
Neo4j: A graph database

Global Governance, 3rd year
Science and Technology Major

Algorithms, Data and Security
A.Y. 2023/24

Valeria Cardellini

What is a database?
• Organized collection of structured

information, or data, stored in a computer
system

• Usually controlled by a database
management system (DBMS)

• Together, data and DBMS, are referred to as
a database system, often shortened to just
database

• Data stored in a database can be easily
accessed, managed, modified, updated,
controlled, and organized

Valeria Cardellini - ADS 2023/24 1

Types ofdatabases
• Many types of databases, that mainly differ

on data models
– E.g., relational databases, NoSQL databases,

graph database

• The best type depends on how you intend to
use data

• Relational databases
– The most common type
– Data is modeled in rows and columns in a series

of tables to make processing and data querying
efficient

– Use Structured Query Language (SQL) for writing
and querying data

Valeria Cardellini - ADS 2023/24 2

Neo4j: a graph database

• Graph database: a database designed to
treat relationships between data as equally
important to data itself
– Purpose-built to store and navigate relationships
– Uses nodes to store data entities, and links to

store relationships between entities

• Neo4j: an open-source, native graph
database

Valeria Cardellini - ADS 2023/24 3

Graph data model

4

• Powerful data model
– Designed to treat relationships between data
– Focus on visual representation of information (more

human-friendly)

• Data model based on graph (network) structure
– Nodes are the entities and have a set of attributes
– Links are the relationships between the entities

• E.g.: an author writes a book
• In Neo4j links are directed

Valeria Cardellini - ADS 2023/24

Graph data model: movies example

Valeria Cardellini - ADS 2023/24 5

• How can we model information regarding the movie
The Matrix?

Graph data model: Twitter example

6

• How can we represent Twitter data and relationships?
• Choice depends also on what we want to analyze: let’s

assume social media activity

Valeria Cardellini - ADS 2023/24

• Nodes in the graph model
– User: represents a Twitter

user
– Tweet: represents a tweet
– Hashtag: represents a

hashtag
– Link: represents a shared

link in a tweet
– Source: represents the

platform used by Twitter
users to tweet from

Graph data model: Twitter example

7Valeria Cardellini - ADS 2023/24

• Relationships in the
graph:
– POST relationship between a

User and a Tweet: indicates
that this user is the tweet
author

– RETWEETS relationship between
two Tweets: indicates the first
Tweet retweets the second
Tweet

– TAGS relationship between a
Tweet and a Hashtag

– FOLLOWS relationship between
two Users: indicates the first
User follows the second User

– MENTIONS relationship between
Tweet and User: indicates that
the Tweet mentions the User

Suitable use cases for graph databases

• Good for applications where:
– you need to model entities and relationships

between them
– and the focus is on querying for relationships

between entities and analyzing relationships

• Examples of applications
– Social networks
– Recommender systems
– Pattern recognition
– Dependency analysis

8Valeria Cardellini - ADS 2023/24

Neo4j: concepts

Valeria Cardellini - ADS 2023/24 9

• Graph concepts
– Nodes, relationships, properties, and labels

• We use nodes to represent entities
– A node can have properties and labels
– A node can have relationships to other nodes, including itself

• Nodes and relationships have individual attributes
called properties

• Properties consist of key-value pairs, e.g.,
– name = ‘Tom Hanks’, born = 1956
– title = ‘Forrest Gump’, released = 1994

Neo4j: concepts

Valeria Cardellini - ADS 2023/24 10

• Nodes can be tagged with labels (i.e., node types)
– Labels are used to shape the domain by grouping nodes into

sets, so that all nodes with a given label belong to the same
set (e.g., Actor and Director are labels for Person nodes)

• Relationships connect nodes, are unidirectional and
can have properties
– E.g., ACTED_IN, DIRECTED

• Properties are key-value pairs that are used to add
qualities to nodes and relationships

Neo4j: Cypher

11Valeria Cardellini - ADS 2023/24

• Cypher: Neo4j’s graph query language
• Allows users to store and retrieve data from Neo4j

neo4j.com/docs/getting-started/current/cypher-intro/

• It is a declarative way to query the graph powered by
traversals and other techniques
– A traversal navigates through the graph to find paths

• Starts from starting nodes to related nodes, finding answers to
queries

– A path is one or more nodes with connecting relationships,
typically retrieved as a query or traversal result

• It is a textual declarative query language
– Uses a form of ASCII art to represent graph-related patterns
– E.g., (a)-[:LIKES]->(b)

Cypher syntax: node

• Cypher uses a pair of parentheses (), usually
containing a text string, to represent a node

– () represents a node
– varname (optional) is a variable that we can assign to the

node and use it later in a query to refer to that node
– Label (prefixed with a colon :) declares node’s type (or
label)

