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Unbiasedness

Unbiased Estimator

An estimator θ̂ is unbiased if its expected value is equal to the true value
of the parameter being estimated. That is, E(θ̂) = θ.

Let’s consider an estimator θ̂ for the parameter θ.

The bias of the estimator is defined as the difference between its
expected value and the true parameter value: Bias(θ̂) = E(θ̂)− θ.

E(θ̂) =
∫
θ̂f (x; θ)dx, where f (x; θ) is the probability density function

(pdf) of the observed data x.

If the bias is zero, i.e., Bias(θ̂) = 0, the estimator is unbiased.



Consistency

Consistent Estimator

An estimator θ̂ is consistent if it converges in probability to the true value

of the parameter as the sample size increases. That is, θ̂
P−→ θ.

Let θ̂ be an estimator for the parameter θ.

Convergence in probability means that as the sample size increases,
the probability that θ̂ deviates from θ becomes smaller.

Formally, for any ε > 0, limn→∞ P(|θ̂ − θ| > ε) = 0.

A consistent estimator provides increasingly accurate estimates as
more data becomes available.



Efficiency

Efficient Estimator

Among unbiased estimators, an estimator θ̂1 is more efficient than another
estimator θ̂2 if it has a smaller variance for all sample sizes. That is,
Var(θ̂1) < Var(θ̂2).

Let θ̂1 and θ̂2 be two unbiased estimators for the parameter θ.

The efficiency of an estimator is determined by its variance.

An efficient estimator achieves the smallest possible variance among
all unbiased estimators, making it more precise.

The Cramér-Rao lower bound provides a lower bound for the
variance of any unbiased estimator.



Cramer-Rao Inequality

The Cramer-Rao Inequality relates the variance of an unbiased
estimator to the Fisher Information.

Let θ̂ be an unbiased estimator for a parameter θ.

The Cramer-Rao Inequality states:

Var(θ̂) ≥ 1

I(θ)
,

where I(θ) is the Fisher Information.

The Fisher Information (will be introduced later) measures the
amount of information that the data provides about the parameter.



Mean Squared Error

The Mean Squared Error (MSE) is a commonly used measure to
assess the quality of an estimator.

It quantifies the average squared difference between the estimated
values and the true values of a parameter.

The Mean Squared Error is defined as the expected value of the
squared difference between the estimator θ̂ and the true parameter
value θ:

MSE (θ̂) = E
[
(θ̂ − θ)2

]



Properties of Mean Squared Error

The Mean Squared Error possesses several important properties:

Non-Negativity: The MSE is always non-negative: MSE (θ̂) ≥ 0.

Bias-Variance Decomposition: The MSE can be decomposed into
the sum of the squared bias and the variance of the estimator:

MSE (θ̂) = Bias(θ̂)2 + Var(θ̂)

where Bias(θ̂) = E(θ̂)− θ is the bias and Var(θ̂) = E
[
(θ̂ − E(θ̂))2

]
is

the variance of the estimator.

Efficiency: An efficient estimator minimizes the MSE among all
unbiased estimators.



Bias-Variance Decomposition

Theorem

The MSE can be decomposed into the sum of the squared bias and the
variance of the estimator:

MSE (θ̂) = Bias(θ̂)2 + Var(θ̂)

Proof:

MSE (θ̂) = E
[
(θ̂ − θ)2

]
= E

[
(θ̂ − E(θ̂) + E(θ̂)− θ)2

]
= E

[
(θ̂ − E(θ̂))2

]
︸ ︷︷ ︸

Var(θ̂)

+2 · E
[
θ̂ − E(θ̂)

]
· E
[
E(θ̂)− θ

]
+ E

[
(E(θ̂)− θ)2

]
︸ ︷︷ ︸

Bias(θ̂)2

= Var(θ̂) + Bias(θ̂)2

Note: E
[
θ̂ − E(θ̂)

]



Standard Errors

The standard error (SE) is a measure of the variability of an
estimator.

It represents the standard deviation of the sampling distribution of the
estimator.

They are typically used to construct confidence intervals and perform
hypothesis tests.

A smaller standard error indicates a more precise estimator.

Estimation of Standard Errors:

I Analytical Methods

I Numerical Methods



Unbiasedness of Sample Mean Estimator

Unbiased Estimator

An estimator θ̂ is unbiased if its expected value is equal to the true value
of the parameter being estimated. That is, E(θ̂) = θ.

Using linearity of expectation and properties of random variables, we obtain

E(X̄ ) = E
(
1
n

∑n
i=1 Xi

)
= 1

n

∑n
i=1 E(Xi ) = 1

n

∑n
i=1 µ = µ.



Variance of X̄

Var(X̄ ) = Var

(
X1 + X2 + . . .+ Xn

n

)
=

=
1

n2
· Var(X1 + X2 + . . .+ Xn) =

=
1

n2
· (Var(X1) + Var(X2) + . . .+ Var(Xn)) (by independence)

=
1

n2
· n · σ2 (since Var(X1) = Var(X2) = . . . = Var(Xn) = σ2) =

=
σ2

n



Consistency and Efficiency of Sample Mean Estimator

Consistent Estimator

The estimator X̄ is consistent if it converges in probability to µ as the

sample size increases. That is, X̄
P−→ µ, i.e. limn→∞ P(|X̄n − µ| > ε) = 0

for any ε > 0.

Efficient Estimator

Among unbiased estimators, the sample mean estimator X̄ is more
efficient than another estimator θ̂. That is, Var(X̄ ) < Var(θ̂).



Sample Variance Estimator

Let’s consider a random sample of size n from a population with unknown
variance σ2. The biased variance estimator, denoted as S2

b , is calculated
using the following formula:

S2
b =

1

n

n∑
i=1

(Xi − X̄ )2

where Xi represents individual observations, and X̄ is the sample mean. It
can be proved that:

E[S2
b ] =

n − 1

n
σ2



Bias correction: unbiased Sample Variance Estimator

S2
b underestimates the true population variance.

The bias decreases as the sample size increases.

Let’s consider a random sample of size n from a population with unknown
variance σ2. The sample variance estimator, denoted as S2, is calculated
using the following formula:

S2 =
1

n − 1

n∑
i=1

(Xi − X̄ )2

where Xi represents individual observations, and X̄ is the sample mean. It
can be proved that

E[S2] = σ2.
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