, min, saddle). (Hint: consider the symmetries
...)

Exercise session 9 – Monday, April 20, 2015 (11:00-13:00)

Weekly test, 7
Exercise 1.
Determine domain and first partial derivatives of f(x, y) = (x−y)2ex−y+

2 ln(xy).

21



Exercise 2.
Draw the level curves of the function g(x, y) = ye−x.
Bonus question: determine, if they exist, points in which the gradient of

g ∇g = (gx, gy) is parallel to the y-axis.

Partial derivatives of functions of two variables and stationary points.
Exercises.

• Determine the stationary points of f(x, y) = −(x− 4)2 − y2 and their
characters. Is there a global maximum/minimum?

• Determine the stationary points of f(x, y) = x3 + y3 + xy and their
characters.

• Determine the stationary points of f(x, y) = xye−
x2+y2

2 and their char-
acters.

Lecture 15 – Wednesday, April 22, 2015 (11:00-13:00)

Simulation 1

Lecture 16 – Friday, April 24, 2015 (11:00-13:00)

Simulation 2

Lecture 17 – Monday, April 27, 2015 (11:00-13:00)

Simulation 3 (Second part)

Lecture 18 – Wednesday, April 29, 2015 (11:00-13:00)

Simulation 3 (First part)
Study the functions

ex

|x| − 2x+ 1

x− 1

log(x− 1)

Exercise. Prove that for the function

f(x) = x3 − 3x+ 1

in the interval [
√

3, 0] it exist only one point satisfying the Rolle theorem.
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