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Random Variables

Definition
A random variable is a function that assigns a real number to each outcome of a
random experiment.

Random variables are used to model and analyze uncertain or random
phenomena in various fields.

They can be discrete or continuous, depending on the nature of the
outcomes.

Example

Consider the random variable X representing the number obtained when rolling a
fair six-sided die. X can take on values 1, 2, 3, 4, 5, or 6.

Random variables can be further categorized as:

I Discrete Random Variables
I Continuous Random Variables



Ramdom variables



Random variables

Definition

Formally, given Ω and a probability P on Ω, a r.v. X is a function X (ω) defined
on Ω and taking values in R

X : Ω→ R

and ∀B ⊆ R
P(X ∈ B) = P(ω ∈ Ω : X (ω) ∈ B)

Random variables will be generally indicated with the letters X ,Y ,Z ...

A r.v. that may assume only a finite number or an infinite sequence of
values is said to be discrete;

A r.v. that may assume any value in some interval on the real number line is
said to be continuous.



Ramdom variables

A random variable representing the number of new cases of COVID-19 on
one day would be discrete

A random variable representing the weight of a person in kilograms would be
continuous.

Very often we work directly with random variables without knowing (or
caring toknow) the underlying probability P on the space Ω

In fact we will specify (model) directly the probabilities of the outcomes of
the r.v.



Discrete Random Variables

Definition
A discrete random variable is a variable that can take on a countable number of
distinct values. These values are often associated with the outcomes of a random
experiment, and each value has an associated probability.

Discrete random variables are used to model and analyze phenomena with
distinct, separate outcomes.

Number of heads in a series of coin flips or the count of customers arriving
at a store in an hour.

Discrete random variables are characterized by their Probability Mass
Functions (PMFs), which provide a complete description of the variable’s
distribution.



Example

Suppose we toss an unbiased coin 2 times in succession. What is the probability
of obtaining x heads (x = 0, 1, 2)?
Let X be the discrete r.v. describing the result of such experiments. The
probability function is

x
(T,T) 0
(T,H), (H,T) 1
(H,H) 2



Probability Mass Function (PMF)

Definition

For a discrete random variable X , the Probability Mass Function (PMF) denoted
as pX (x) is a function that describes the probability of X taking on a specific
value, x :

pX (x) = P(X = x) = P(ω ∈ Ω : X (ω) = x)

The PMF characterizes the distribution of a discrete random variable.

It assigns probabilities to each possible value of the random variable.

Properties

0 ≤ pX (x) ≤ 1 for all x .∑
all x pX (x) = 1 (the sum over all possible values of X is equal to 1).



Example

Suppose we toss an unbiased coin 2 times in succession. What is the probability
of obtaining x heads (x = 0, 1, 2)?
Let X be the discrete r.v. describing the result of such experiments. The
probability function is

x pX (x)
(T,T) 0 1/4
(T,H), (H,T) 1 1/2
(H,H) 2 1/4



Cumulative Distribution Function (CDF)

Definition

The Cumulative Distribution Function (CDF) of a random variable X , denoted as
FX (x), is a function that gives the probability that X takes on a value less than or
equal to x for all possible values of x :

FX (x) = P(X ≤ x)

CDF provides a comprehensive view of the probability distribution of a
random variable.

It is a non-decreasing, right-continuous function.

Properties

0 ≤ FX (x) ≤ 1 for all x .

