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Random Variables

Definition

A random variable is a function that assigns a real number to each outcome of a
random experiment.

@ Random variables are used to model and analyze uncertain or random
phenomena in various fields.

@ They can be discrete or continuous, depending on the nature of the
outcomes.

Example

Consider the random variable X representing the number obtained when rolling a
fair six-sided die. X can take on values 1, 2, 3, 4, 5, or 6.

@ Random variables can be further categorized as:

» Discrete Random Variables
» Continuous Random Variables



Ramdom variables

Experiment

Number X

Possible Values of
X

Roll two fair dice

Sum of the number of dots on the
top faces

2,3,4,5,6,7,8,9,
10, 11,12

Flip a fair coin repeatedly

Number of tosses until the coin
lands heads

1,2,3,4,..

Measure the voltage at an
electrical outlet

Voltage measured

118 =x =122

Operate a light bulb until it
burns out

Time until the bulb burns out

Osx<o




Random variables

Definition

Formally, given Q and a probability P on €, a r.v. X is a function X(w) defined
on  and taking values in R

X:Q—R

and VB C R
P(X € B) = P(w e Q: X(w) € B)

Random variables will be generally indicated with the letters X, Y, Z...

@ A r.v. that may assume only a finite number or an infinite sequence of
values is said to be discrete;

@ A r.v. that may assume any value in some interval on the real number line is
said to be continuous.




Ramdom variables

@ A random variable representing the number of new cases of COVID-19 on
one day would be discrete

@ A random variable representing the weight of a person in kilograms would be
continuous.

@ Very often we work directly with random variables without knowing (or
caring toknow) the underlying probability P on the space Q

@ In fact we will specify (model) directly the probabilities of the outcomes of
the r.v.



Discrete Random Variables

Definition

A discrete random variable is a variable that can take on a countable number of
distinct values. These values are often associated with the outcomes of a random
experiment, and each value has an associated probability.

@ Discrete random variables are used to model and analyze phenomena with
distinct, separate outcomes.

@ Number of heads in a series of coin flips or the count of customers arriving
at a store in an hour.

@ Discrete random variables are characterized by their Probability Mass
Functions (PMFs), which provide a complete description of the variable's
distribution.



Example

Suppose we toss an unbiased coin 2 times in succession. What is the probability
of obtaining x heads (x = 0,1, 2)?

Let X be the discrete r.v. describing the result of such experiments. The
probability function is

(T.T)
(T.H), (H,T)
(HH)

N = Of X




Probability Mass Function (PMF)

Definition
For a discrete random variable X, the Probability Mass Function (PMF) denoted
as px(x) is a function that describes the probability of X taking on a specific

value, x:

px(x) = P(X =x) = P(w e 2: X(w) =x)

@ The PMF characterizes the distribution of a discrete random variable.

@ It assigns probabilities to each possible value of the random variable.

Properties

@ 0 < px(x) <1 for all x.
@ > . Px(x) =1 (the sum over all possible values of X is equal to 1).




Example

Suppose we toss an unbiased coin 2 times in succession. What is the probability
of obtaining x heads (x = 0,1, 2)?

Let X be the discrete r.v. describing the result of such experiments. The
probability function is

x_ px(x)
(T.T) 0 1/4
(TH),HT) 1 1/2
(H,H) 2 1/4




Cumulative Distribution Function (CDF)
Definition
The Cumulative Distribution Function (CDF) of a random variable X, denoted as

Fx(x), is a function that gives the probability that X takes on a value less than or
equal to x for all possible values of x:

@ CDF provides a comprehensive view of the probability distribution of a
random variable.

@ It is a non-decreasing, right-continuous function.

Properties
@ 0 < Fx(x) <1 for all x.
@ Fx(—o00)=0
@ Fx(o0)=1

0 x <x' = F(x) < F(X)




Example

Suppose we toss an unbiased coin 2 times in succession. What is the probability
of obtaining x heads (x = 0,1, 2)?

Let X be the discrete r.v. describing the result of such experiments. The
probability function is

x  px(x)  Fx(x)
(T,T) 0 1/4 1/4
(T,H), (HT) 1 1/2 3/4
(H,H) 2 1/4 1
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Probability distribution function and cumulative distribution function for the
previous example
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Cumulative distribution function of a discrete random variable



CDF and probability of intervals

By the distribution function and the rules of probability we can obtain other
probabilities on the r.v. X:

° P(X>a)=1-P(X <a)=1-Fx(a)

@ Since for a < b, (—o0, b] = (—00, a] U (a, b

P(X<b)y=P(X<a)+Pla<X<b)

and
P(a< X < b) = Fx(b) — Fx(a)



Moments of a Probability Distribution

In probability and statistics, moments are essential statistical measures that
provide insights into the shape and characteristics of a probability distribution.
Moments summarize the distribution’s central tendencies and variability.

@ Moments are often used to quantify the location, spread, skewness, and
kurtosis of a probability distribution.



Moments of a Probability Distribution

Types of Moments

© First Moment: Mean (Expectation)

The first moment is the expected value of the random variable and
represents the center of the distribution.

