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Introduction

Regression models are used to describe how one or perhaps a few
response variables depend on other explanatory variables.

The idea of regression is at the core of much statistical modelling,
because the question what happens to y when x varies? is central to
many investigations.

It is often required to predict or control future responses by changing
the other variables, or to gain an understanding of the relation
between them.

There is usually a single response, treated as random. Often there are
many explanatory variables, which are treated as non-stochastic.
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If we denote the response by y and the explanatory variables by x, our
concern is how changes in x affect y. Given (yj , xj) for j = 1, . . . , n, in
the previous lecture we fitted the straight-line regression model
yj = β1 + β2xj + ϵj for j = 1, . . . , n

An immediate generalization is to increase the covariates,

yj = β1xj1 + β2xj2 + . . . , βpxjp + ϵj = xt
jβ + ϵj j = 1, . . . , n

where xt
j = (xj1, . . . , xjp) is a 1× p vector of covariates associated with

the jth response, β is a p× 1 vector of unknown parameters and ϵj is an
unobserved error accounting for the discrepancy between the observed
response yj and xt

jβ.

Warning: In these slides we simplify notation by using y to represent both
the response variable and the value it takes
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Matrix notation

Set

xj =



xj1

...
xjr

...
xjp

 j = 1, . . . , n, β =



β1

...
βr

...
βp



y =



y1
...
yj
...
yn

 X =



xt
1

...
xt
j

...
xt
n

 =



x11 . . . x1r . . . x1p

...
...

...
...

xj1 . . . xjr . . . xjp

...
...

...
...

xn1 . . . xnr . . . xnp

 ϵ =



ϵ1
...
ϵj
...
ϵn

 ,

the linear regression model with design matrix X can be written as

y = Xβ + ϵ
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In extended form:

y1 = β1 · x11+ . . . βr · x1r+ . . . +βp · x1p + ϵ1
...

...
...

...
yj = β1 · xj1+ . . . βr · xjr+ . . . +βp · xjp + ϵj

...
...

...
...

yn = β1 · xn1+ . . . βr · xnr+ . . . +βp · xnp + ϵn

With xt
1 = [1, . . . , 1], so that:

y1 = β1+ . . . βr · x1r+ . . . +βp · x1p + ϵ1
...

...
...

...
yj = β1+ . . . βr · xjr+ . . . +βp · xjp + ϵj

...
...

...
...

yn = β1+ . . . βr · xnr+ . . . +βp · xnp + ϵn
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Straight-line regression in matrix notation

For the straight line regression model yj = β1 + β2xj + ϵj for
j = 1, . . . , n, the matrix form of the model is


y1
y2
...
yn

 =


1 x1

1 x2

...
...

1 xn


(

β1

β2

)
+


ϵ1
ϵ2
...
ϵn



so X is an n× 2 matrix and β a 2× 1 vector of parameters.
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Least square estimates

The least square estimate of β is obtained by the value that minimizes the
sum of squares

SS(β) =

n∑
j=1

(yj − xt
jβ)

2 = (y −Xβ)t(y −Xβ)

We obtain the least square estimate of β by solving the equations

∂SS(β)

∂β1
= −2

n∑
j=1

(yj − xt
jβ)xj1 = 0

...

∂SS(β)

∂βr
= −2

n∑
j=1

(yj − xt
jβ)xjr = 0

...

∂SS(β)

∂βp
= −2

n∑
j=1

(yj − xt
jβ)xjp = 0

Marco Stefanucci Linear Regression 2



In matrix form these amount to the equations

(y −Xβ)tX = (0, . . . 0)

that is
Xt(y −Xβ) = 0

which imply that the estimate satisfies

Xty = XtXβ

Provided the p× p XtX is of full rank

β̂ = (XtX)−1Xty

is the system solution.
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In simple cases it is possible to have analytical expressions for the least
square estimates. For example in the straight-line regression model the X
matrix of the representation y = Xβ + ϵ is

X =


1 x1

1 x2

...
...

1 xn

 .

Then we have that

XtX =

(
n

∑n
j=1 xj∑n

j=1 xj

∑n
j=1 x

2
j

)
Xty =

( ∑n
j=1 yj∑n

j=1 xjyj

)
After some algebra we obtain

β̂ =

(
ȳ − x̄ sxy/sx

sxy/sx

)
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fitted values and residuals

The sum of squares SS(β) plays a central role. Its minimum value

SS(β̂) =

n∑
j=1

(yj − xt
j β̂)

2 = (y −Xβ̂)2(y − β̂)

is called residual sum of squares. It is the squared discrepancy between
the observations y and the fitted values ŷ = Xβ̂.

The vector ŷ = Xβ̂ is the linear combination of the columns of X that
minimizes the squared distance with the data y.