– Node’s properties are represented as a list of key/value
pairs, enclosed within a pair of { }

– E.g., to represent a Person node with name and year of
birth

12

(varname:Label { p_name: p_value, ... })

Valeria Cardellini - ADS 2023/24

(keanu:Person {name:'Keanu Reeves', born:1964})

list of properties as
key:'value' pairs

Labelvarname

Cypher syntax: relationship

• Cypher uses a pair of dashes -- to represent an
undirected relationship. Directed relationships have
an arrowhead at one end <-- -->
– It is possible to create only directed relationship, although

they can be queried as undirected

• Bracketed expressions [] are used to add details:
– We can assign a variable (e.g., role) also to a relationship

and use it later in a query
– The relationship’s type (e.g., :ACTED_IN) is analogous to the

node's label
– The relationship’s properties (e.g., roles) are analogous to

the node properties

13Valeria Cardellini - ADS 2023/24

(keanu)-[role:ACTED_IN {roles:['Neo']}]->(TheMatrix)

Cypher syntax: pattern variables

• To increase modularity and reduce repetition, Cypher
allows patterns to be assigned to variables
– This allows the matching paths to be inspected, used in

other expressions, etc.

• E.g., acted_in is a variable

14

acted_in = (:Person)-[:ACTED_IN]->(:Movie)

Valeria Cardellini - ADS 2023/24

Cypher syntax: CREATE

• Use CREATE to insert data (nodes and relationships)
in the database
– Example: create a node with label Person and property

name with value John Doe
– RETURN defines what to include in the query result

15

CREATE (p:Person {name: 'John Doe'})
RETURN p

Valeria Cardellini - ADS 2023/24

Cypher syntax: CREATE

• Use CREATE to insert data (nodes and relationships)
– Example: create a Person node and a Movie node and their

relationship

16Valeria Cardellini - ADS 2023/24

CREATE (a:Person {name: 'Tom Hanks', born: 1956})-

[r:ACTED_IN {roles: ['Forrest']}]->(m:Movie {title:

'Forrest Gump', released: 1994})

CREATE (d:Person {name: 'Robert Zemeckis', born:

1951})-[:DIRECTED]->(m)

RETURN a, d, r, m

Cypher syntax: analyze graph model

• Once we have created data (or we use a pre-
populated database), we can display the graph model
in terms of node types and relationship types

Valeria Cardellini - ADS 2023/24 17

call db.schema.visualization()

Cypher syntax: MATCH
• Use MATCH to read data from database

– MATCH specifies the patterns to search for in the database

– E.g., find which movies Keanu Reeves has acted in

18Valeria Cardellini - ADS 2023/24

MATCH (keanu {name:'Keanu Reeves'})-[:ACTED_IN]->

(movies:Movie) RETURN keanu, movies

Cypher syntax: MATCH
• Use MATCH to read data from database

– E.g., find which movies Keanu Reeves has acted in but now
return only the movies title

19Valeria Cardellini - ADS 2023/24

MATCH (keanu {name:'Keanu Reeves'})-[:ACTED_IN]->

(movies:Movie) RETURN movies.title

Cypher syntax: MATCH and WHERE
• Use WHERE to add constraints to the patterns in a

MATCH clause
– E.g., find the movie with title The Matrix

20Valeria Cardellini - ADS 2023/24

MATCH (m:Movie)

WHERE m.title = 'The Matrix'

RETURN m

Cypher syntax: DELETE

• Use DELETE to delete a node, e.g.,

• Node cannot be deleted if it participates in a
relationship. To remove also relationships, we need
to detach the node, delete it and its relationships:

21

MATCH (d:Person {name: 'Greg Kinnear'})

DETACH DELETE d;

Valeria Cardellini - ADS 2023/24

MATCH (p:Person {name: 'John Doe'})

DELETE p

Cypher syntax: Relationship pattern length

Relationship pattern length:

It is possible to specify a length (e.g., 2) in the
relationship description of a pattern

It can be a variable length:
*3..5 (between 3 and 5)
*3.. (greater than 3)
*..5 (less than 5)
* (any length)

22

(a)-[*2]->(b)

Valeria Cardellini - ADS 2023/24

Example: movie database

• Let’s use as case study the movie database provided
by Neo4j as sandbox with pre-populated data
– Basic dataset of Actors acting in Movies
– Available at neo4j.com/sandbox
– Data model of the movie database is

23Valeria Cardellini - ADS 2023/24

Example: movie database

• The goal of our analysis is to show recommendations
for other actors to work with
– By following the meaningful relationships between actors

and movies, we can determine:
• Occurrences of actors working together
• Frequency of actors working with one another
• Movies they have in common in the graph