@ Second Moment: Variance

The second moment quantifies the spread or dispersion of the
distribution.

© Third Moment: Skewness
The third moment measures the asymmetry or skew of the distribution.
© Fourth Moment: Kurtosis

The fourth moment describes the tails or thickness of the distribution.

@ Moments of higher order also exist, but the first four moments are the most
commonly used.



Expected Value of a Discrete Random Variable

Definition

The expected value of a discrete random variable X, denoted as E(X) or ux, is a
measure of the center or average of its distribution. It is defined as:

E(X) =3 x- px(x)

@ The expected value represents a weighted sum of all possible values of the
random variable, where the weights are the probabilities of those values.

@ It provides a single number that summarizes the central tendency of the
random variable.



Expected Value of a Discrete Random Variable

Properties
@ E(X) is a constant, not a random variable.

@ It is a linear operator, meaning that the expected value of a sum of random
variables is the sum of their individual expected values.

@ The expected value is a fundamental concept in probability and statistics,
often used to make predictions and decisions.



Variance of a Discrete Random Variable

Definition
The variance of a discrete random variable X, denoted as Var(X), is a measure of
the spread or dispersion of its probability distribution. It is defined as:

Var(X) = E [(X — ux)?] = Y- (x — x)? - px(x)

X

@ The variance quantifies how much individual values of the random variable
deviate from its expected value.

@ It's a key measure of uncertainty in the distribution.



Variance of a Discrete Random Variable

Interpretation

@ If Var(X) =0, it implies that all values of X are the same, and there is no
variability.

@ A larger variance indicates greater spread or dispersion in the values of X.

@ Variance is a fundamental concept in statistics and plays a crucial role in
understanding and characterizing random variables.



Skewness of a Discrete Random Variable

Skewness

@ Definition: Skewness is a measure of the asymmetry in the probability
distribution of a random variable.

@ It quantifies whether the distribution is skewed to the left (negative skew) or
to the right (positive skew) of the mean.

@ Interpretation:

Negative skewness indicates a longer tail on the left.
Positive skewness indicates a longer tail on the right.
A skewness of 0 implies a symmetric distribution.




Kurtosis of a Discrete Random Variable

Kurtosis

@ Definition: Kurtosis measures the heaviness of the tails and the peakedness
of a probability distribution.

@ It quantifies whether the distribution is more or less peaked than a normal
distribution.

@ Interpretation:

Positive kurtosis (excess kurtosis > 0) indicates heavier tails and a
more peaked distribution than the normal distribution.

Negative kurtosis (excess kurtosis < 0) indicates lighter tails and a
flatter distribution than the normal distribution.

A kurtosis of 3 is subtracted in the formula to make the kurtosis of a
standard normal distribution equal to 0.




Families of Discrete Probability Distributions

Discrete probability distributions are categorized into different families that
provide a framework for modeling and understanding random phenomena. The
common discrete probability distributions are:

@ Bernoulli Distribution
@ Binomial Distribution
@ Geometric Distribution

@ Poisson Distribution

The choice of distribution depends on the specific problem and underlying
assumptions.



Bernoulli Probability Distribution
Characteristics
X ~ Bernoulli(p) with p € (0,1).

@ A Bernoulli random variable, typically denoted as X, takes on two values: 1
(success) or 0 (failure).

@ The probability of success is denoted as p, and the probability of failure is
g=1—p.
@ The probability mass function (PMF) of a Bernoulli distribution:

(x) = p, ifx=1
PXI= g, ifix=0

Applications

@ Bernoulli trials are commonly used to model success-failure experiments,
such as coin flips, yes-no questions, or pass-fail tests.

@ |t serves as the basis for more complex distributions, like the binomial and
geometric distributions.




Mean and Variance of a Bernoulli Distribution

Mean (Expected Value):

The mean (u) of a Bernoulli distribution is calculated as:

p=EX)= x-px(x)=1-p+0-(1—p)=p

Variance:

The variance (02) of a Bernoulli distribution is calculated as:

0% = Var(X) = > (x — ux)* - px(x) =

X

2 =(1—pP-p+(0—p) (1-p)=
o?=p(l—p)(1—p+p)=p(l-p).




Geometric Probability Distribution

The Geometric distribution is a probability distribution that models the number of
Bernoulli trials required for the first success to occur. It is used to describe the
probability of success on the x-th trial.

Characteristics
X ~ Geometric(p) with p € (0,1).

@ A Geometric random variable, typically denoted as X, takes on non-negative
integer values: 0,1,2,....

@ The probability of success on each trial is denoted as p.

@ The probability mass function (PMF) of a Geometric distribution:

px(x) = (1 —p)*t-p, for x=1,2,3,...




Geometric Probability Distribution

Applications

@ The Geometric distribution is commonly used to model situations where
you're interested in the number of trials required for a success in a sequence
of independent Bernoulli trials.

@ Examples include the number of coin flips to get the first heads, the number
of attempts to make the first sale, or the number of failures before a
machine works.