Note that
ŷ = Xβ̂ = X(XtX)−1Xty = Hy

The matrix H = X(XtX)−1Xt is called hat matrix or projection matrix
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The unobservable error ϵj = yj − xt
jβ is estimated by the jth residual

ej = yj − xt
j β̂

In vector terms,

e = y − xβ̂ = y −Hy = (I −H)y

where I is the n× n identity matrix.

Assuming that E(ϵj) = 0 and V ar(ϵj) = σ2 = E(ϵ2j ) for j = 1, . . . , n we

can estimate σ2 with

σ̂2 =
1

n

n∑
j=1

e2j =
ete

n
=

(y − ŷ)t(y − ŷ)

n
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Two groups comparison

Suppose that the response variable y has been observed on two groups of
observations of size n1 and n2. Let y1j for j = 1, . . . n1 be the
observations of the first group and let y2j for j = 1 . . . n2 be the
observation of the second group.

Let β1 and β1 + β2 be the means of the variable y in the two groups.
Hence

y1j = β1 + ϵ1j j = 1, . . . , n1

y2j = β1 + β2 + ϵ2j j = 1 . . . n2
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We can write the model for the two groups comparison in matrix notation
y = Xβ + ϵ where

y =



y11
...

y1n1

y21
...

y2n2


X =



1 0
...

...
1 0
1 1
...

...
1 1


β =

(
β1

β2

)
ϵ =



ϵ11
...

ϵ1n1

ϵ2n1

...
ϵ2n2


For this model we have

β̂ = (XtX)−1Xty =

(
ȳ1

ȳ2 − ȳ1

)
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The two groups comparison can be extended to more than two groups

y1j = β1 + ϵ1j j = 1, . . . , n1

y2j = β1 + β2 + ϵ2j j = 1 . . . n2

...
...

...

ykj = β1 + βk + ϵkj j = 1 . . . nk

Let yj = (yj1, . . . , yjnj )
t for j = 1, . . . , k.

y =

 y1
...
yk

 X =


1n1 0n1 · · · 0n1

1n2 1n2 · · · 0n1

...
. . .

1nk 0nk · · · 1nk



β̂ = (XtX)−1Xty =


ȳ1

ȳ2 − ȳ1
...

ȳk − ȳ1


Marco Stefanucci Linear Regression 2



Some Important Questions

When we perform multiple linear regression, we usually are interested in
answering a few important questions.

1 Is at least one of the predictors x1, x2, . . . , xp useful in predicting the
response?

2 Do all the predictors help to explain y, or is only a subset of the
predictors useful?

3 How well does the model fit the data?

4 Given a set of predictor values, what response value should we predict,
and how accurate is our prediction?
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Is at least one of the predictors useful?

In the simple linear regression setting, in order to determine whether there
is a relationship between the response and the predictor we can simply
check whether β1 = 0. In the multiple regression setting with p predictors,
we need to ask whether all of the regression coefficients are zero, i.e.
whether β1 = β2 = · · · = βp = 0. We test the null hypothesis

H0 : β1 = β2 = · · · = βp = 0

versus the alternative

H1 : at least one βj is non-zero.

This hypothesis test is performed by computing the F-statistic:

F =
(TSS −RSS)/p

RSS/(n− p− 1)
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Potential Problems

When we fit a linear regression model to a particular data set, many
problems may occur. Most common among these are the following:

1 Non-linearity of the response-predictor relationships

2 Correlation of error terms.

3 Non-constant variance of error terms.

4 Outliers.

5 High-leverage points.

6 Collinearity.
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Residual Plots

Residual plots are a useful graphical tool for identifying non-linearity.
Given a simple linear regression model, we can plot the residuals,
ei = yi − ŷi, versus the predictor xi. In the case of a multiple regression
model, since there are multiple predictors, we instead plot the residuals
versus the predicted (or fitted) values ŷi.

Ideally, the residual plot will show no discernible pattern. The presence of
a pattern may indicate a problem with some aspect of the linear model.
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Multicollinearity problem

Multicollinearity (collinearity) is a phenomenon in which one predictor
variable in a multiple regression model can be linearly predicted from
the others with a substantial degree of accuracy. In this situation, the
coefficient estimates of the multiple regression may change erratically
in response to small changes in the model or the data.