FX (−∞) = 0

FX (∞) = 1

x < x ′ ⇒ F (x) ≤ F (x ′)



Example

Suppose we toss an unbiased coin 2 times in succession. What is the probability
of obtaining x heads (x = 0, 1, 2)?
Let X be the discrete r.v. describing the result of such experiments. The
probability function is

x pX (x) FX (x)
(T,T) 0 1/4 1/4
(T,H), (H,T) 1 1/2 3/4
(H,H) 2 1/4 1



Probability distribution function and cumulative distribution function for the
previous example



Cumulative distribution function of a discrete random variable



CDF and probability of intervals

By the distribution function and the rules of probability we can obtain other
probabilities on the r.v. X :

P(X > a) = 1− P(X ≤ a) = 1− FX (a)

Since for a < b, (−∞, b] = (−∞, a] ∪ (a, b]

P(X ≤ b) = P(X ≤ a) + P(a < X ≤ b)

and
P(a < X ≤ b) = FX (b)− FX (a)



Moments of a Probability Distribution

In probability and statistics, moments are essential statistical measures that
provide insights into the shape and characteristics of a probability distribution.
Moments summarize the distribution’s central tendencies and variability.

Moments are often used to quantify the location, spread, skewness, and
kurtosis of a probability distribution.



Moments of a Probability Distribution

Types of Moments

1 First Moment: Mean (Expectation)

I The first moment is the expected value of the random variable and
represents the center of the distribution.

2 Second Moment: Variance

I The second moment quantifies the spread or dispersion of the
distribution.

3 Third Moment: Skewness

I The third moment measures the asymmetry or skew of the distribution.

4 Fourth Moment: Kurtosis

I The fourth moment describes the tails or thickness of the distribution.

Moments of higher order also exist, but the first four moments are the most
commonly used.



Expected Value of a Discrete Random Variable

Definition

The expected value of a discrete random variable X , denoted as E (X ) or µX , is a
measure of the center or average of its distribution. It is defined as:

E (X ) =
∑
x

x · pX (x)

The expected value represents a weighted sum of all possible values of the
random variable, where the weights are the probabilities of those values.

It provides a single number that summarizes the central tendency of the
random variable.



Expected Value of a Discrete Random Variable

Properties

E (X ) is a constant, not a random variable.

It is a linear operator, meaning that the expected value of a sum of random
variables is the sum of their individual expected values.

The expected value is a fundamental concept in probability and statistics,
often used to make predictions and decisions.



Variance of a Discrete Random Variable

Definition

The variance of a discrete random variable X , denoted as Var(X ), is a measure of
the spread or dispersion of its probability distribution. It is defined as:

Var(X ) = E
[
(X − µX )2

]
=
∑
x

(x − µX )2 · pX (x)

The variance quantifies how much individual values of the random variable
deviate from its expected value.

It’s a key measure of uncertainty in the distribution.



Variance of a Discrete Random Variable

Interpretation

If Var(X ) = 0, it implies that all values of X are the same, and there is no
variability.

A larger variance indicates greater spread or dispersion in the values of X .

Variance is a fundamental concept in statistics and plays a crucial role in
understanding and characterizing random variables.



Skewness of a Discrete Random Variable

Skewness

Definition: Skewness is a measure of the asymmetry in the probability
distribution of a random variable.

It quantifies whether the distribution is skewed to the left (negative skew) or
to the right (positive skew) of the mean.

Interpretation:

I Negative skewness indicates a longer tail on the left.
I Positive skewness indicates a longer tail on the right.
I A skewness of 0 implies a symmetric distribution.



Kurtosis of a Discrete Random Variable

Kurtosis

Definition: Kurtosis measures the heaviness of the tails and the peakedness
of a probability distribution.

It quantifies whether the distribution is more or less peaked than a normal
distribution.

Interpretation:

I Positive kurtosis (excess kurtosis > 0) indicates heavier tails and a
more peaked distribution than the normal distribution.

I Negative kurtosis (excess kurtosis < 0) indicates lighter tails and a
flatter distribution than the normal distribution.

I A kurtosis of 3 is subtracted in the formula to make the kurtosis of a
standard normal distribution equal to 0.



Families of Discrete Probability Distributions

Discrete probability distributions are categorized into different families that
provide a framework for modeling and understanding random phenomena. The
common discrete probability distributions are:

Bernoulli Distribution

Binomial Distribution

Geometric Distribution

Poisson Distribution

The choice of distribution depends on the specific problem and underlying
assumptions.