Number of coin flips until the first head sshows up (assuming independent coin
flips)

Probability distribution function for a Geometric r.v. with p = 0.5




Geometric Probability Distribution

Example
Suppose you are playing a game where you have a 1 in 5 chance of winning on
each trial. You keep playing the game until you win. Calculate the probability

that you will need exactly 4 trials to win.




Geometric Probability Distribution

Example
Suppose you are playing a game where you have a 1 in 5 chance of winning on
each trial. You keep playing the game until you win. Calculate the probability

that you will need exactly 4 trials to win.

px(4) = P(X = 4) = (1-1/5)4"D(1/5)
= (4/5)°(1/5)
= (64/125)(1/5)
px(4) = 64/625




Mean and Variance of a Geometric Distribution

Mean (Expected Value)

The mean (expected value) of X is calculated as:

1
=%

Variance

The variance of X is calculated as:




Binomial Probability Distribution

The Binomial distribution is a discrete probability distribution that models the

number of successes (e.g., yes/no, heads/tails) in a fixed number of independent
Bernoulli trials.

Characteristics
X ~ Binomial(n, p) with n > 0 and p € (0,1).

@ A Binomial random variable, typically denoted as X, represents the number
of successes in n independent Bernoulli trials.

@ The probability of success in each trial is denoted as p.

@ The probability mass function (PMF) of a Binomial distribution:

px(x) = (g) p*(1—p)"=*, forx=0,1,2,...,n

or equivalentely

n! X —X
pX(X):mp (17p)n ,forx:0,1,2,...,n




Binomial Probability Distribution

Applications

@ The Binomial distribution is widely used to model real-world scenarios, such
as the number of successful sales out of a fixed number of sales attempts,
the number of heads in a fixed number of coin flips, or the number of
defective items in a batch of products.

@ It's a fundamental distribution in statistics and probability theory.

Number of heads in n independent coin flips

04 05

03

0.1

o

D ||
I| |I._
© o

Probability distribution function for a Binomial r.v. with n =10 and p =0.5

0



Binomial Probability Distribution

Example

Suppose a factory produces light bulbs, and the probability of any single light bulb
being defective is 0.1. The factory produces a batch of 50 light bulbs.Calculate
the probability of finding exactly 5 defective light bulbs in the batch.




Binomial Probability Distribution

Example

Suppose a factory produces light bulbs, and the probability of any single light bulb
being defective is 0.1. The factory produces a batch of 50 light bulbs.Calculate
the probability of finding exactly 5 defective light bulbs in the batch.

We have n =50, x =5, and p = 0.1:

px(5) = P(X = 5) = (550) (0.1)° - (0.9)"

px(5) = 0.185




Mean and Variance of a Binomial Distribution

Mean (Expected Value)

The mean (expected value) of X is calculated as:

jr=np

Variance
The variance of X is calculated as:

o? = np(1 - p)




Poisson Probability Distribution

The Poisson distribution is a discrete probability distribution that models the
number of events occurring within a fixed interval of time or space, given a
known average rate of occurrence.

Characteristics
X ~ Pois(\) with A > 0.

@ A Poisson random variable, typically denoted as X, represents the count of
events in a fixed interval.

@ The parameter \ represents the average rate of events per interval.

@ The probability mass function (PMF) of a Poisson distribution:

7)\>\x
px(x) = € T for x =0,1,2,...

@ The expected value is E(X) = A, and the variance is Var(X) = \.




Poisson Probability Distribution

Applications

@ The Poisson distribution is used in a wide range of applications, including
modeling the number of phone calls to a call center in an hour, the number
of accidents at an intersection in a day, or the number of emails arriving in a
mailbox in a minute.

@ It is particularly useful in situations where events are rare but occur
randomly over time.

Number of customers in one hour

Probability distribution function for a Poisson r.v. with A = 5.

000 005 010 015 020 025 030



Exercise: Poisson Distribution and Probability

Example

Suppose that, on average, there are 3 customers arriving at a coffee shop per
hour (rate — A = 3). We can model this with a Poisson distribution.

© Calculate the probability of 5 customers arriving in an hour:
The probability mass function (PMF) of the Poisson distribution is given by:

g o

x!

P(X =x)=

where X is the average rate of arrivals (in this case, A = 3) and x is the number
of arrivals.

e 3.3
5!
The probability of 5 customers arriving in an hour is approximately 0.1008.




Exercise: Poisson Distribution and Probability

Example
© Calculate the probability of at least 2 customers arriving in 15 minutes.
To calculate the probability of at least 2 customers arriving in 15 minutes, we

need to consider the rate for 15 minutes, which is A\/4. We can use the
complementary probability approach:

P(X>2)=1-P(X <2)

P(X <2)=P(X=0)+P(X =1)

0! 1!

The probability of at least 2 customers arriving in 15 minutes is approximately
0.1734.

P(X>2)=1— <e3/“ -(3/4)° | e/ (3/4)1)




Mean and Variance of a Poisson Distribution

Mean (Expected Value)

The mean (expected value) of X is equal to the parameter A:

p=A

Variance
The variance of X is also equal to the parameter A:

a2 =\