• Let’s start with simple queries and then increase their
complexity

Valeria Cardellini - ADS 2023/24 24

Some basic queries

• Let’s find a single actor like Tom Hanks
MATCH (tom:Person {name: 'Tom Hanks'}) RETURN tom

Valeria Cardellini - ADS 2023/24 25

Some basic queries

• Let’s retrieve all Tom Hanks’ movies by starting from
Tom Hanks node and following ACTED_IN
relationships
MATCH (tom:Person {name: 'Tom Hanks'})-[r:ACTED_IN]-

>(movie:Movie) RETURN tom, r, movie

– The query result looks like a graph

Valeria Cardellini - ADS 2023/24 26

Some basic queries

• Tom Hanks has colleagues who acted with him in his
movies, let’s find these co-actors:

MATCH (tom:Person {name: 'Tom Hanks'})-[:ACTED_IN]-

>(:Movie)<-[:ACTED_IN]-(coActor:Person) RETURN

coActor.name

Valeria Cardellini - ADS 2023/24 27

tom coActormovieacted_in acted_in

Recommendation queries

• Let’s find Tom’s co-co-actors, i.e., the second-degree
actors in Tom’s network

Valeria Cardellini - ADS 2023/24 28

tom coActormovie1acted_in acted_in

coCoActor movie2acted_in acted_in

Recommendation queries

• Let’s find the co-co-actors, i.e., the second-degree
actors in Tom’s network. This will show us all the
actors Tom may not have worked with yet, and we
can specify a criterium to be sure he hasn’t directly
acted with that person
MATCH (tom:Person {name: 'Tom Hanks'})-[:ACTED_IN]-

>(movie1:Movie)<-[:ACTED_IN]-(coActor:Person)-

[:ACTED_IN]->(movie2:Movie)<-[:ACTED_IN]-

(coCoActor:Person) WHERE tom <> coCoActor AND NOT

(tom)-[:ACTED_IN]->(:Movie)<-[:ACTED_IN]-

(coCoActor) RETURN coCoActor.name

Valeria Cardellini - ADS 2023/24 29

Recommendation queries

• In the query result a few names appear multiple
times, because there are multiple paths to follow from
Tom Hanks to these actors

Valeria Cardellini - ADS 2023/24 30

Recommendation queries

• Let’s see which co-co-actors appear most often in
Tom’s network: we can take frequency of
occurrences into account by counting the number of
paths between Tom Hanks and each coCoActor and
ordering them by highest to lowest value
MATCH (tom:Person {name: 'Tom Hanks'})-[:ACTED_IN]-

>(movie1:Movie)<-[:ACTED_IN]-(coActor:Person)-

[:ACTED_IN]->(movie2:Movie)<-[:ACTED_IN]-

(coCoActor:Person) WHERE tom <> coCoActor AND NOT

(tom)-[:ACTED_IN]->(:Movie)<-[:ACTED_IN]-

(coCoActor) RETURN coCoActor.name, count(coCoActor)

as frequency ORDER BY frequency DESC LIMIT 5

Valeria Cardellini - ADS 2023/24 31

Recommendation queries

• The query result

Valeria Cardellini - ADS 2023/24 32

Recommendation queries

• One of the most frequent “co-co-actors” is Tom
Cruise. Now let’s see which movies and actors are
between the two Toms so we can find out who can
introduce them
MATCH (tom:Person {name: 'Tom Hanks'})-[:ACTED_IN]-

>(movie1:Movie)<-[:ACTED_IN]-(coActor:Person)-

[:ACTED_IN]->(movie2:Movie)<-[:ACTED_IN]-

(cruise:Person {name: 'Tom Cruise'}) WHERE NOT

(tom)-[:ACTED_IN]->(:Movie)<-[:ACTED_IN]-(cruise)

RETURN tom, movie1, coActor, movie2, cruise

Valeria Cardellini - ADS 2023/24 33

Recommendation queries
• The query result: there are multiple paths between

the two Toms
– And there is Kevin Bacon in one of the paths! See the six

degrees of Kevin Bacon game
en.wikipedia.org/wiki/Six_Degrees_of_Kevin_Bacon

Valeria Cardellini - ADS 2023/24 34

Neo4j sandboxes

• As project for the course, you are going to use one of
the Neo4j sandboxes
– Online tool, not requiring a local installation

neo4j.com/sandbox
– Pre-populated with domain data and focus on use-case

specific queries
• See sandbox description on the course web site

– Each sandbox is available for at least 3 days after creation
and can be extended for 7 additional days before expiration;
after the additional days, you need to restart the sandbox
from scratch (in this case, you will lose new data you have
saved into the database)

Valeria Cardellini - ADS 2023/24 35