Bernoulli Probability Distribution

Characteristics

X ∼ Bernoulli(p) with p ∈ (0, 1).

A Bernoulli random variable, typically denoted as X , takes on two values: 1
(success) or 0 (failure).

The probability of success is denoted as p, and the probability of failure is
q = 1− p.

The probability mass function (PMF) of a Bernoulli distribution:

pX (x) =

{
p, if x = 1

q, if x = 0

Applications

Bernoulli trials are commonly used to model success-failure experiments,
such as coin flips, yes-no questions, or pass-fail tests.

It serves as the basis for more complex distributions, like the binomial and
geometric distributions.



Mean and Variance of a Bernoulli Distribution

Mean (Expected Value):

The mean (µ) of a Bernoulli distribution is calculated as:

µ = E (X ) =
∑
x

x · pX (x) = 1 · p + 0 · (1− p) = p

Variance:

The variance (σ2) of a Bernoulli distribution is calculated as:

σ2 = Var(X ) =
∑
x

(x − µX )2 · pX (x) =

σ2 = (1− p)2 · p + (0− p)2 · (1− p) =

σ2 = p(1− p)(1− p + p) = p(1− p).



Geometric Probability Distribution

The Geometric distribution is a probability distribution that models the number of
Bernoulli trials required for the first success to occur. It is used to describe the
probability of success on the x-th trial.

Characteristics

X ∼ Geometric(p) with p ∈ (0, 1).

A Geometric random variable, typically denoted as X , takes on non-negative
integer values: 0, 1, 2, . . ..

The probability of success on each trial is denoted as p.

The probability mass function (PMF) of a Geometric distribution:

pX (x) = (1− p)x−1 · p, for x = 1, 2, 3, . . .



Geometric Probability Distribution

Applications

The Geometric distribution is commonly used to model situations where
you’re interested in the number of trials required for a success in a sequence
of independent Bernoulli trials.

Examples include the number of coin flips to get the first heads, the number
of attempts to make the first sale, or the number of failures before a
machine works.

Number of coin flips until the first head sshows up (assuming independent coin
flips)
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Probability distribution function for a Geometric r.v. with p = 0.5



Geometric Probability Distribution

Example

Suppose you are playing a game where you have a 1 in 5 chance of winning on
each trial. You keep playing the game until you win. Calculate the probability
that you will need exactly 4 trials to win.

pX (4) = P(X = 4) = (1− 1/5)(4−1)(1/5)

= (4/5)3(1/5)

= (64/125)(1/5)

pX (4) = 64/625



Geometric Probability Distribution

Example

Suppose you are playing a game where you have a 1 in 5 chance of winning on
each trial. You keep playing the game until you win. Calculate the probability
that you will need exactly 4 trials to win.

pX (4) = P(X = 4) = (1− 1/5)(4−1)(1/5)

= (4/5)3(1/5)

= (64/125)(1/5)

pX (4) = 64/625



Mean and Variance of a Geometric Distribution

Mean (Expected Value)

The mean (expected value) of X is calculated as:

µ =
1

p

Variance
The variance of X is calculated as:

σ2 =
1− p

p2



Binomial Probability Distribution
The Binomial distribution is a discrete probability distribution that models the
number of successes (e.g., yes/no, heads/tails) in a fixed number of independent
Bernoulli trials.

Characteristics

X ∼ Binomial(n, p) with n > 0 and p ∈ (0, 1).

A Binomial random variable, typically denoted as X , represents the number
of successes in n independent Bernoulli trials.

The probability of success in each trial is denoted as p.