Let consider a (n× p) design matrix X; if |cor(xi, xj)| = 1 for i ̸= j
and i, j ∈ {1, p}, then there is perfect collinearity and the product
matrix XtX is not invertible.
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Life cycle savings data

LifeCycleSavings is data set 5 with variables observed on 50 different countries.
The variables are:

sr aggregate personal savings,

pop15 % of population under 15,

pop75 % of population over 75,

dpi real per-capita disposable income,

ddpi % growth rate of dpi
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sr pop15 pop75 dpi ddpi
Australia 11.43 29.35 2.87 2329.68 2.87
Austria 12.07 23.32 4.41 1507.99 3.93
Belgium 13.17 23.80 4.43 2108.47 3.82
Bolivia 5.75 41.89 1.67 189.13 0.22
Brazil 12.88 42.19 0.83 728.47 4.56
Canada 8.79 31.72 2.85 2982.88 2.43
Chile 0.60 39.74 1.34 662.86 2.67
China 11.90 44.75 0.67 289.52 6.51
Colombia 4.98 46.64 1.06 276.65 3.08

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Turkey 5.13 43.42 1.08 389.66 2.96
Tunisia 2.81 46.12 1.21 249.87 1.13
United Kingdom 7.81 23.27 4.46 1813.93 2.01
United States 7.56 29.81 3.43 4001.89 2.45
Venezuela 9.22 46.40 0.90 813.39 0.53
Zambia 18.56 45.25 0.56 138.33 5.14
Jamaica 7.72 41.12 1.73 380.47 10.23
Uruguay 9.24 28.13 2.72 766.54 1.88
Libya 8.89 43.69 2.07 123.58 16.71
Malaysia 4.71 47.20 0.66 242.69 5.08
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The data set is avaialble in R

> summary(LifeCycleSavings)

sr pop15 pop75 dpi

Min. : 0.600 Min. :21.44 Min. :0.560 Min. : 88.94

1st Qu.: 6.970 1st Qu.:26.21 1st Qu.:1.125 1st Qu.: 288.21

Median :10.510 Median :32.58 Median :2.175 Median : 695.66

Mean : 9.671 Mean :35.09 Mean :2.293 Mean :1106.76

3rd Qu.:12.617 3rd Qu.:44.06 3rd Qu.:3.325 3rd Qu.:1795.62

Max. :21.100 Max. :47.64 Max. :4.700 Max. :4001.89

ddpi

Min. : 0.220

1st Qu.: 2.002

Median : 3.000

Mean : 3.758

3rd Qu.: 4.478

Max. :16.710
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Under the life-cycle savings hypothesis as developed by Franco Modigliani,
the savings ratio (aggregate personal saving divided by disposable income)
is explained by per-capita disposable income, the percentage rate of
change in per-capita disposable income, and two demographic variables:
the percentage of population less than 15 years old and the percentage of
the population over 75 years old.

The data are averaged over the decade 1960-1970 to remove the business
cycle or other short-term fluctuations.
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In this case we might fit the model

yj = β1 + β2x2j + β3x3j + β4x4j + β5x5j + ϵj

where y is the saving ratio and x2, x3, x4 and x5 are the variables pop15,
pop75,dpi and ddpi. Looking the data we may expect a negative value for
β2 and a positive value for β5 while the relationship between the saving
ratio and the variables pop75 and dpi is not clear. The X matrix has
dimension 50× 5 and is

1 29.35 2.87 2329.68 2.87
1 23.32 4.41 1507.99 3.93
1 23.80 4.43 2108.47 3.82
1 41.89 1.67 189.13 0.22
1 42.19 0.83 728.47 4.56
...

...
...

...
...

1 28.13 2.72 766.54 1.88
1 43.69 2.07 123.58 16.71
1 47.20 0.66 242.69 5.08


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In R we can find the fitted values and the residual in the following way.

> m=lm(sr~pop15+pop75+dpi+ddpi,data=LifeCycleSavings)
> fitted(m)

Australia Austria Belgium Bolivia Brazil
10.566420 11.453614 10.951042 6.448319 9.327191

Canada Chile China Colombia Costa Rica
9.106892 8.842231 9.363964 6.431707 5.654922
Denmark Ecuador Finland France Germany

11.449761 5.995631 12.921086 10.164528 12.730699
Greece Guatamala Honduras Iceland India

13.786168 6.365284 6.989976 7.480582 8.491326
Ireland Italy Japan Korea Luxembourg
7.948869 12.353245 15.818514 10.086981 12.020807

Malta Norway Netherlands New Zealand Nicaragua
12.505090 11.121785 14.224454 8.384445 6.653603

Panama Paraguay Peru Philippines Portugal
7.734166 8.145759 6.160559 6.104992 13.258445

South Africa South Rhodesia Spain Sweden Switzerland
10.656834 12.008566 12.441156 11.120283 11.643174

Turkey Tunisia United Kingdom United States Venezuela
7.795682 5.627920 10.502413 8.671590 5.587482
Zambia Jamaica Uruguay Libya Malaysia

