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Properties of Estimators

@ Unbiasedness
o Efficiency

o Consistency



Unbiasedness

Unbiased Estimator

An estimator 6 is unbiased if its expected value is equal to the true value
of the parameter being estimated. That is, E(6) = 6.

o Let's consider an estimator 6 for the parameter 6.

@ The bias of the estimator is defined as the difference between its

expected value and the true parameter value: Bias() = E(d) — 6.

o E(0) = f@f(x; 0)dx, where f(x;0) is the probability density function
(pdf) of the observed data x.

o If the bias is zero, i.e., Bias(d) = 0, the estimator is unbiased.



Consistency

Consistent Estimator

An estimator 0 is consistent if it converges in probability to the true value
. . AP
of the parameter as the sample size increases. That is, § — 6.

o Let § be an estimator for the parameter 6.

@ Convergence in probability means that as the sample size increases,
the probability that 6 deviates from 6 becomes smaller.

o Formally, for any € > 0, lim,_,o P(|d — 6] > €) = 0.

@ A consistent estimator provides increasingly accurate estimates as
more data becomes available.



Efficiency

Efficient Estimator

Among unbiased estimators, an estimator 9A1 is more efficient than another
estimator 0, if it has a smaller variance for all sample sizes. That is,
Var(61) < Var(6-).

o Let 9A1 and 672 be two unbiased estimators for the parameter 6.

@ The efficiency of an estimator is determined by its variance.

@ An efficient estimator achieves the smallest possible variance among
all unbiased estimators, making it more precise.

@ The Cramér-Rao lower bound provides a lower bound for the
variance of any unbiased estimator.



Cramer-Rao Inequality

@ The Cramer-Rao Inequality relates the variance of an unbiased
estimator to the Fisher Information.

o Let § be an unbiased estimator for a parameter 0.
@ The Cramer-Rao Inequality states:
Var(0) > L
ar —
where Z(0) is the Fisher Information.

@ The Fisher Information (will be introduced later) measures the
amount of information that the data provides about the parameter.



Mean Squared Error

@ The Mean Squared Error (MSE) is a commonly used measure to
assess the quality of an estimator.

@ It quantifies the average squared difference between the estimated
values and the true values of a parameter.

@ The Mean Squared Error is defined as the expected value of the
squared difference between the estimator 6 and the true parameter
value 6:

MSE(f) = E [(é - 9)2}



Properties of Mean Squared Error

The Mean Squared Error possesses several important properties:

o Non-Negativity: The MSE is always non-negative: MSE(6) > 0.

e Bias-Variance Decomposition: The MSE can be decomposed into
the sum of the squared bias and the variance of the estimator:

MSE () = Bias(f)? + Var()

where Bias(f) = E(d) — 0 is the bias and Var(§) = E [(é - E(é))Z] is
the variance of the estimator.

o Efficiency: An efficient estimator minimizes the MSE among all
unbiased estimators.



Bias-Variance Decomposition

Theorem

The MSE can be decomposed into the sum of the squared bias and the
variance of the estimator:

MSE(0) = Bias(0)? + Var(f)

— —
Var(6) Bias(f)>
= Var(0) + Bias(f)?

Note: E [QA - E(HA)}



Standard Errors

@ The standard error (SE) is a measure of the variability of an
estimator.

@ It represents the standard deviation of the sampling distribution of the
estimator.

@ They are typically used to construct confidence intervals and perform
hypothesis tests.

@ A smaller standard error indicates a more precise estimator.

@ Estimation of Standard Errors:

> Analytical Methods

» Numerical Methods



Unbiasedness of Sample Mean Estimator

Unbiased Estimator

An estimator 6 is unbiased if its expected value is equal to the true value
of the parameter being estimated. That is, E(0) = 6.

Using linearity of expectation and properties of random variables, we obtain

E()_() =E (% > Xi) = %27:1 E(X;) = % Do =



Variance of X

Var(X) =

<X1+X2+...+Xn>
Var p =

1
:fz-Var(Xl-i-Xz—i-...-i-Xn):
n

1
=5 (Var(Xy) + Var(X2) + ... + Var(X,)) (by independence)

1
= 02 (since Var(Xy) = Var(Xo) = ... = Var(X,) = 0?) =



Consistency and Efficiency of Sample Mean Estimator

Consistent Estimator

The estimator X is consistent if it converges in probability to 1 as the

sample size increases. That is, X L W, ie. limy oo P(\)_<,, —pl>e)=0
for any € > 0.

Efficient Estimator

Among unbiased estimators, the sample mean estimator X is more
efficient than another estimator 6. That is, Var(X) < Var(0).




Sample Variance Estimator

Let's consider a random sample of size n from a population with unknown
variance 0. The biased variance estimator, denoted as S2, is calculated
using the following formula:

i=1

where X; represents individual observations, and X is the sample mean. It

can be proved that:
-1
E[SF] = =0
n



Bias correction: unbiased Sample Variance Estimator

° 5[3 underestimates the true population variance.

@ The bias decreases as the sample size increases.

Let's consider a random sample of size n from a population with unknown
variance 2. The sample variance estimator, denoted as S, is calculated
using the following formula:

s2— L S x - xy

n—14%
i=1

where X; represents individual observations, and X is the sample mean. It

can be proved that
E[S?] = o°.
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