The probability mass function (PMF) of a Binomial distribution:

pX (x) =

(
n

x

)
px(1− p)n−x , for x = 0, 1, 2, . . . , n

or equivalentely

pX (x) =
n!

x!(n − x)!
px(1− p)n−x , for x = 0, 1, 2, . . . , n



Binomial Probability Distribution

Applications

The Binomial distribution is widely used to model real-world scenarios, such
as the number of successful sales out of a fixed number of sales attempts,
the number of heads in a fixed number of coin flips, or the number of
defective items in a batch of products.

It’s a fundamental distribution in statistics and probability theory.

Number of heads in n independent coin flips
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Probability distribution function for a Binomial r.v. with n = 10 and p = 0.5



Binomial Probability Distribution

Example

Suppose a factory produces light bulbs, and the probability of any single light bulb
being defective is 0.1. The factory produces a batch of 50 light bulbs.Calculate
the probability of finding exactly 5 defective light bulbs in the batch.
We have n = 50, x = 5, and p = 0.1:

pX (5) = P(X = 5) =

(
50

5

)
· (0.1)5 · (0.9)45

pX (5) = 0.185



Binomial Probability Distribution

Example

Suppose a factory produces light bulbs, and the probability of any single light bulb
being defective is 0.1. The factory produces a batch of 50 light bulbs.Calculate
the probability of finding exactly 5 defective light bulbs in the batch.
We have n = 50, x = 5, and p = 0.1:

pX (5) = P(X = 5) =

(
50

5

)
· (0.1)5 · (0.9)45

pX (5) = 0.185



Mean and Variance of a Binomial Distribution

Mean (Expected Value)

The mean (expected value) of X is calculated as:

µ = np

Variance
The variance of X is calculated as:

σ2 = np(1− p)



Poisson Probability Distribution

The Poisson distribution is a discrete probability distribution that models the
number of events occurring within a fixed interval of time or space, given a
known average rate of occurrence.

Characteristics

X ∼ Pois(λ) with λ > 0.

A Poisson random variable, typically denoted as X , represents the count of
events in a fixed interval.

The parameter λ represents the average rate of events per interval.

The probability mass function (PMF) of a Poisson distribution:

pX (x) =
e−λλx

x!
, for x = 0, 1, 2, . . .

The expected value is E (X ) = λ, and the variance is Var(X ) = λ.



Poisson Probability Distribution

Applications

The Poisson distribution is used in a wide range of applications, including
modeling the number of phone calls to a call center in an hour, the number
of accidents at an intersection in a day, or the number of emails arriving in a
mailbox in a minute.

It is particularly useful in situations where events are rare but occur
randomly over time.

Number of customers in one hour
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Probability distribution function for a Poisson r.v. with λ = 5.



Exercise: Poisson Distribution and Probability

Example

Suppose that, on average, there are 3 customers arriving at a coffee shop per
hour (rate → λ = 3). We can model this with a Poisson distribution.

1 Calculate the probability of 5 customers arriving in an hour:

The probability mass function (PMF) of the Poisson distribution is given by:

P(X = x) =
e−λ · λx

x!

where λ is the average rate of arrivals (in this case, λ = 3) and x is the number
of arrivals.

P(X = 5) =
e−3 · 35

5!

The probability of 5 customers arriving in an hour is approximately 0.1008.



Exercise: Poisson Distribution and Probability

Example

2 Calculate the probability of at least 2 customers arriving in 15 minutes.

To calculate the probability of at least 2 customers arriving in 15 minutes, we
need to consider the rate for 15 minutes, which is λ/4. We can use the
complementary probability approach:

P(X ≥ 2) = 1− P(X < 2)

P(X < 2) = P(X = 0) + P(X = 1)

P(X ≥ 2) = 1−
(
e−3/4 · (3/4)0

0!
+

e−3/4 · (3/4)1

1!

)
The probability of at least 2 customers arriving in 15 minutes is approximately
0.1734.



Mean and Variance of a Poisson Distribution

Mean (Expected Value)

The mean (expected value) of X is equal to the parameter λ:

µ = λ

Variance
The variance of X is also equal to the parameter λ:

σ2 = λ


