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Three famous frequentist approaches for point estimation

Method of Moments

Least Squares Estimation

Maximum Likelihood Estimation



Method of Moments

The method of moments starts by equating the sample moments
(e.g., mean, variance) with their corresponding population moments.

We derive equations by setting the sample moments equal to the
corresponding theoretical moments.

The resulting system of equations can be solved to estimate the
parameters of the distribution.

The number of equations needed depends on the number of
parameters to be estimated.



Gaussian model: Mean Estimator

Let’s consider a random sample X1,X2, . . . ,Xn from a Gaussian
distribution with mean µ and variance σ2.

The first population moment is the mean, µ1 = E (X ) = µ.

The first sample moment is the sample mean, m1 = 1
n

∑n
i=1 Xi .

Equating the population and sample moments, we have
µ = 1

n

∑n
i=1 Xi , which gives us the mean estimator

µ̂MM = 1
n

∑n
i=1 Xi .



Derivation of Variance Estimator

Definition of the r-th moment

if X is discrete E (X r ) =
∑

i p(xi )x
r
i

if X is continuous in A E (X r ) =
∫
A f (x)x rdx

The second population moment is µ2 = E (X 2) = 1
n

∑n
i=1 X

2
i .

We know that: Var(X ) = E (X 2)− (E (X ))2

Equating the population and sample moments, we have

σ2 = 1
n

∑n
i=1(Xi )

2 −
(
1
n

∑n
i=1(Xi )

)2
.

Simplifying the equation, we obtain the variance estimator
σ̂2MM = 1

n

∑n
i=1(Xi − X̄ )2.



Advantages and Limitations

Advantages of the method of moments include its simplicity, ease of
implementation, and intuitive interpretation

Is fairly simple and yields consistent estimators (under very weak
assumptions)

It may not always yield the most efficient estimators, especially in
small samples or complex models

It often yelds biased estimators

the suitability of the method depends on the specific problem and the
available data



Likelihood Function

The likelihood function is a function of the parameters of a statistical
model, given the observed data.

It measures the likelihood or plausibility of the observed data for
different parameter values.

For a random sample of independent and identically distributed
(i.i.d.) observations, the likelihood function is the product of the
probability density function (pdf) or probability mass function (pmf)
for each observation.



Likelihood Function

Likelihood Function

The likelihood function, denoted as L(θ), measures the probability of
observing the data given the parameter values θ.

For independent and identically distributed (i.i.d.) observations of a
statistical model with density function f (·; θ), the likelihood function
is the product of the individual densities.

If X1,X2, . . . ,Xn are i.i.d. random variables, the likelihood function is
given by:

L(θ) =
n∏

i=1

f (Xi ; θ)



Properties of the Likelihood Function

The likelihood function possesses several important properties:
I Non-negativity: The likelihood function is non-negative for all

parameter values.
I Monotonicity: As the parameter values move away from the true

parameter values, the likelihood function decreases.
I Scale invariance: Multiplying the likelihood function by a constant

factor does not change the relative likelihoods of different parameter
values.

I Likelihood principle: The likelihood function contains all the
information about the unknown parameters that is available in the data.



Log-Likelihood Function

Log-Likelihood Function

The log-likelihood function, denoted as `(θ), is the natural logarithm of
the likelihood function. It is often easier to work with than the likelihood
function itself.

Taking the logarithm helps simplify calculations and does not change
the location of the maximum point.

The log-likelihood function is given by:

`(θ) =
n∑

i=1

ln(f (Xi ; θ))



Score Function

The score function measures the sensitivity of the log-likelihood
function with respect to the parameters of interest.

It provides information about the direction and magnitude of the
parameter effects.

Mathematically, the score function is defined as:

S(θ) =
∂

∂θ
lnL(θ|x)

where L(θ|x) is the likelihood function, θ is the parameter of interest,
and x is the observed data.



Fisher Information

The Fisher information quantifies the amount of information provided
by the data about the parameters of interest.

It measures the precision or uncertainty of the parameter estimates.

The Fisher information matrix is defined as:

I(θ) = −E
[
∂2

∂θ2
lnL(θ|x)

]
where E denotes the expectation operator.