8.809086 10.738531 11.503827 11.719526 7.680869
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> residuals(m)

Australia Austria Belgium Bolivia Brazil
0.8635798 0.6163860 2.2189579 -0.6983191 3.5528094

Canada Chile China Colombia Costa Rica
-0.3168924 -8.2422307 2.5360361 -1.4517071 5.1250782

Denmark Ecuador Finland France Germany
5.4002388 -2.4056313 -1.6810857 2.4754718 -0.1806993

Greece Guatamala Honduras Iceland India
-3.1161685 -3.3552838 0.7100245 -6.2105820 0.5086740

Ireland Italy Japan Korea Luxembourg
3.3911306 1.9267549 5.2814855 -6.1069814 -1.6708066

Malta Norway Netherlands New Zealand Nicaragua
2.9749098 -0.8717854 0.4255455 2.2855548 0.6463966

Panama Paraguay Peru Philippines Portugal
-3.2941656 -6.1257589 6.5394410 6.6750084 -0.7684447

South Africa South Rhodesia Spain Sweden Switzerland
0.4831656 1.2914342 -0.6711565 -4.2602834 2.4868259

Turkey Tunisia United Kingdom United States Venezuela
-2.6656824 -2.8179200 -2.6924128 -1.1115901 3.6325177

Zambia Jamaica Uruguay Libya Malaysia
9.7509138 -3.0185314 -2.2638273 -2.8295257 -2.9708690
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> m=lm(sr~pop15+pop75+dpi+ddpi,data=LifeCycleSavings)
> summary(m)

Residuals:
Min 1Q Median 3Q Max

-8.2422 -2.6857 -0.2488 2.4280 9.7509

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 28.5660865 7.3545161 3.884 0.000334 ***
pop15 -0.4611931 0.1446422 -3.189 0.002603 **
pop75 -1.6914977 1.0835989 -1.561 0.125530
dpi -0.0003369 0.0009311 -0.362 0.719173
ddpi 0.4096949 0.1961971 2.088 0.042471 *

Residual standard error: 3.803 on 45 degrees of freedom
Multiple R-squared: 0.3385, Adjusted R-squared: 0.2797
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Summary

1 model specification and assumptions:

y = Xβ + ϵ, ϵ ∼ N(0, σ2I)

2 check for multicollinearity! new entry

3 estimate the model parameters

4 diagnostics:

R2 or Adjusted R2

t-test
test for homoskedasticity

5 interpretation

Marco Stefanucci Linear Regression 2



Summary

1 model specification and assumptions:

y = Xβ + ϵ, ϵ ∼ N(0, σ2I)

2 check for multicollinearity! new entry

3 estimate the model parameters

4 diagnostics:

R2 or Adjusted R2

t-test
test for homoskedasticity

5 interpretation

Marco Stefanucci Linear Regression 2



Summary

1 model specification and assumptions:

y = Xβ + ϵ, ϵ ∼ N(0, σ2I)

2 check for multicollinearity! new entry

3 estimate the model parameters

4 diagnostics:

R2 or Adjusted R2

t-test
test for homoskedasticity

5 interpretation

Marco Stefanucci Linear Regression 2



Summary

1 model specification and assumptions:

y = Xβ + ϵ, ϵ ∼ N(0, σ2I)

2 check for multicollinearity! new entry

3 estimate the model parameters

4 diagnostics:

R2 or Adjusted R2

t-test
test for homoskedasticity

5 interpretation

Marco Stefanucci Linear Regression 2



Summary

1 model specification and assumptions:

y = Xβ + ϵ, ϵ ∼ N(0, σ2I)

2 check for multicollinearity! new entry

3 estimate the model parameters

4 diagnostics:

R2 or Adjusted R2

t-test
test for homoskedasticity

5 interpretation

Marco Stefanucci Linear Regression 2



> cor(X)

pop15 pop75 dpi ddp
pop15 1.00000000 -0.90847871 -0.7561881 -0.04782569
pop75 -0.90847871 1.00000000 0.7869995 0.02532138
dpi -0.75618810 0.78699951 1.0000000 -0.12948552
ddp -0.04782569 0.02532138 -0.1294855 1.00000000

> m=lm(sr~pop15+ddpi,data=LifeCycleSavings)
> summary(m)

Residuals:
Min 1Q Median 3Q Max

-7.5831 -2.8632 0.0453 2.2273 10.4753

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 15.59958 2.33439 6.682 2.48e-08 ***
pop15 -0.21638 0.06033 -3.586 0.000796 ***
ddpi 0.44283 0.19240 2.302 0.025837 *
---
Residual standard error: 3.861 on 47 degrees of freedom
Multiple R-squared: 0.2878,^^IAdjusted R-squared: 0.2575
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