Point Estimators

Three famous frequentist approaches:

Method of Moments

Least Squares Estimation

Maximum Likelihood Estimation



The Maximum Likelihood Estimator

Maximum Likelihood Estimation (MLE) is a method used to estimate
the parameters of a statistical model based on observed data.

It involves finding the parameter values that maximize the likelihood
function, which measures the probability of observing the data given
the parameter values.

MLE is widely used in various fields, including statistics,
econometrics, and machine learning.



Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE)

Maximum Likelihood Estimation involves finding the parameter values that
maximize the likelihood function (or equivalently, the log-likelihood
function).

The MLE estimates, denoted as θ̂MLE, are obtained by solving the
equation ∂`(θ)

∂θ = 0.

In some cases, it may be easier to maximize the log-likelihood
function numerically using optimization algorithms.



Example: MLE for Bernoulli Distribution

Step 1: Likelihood Function

Consider a Bernoulli distribution with parameter p. Let X1,X2, . . . ,Xn be
independent and identically distributed (i.i.d.) random variables with the
following probability mass function:

P(Xi = xi ) =

{
p if xi = 1

1− p if xi = 0

The likelihood function, denoted by L(p), can be expressed as the joint
probability mass function of the observations:

L(p) = P(X1 = x1,X2 = x2, . . . ,Xn = xn) = p
∑n

i=1 xi (1− p)n−
∑n

i=1 xi



Example: MLE for Bernoulli Distribution

Step 2: Log-Likelihood Function

To simplify the calculations, we take the logarithm of the likelihood
function to obtain the log-likelihood function, denoted by `(p):

`(p) = logL(p) =
n∑

i=1

xi log(p) + (n −
n∑

i=1

xi ) log(1− p)



Example: MLE for Bernoulli Distribution

Step 3: Maximizing the Log-Likelihood

d`(p)

dp
=

∑n
i=1 xi
p

−
n −

∑n
i=1 xi

1− p
= 0∑n

i=1 xi
p

=
n −

∑n
i=1 xi

1− p

n∑
i=1

xi − p
n∑

i=1

xi = pn − p
n∑

i=1

xi

n∑
i=1

xi = pn

p̂MLE =

∑n
i=1 xi
n



Example: MLE for Normal Distribution

Step 1: Likelihood Function

Consider a normal distribution with unknown mean µ and variance σ2. Let
X1,X2, . . . ,Xn be independent and identically distributed (i.i.d.) random
variables following a normal distribution. The likelihood function, denoted
by L(µ, σ2), can be expressed as the joint density function of the
observations:

L(µ, σ2) =
n∏

i=1

1√
2πσ2

e−
(Xi−µ)

2

2σ2



Step 2: Log-Likelihood Function

To simplify the calculations, we take the logarithm of the likelihood
function to obtain the log-likelihood function, denoted by `(µ, σ2):

`(µ, σ2) =
n∑

i=1

(
−1

2
log(2πσ2)− (Xi − µ)2

2σ2

)



Example: MLE for Normal Distribution

Step 3: Maximizing the Log-Likelihood

To find the maximum likelihood estimator, we differentiate the
log-likelihood function with respect to µ and σ2 and set them equal to
zero:

∂`(µ, σ2)

∂µ
=

∑n
i=1(Xi − µ)

σ2
= 0

∂`(µ, σ2)

∂σ2
=

∑n
i=1(Xi − µ)2

2σ4
− n

2σ2
= 0



Step 4: Solving for Maximum Likelihood Estimators

Solving the equations, we obtain the maximum likelihood estimators:

µ̂MLE =
1

n

n∑
i=1

Xi

σ̂2MLE =
1

n

n∑
i=1

(Xi − µ̂MLE )2



Asymptotic properties of MLE

The MLE possesses several desirable properties:

I Consistency: The MLE converges to the true parameter value as the
sample size increases.

I Asymptotic Normality: The MLE is asymptotically normally
distributed.

I Efficiency: The MLE achieves the Cramér-Rao lower bound for the
variance of an unbiased estimator.



Consistency of the MLE

Let θ̂MLE be the Maximum Likelihood Estimator for parameter θ.

We say that θ̂MLE is consistent if:

lim
n→∞

Pr(|θ̂MLE − θ| > ε) = 0 for all ε > 0.

In simpler terms, the probability that θ̂MLE deviates from θ by more
than ε approaches 0 as the sample size n increases.



Asymptotic normality of the MLE

Let θ̂MLE be the Maximum Likelihood Estimator for the parameter θ.

It can be proved that θ̂MLE is asymptotically normal. Namely, as the
sample size n approaches infinity:

√
n(θ̂MLE − θ)

d−→ N (θ, I(θ)−1)

where
d−→ denotes convergence in distribution and I(θ) is the Fisher

Information matrix.

Note that we can calculate the standard error of the MLE as I(θ)−1



Example: Asymptotic normality of the Bernulli MLE

The log-likelihood function for a sample of n independent and identically distributed
(i.i.d.) observations X1,X2, . . . ,Xn from the Bernoulli distribution is:

`(p) = log
n∏

i=1

f (Xi ; p) =
n∑

i=1

log f (Xi ; p)

Taking the derivative of the log-likelihood function with respect to p, we get:

d`(p)

dp
=

1

p

n∑
i=1

Xi −
1

1− p

n∑
i=1

(1− Xi )

Taking the derivative of the score function we get:

d2`(p)

dp2
= − 1

p2

∑n
i=1 Xi − 1

(1−p)2

∑n
i=1(1− Xi )

Since Xi follows a Bernoulli distribution with parameter p, we have:

E[Xi ] = p and E[1− Xi ] = 1− p



Substituting these values, we get:

E
[
d2`(p)

dp2

]
= − 1

p2

n∑
i=1

p − 1

(1− p)2

n∑
i=1

(1− p)

Simplifying, we have:

E
[
d2`(p)

dp2

]
= −n

p
− n

1− p

Finally, the Fisher Information Matrix is the negative expected value of the second
derivative of the log-likelihood function:

I(p) = −E
[
d2`(p)

dp2

]
=

n

p(1− p)
.

Therefore,

p̂MLE
d−→ N

(
p,

p(1− p)

n

)



Consistency: Proof in R

library(latex2exp)

N <- seq(10,1000,length.out=100)

p0 <- 0.4

# Generate many random samples of increasing size

and compute MLE.

samples <- lapply(1:100,function(j) rbinom(N[j],

size = 1, prob = p0) )

mles<-sapply(1:100, function(j)

mean(unlist(samples[j])))

# Compute the standard error.

se<-(mles*(1-mles))*(N^(-1))

# Plot the standard error values olf the MLEs as

the sample size increases.

plot(N,abs(mles-p0), type = "l", lwd=2, col="red",

xlab="N", ylab = TeX("$|p-\\hat{p}_{MLE}|$"))

plot(N,se, type = "l", lwd=2, col="red",xlab="N",

ylab = TeX("SE($\\hat{p}_{MLE}$)"))





AsymptoticNormality: Proof in R

# Plot the asymptotically normal distribution.

N <- 1000

p0 <- 0.4

# Generate many random samples of size N and

compute MLE.

mles <- replicate(10000, mean(rbinom(N, size = 1,

prob = p0)))

# Plot histogram of MLEs.

hist(mles, freq = FALSE, ylim=c(0,30))

curve(dnorm(x, mean = p0, sd = sqrt((p0 * (1 - p0)) / N)),

add=TRUE, col="red", lwd=2)





Efficiency of the MLE

The CRLB gives a lower bound on the variance of any unbiased
estimator.

By asymptotic Normality of the MLE:

√
n(θ̂MLE − θ)

d−→ N (θ, I(θ)−1)

we conclude that the variance of the MLE is equal to the CRLB,
proving its efficiency.



Summary on the MLE

Maximum Likelihood Estimation is a powerful method for estimating
parameters in statistical models.

It involves maximizing the likelihood function (or log-likelihood
function) to obtain parameter estimates.

MLE estimators possess desirable properties, such as consistency and
asymptotic normality.

These properties make the MLE a reliable and powerful tool for
parameter estimation.
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