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Introduction

The linear model is often adeguate to describe the relation between a set
of explanatory variables x1, . . . , xp and the response y.

There are cases, however, where the linear model is not a good solution.

Generalized Linear Models (GLM) overcome some of the limits of the linear
model, namely implicit (or not) gaussian assumption and homoscedasticity.
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Examples

Imagine that your variable of interest is the presence (or absence) of a
disease as a function of, for example, age. The only possible values for Y
are 1 or 0 (presence or absence). Even if we think a number as the
probability of having such disease, any number outside the interval (0, 1)
does not make sense.

The linear model will produce predictions that are not constrained to be
0 or 1 and not even in the interval (0, 1).

The same will happen if you want to model the number of customers
entering a shop as a function of the hour. Predicted customers should be a
positive number (more, an integer!) and the linear model does not ensure
this will happen.
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The technical problem

The problem is that we defined the linear model as a model for
observations instead of parameters. The general formulation

yi = β0 + β1x1i + · · ·+ βpxpi + εi

is the same as yi = µi + εi where the mean is equal to the linear predictor.

Unfortunately, the relation ”observation = mean + random noise”does not
apply if the data are not symmetric with unbounded range of variation.

We could rephrase the linear model as

E(yi) = θi

θi = β0 + β1x1i + · · ·+ βpxpi

We are now directly modeling the parameter of the distribution.
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Introducing GLMs

The last formulation is amenable of generalizations such as

E(yi) = f(θi)

θi = β0 + β1x1i + · · ·+ βpxpi

where f(·) is a nonlinear function, in order to deal with other data
structures such as presence/absence and positive data. However, the usual
GLM formulation is

g(E(yi)) = θi

θi = β0 + β1x1i + · · ·+ βpxpi

where g(·) = f−1(·)
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Some examples

Different choices of g(·) lead to different models:

g(x) = log(x), log-linear regression

g(x) = logit(x) = log( x
1−x ), logit regression

These functions are chosen to ”force”predictions to be in some interval.

The inverse function is even more important:

y = g(x) = log(x), x = f(y) = g−1(y) = exp(y)

g(x) = logit(x) = log( x
1−x ), x = f(y) = g−1(y) = exp(y)

1+exp(y)

Practical understanding:

The function exp(θi) constraints the linear predictor to be positive.

The function exp(θi)
1+exp(θi)

constraints the linear predictor to lie in the

interval (0, 1).
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Link with random variables

By introducing random variables, we can enstabilish a link between them
and a nonlinear function g(·).

Presence/absence data are treated as Bernoulli random variables, with
parameter pi. In this case g(x) = log x

1−x is an appropriate transform.

Positive counts data are treated as Poisson random variables, with
parameter λi. In this case g(x) = log(x) is an appropriate transform.

In the end, it is the parameter (or a nonlinear function of it) that is
modeled in a linear way.

What is an appropriate transform for the gaussian random variable?
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The variance

As a by product, we also obtain new expressions for the variance:

Linear model: V (yi) = σ2

Log-linear (Poisson) model: V (yi) = λi

Logit (Binomial) model: V (yi) = pi(1− pi)

If the variance depends on the observation we can remove the constant
variance assumption of the linear model!
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Model construction

In order to define a GLM we have to:

specify distribution for the dependent variable y;

specify a link function g(·);

specify a linear predictor;

a model for the variance of the outcome (usually) automatically
follows, hence heteroscedasticity.
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Estimation procedure

The estimation procedure is based on maximum likelihood: the likelihood
function L(θ, y) is maximized.

For most GLMs the likelihood equations are nonlinear functions of β: we
need an iterative method to solve nonlinear equations and determine the
maximum of a likelihood function.

Two main (similar) algorithms are used: Newton-Raphson and Fisher
scoring.

Marco Stefanucci Generalized Linear Models



Model comparison and the Deviance

To test the significance of the model, or the superiority of a model with
respect to another we will use the deviance.

Essentially, the deviance is the likelihood-ratio statistic for testing the null
hypothesis that the model M0 holds against the alternative that a more
general model M1 holds.

If we denote by θ̂0 the vector of estimated parameters under model M0

and by θ̂1 the vector of estimated parameters under model M1, the
deviance can be computed as

D = −2 log

(
L(θ̂0, y)
L(θ̂1, y)

)
= −2

[
ℓ(θ̂0, y)− ℓ(θ̂1, y)

]
This statistic is large when M1 fits better compared to M0.
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Summary

A generalized linear model (GLM) is a flexible generalization of ordinary
linear regression.

The GLM generalizes linear regression by allowing the linear model to be
related to the response variable via a link function and by allowing the
magnitude of the variance of each measurement to be a function of its
predicted value.
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Logistic regression

For a binary response variable, representing the success and failure
outcomes by 1 and 0, observation i has probabilities P (yi = 1) = pi and
P (yi = 0) = 1− pi.

For this random variable, the link function for pi is
g(pi) = log(pi/(1− pi)), called the logit.

GLMs using the logit link function are called logistic regression models and
have the form

log

(
pi

1− pi

)
= β0 + β1x1i + · · ·+ βpxpi, i = 1, 2, . . . , n
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Parameters interpretation

To simplify notation, we focus on the case of a single quantitative
explanatory variable x. The model is logit[P (yi = 1)] = β0 + β1xi, for
which

P (yi = 1) =
exp(β0 + β1x)

1 + exp(β0 + β1x)

The curve for P (y = 1) is monotone in x: When β1 > 0, P (y = 1)
increases as x increases; when β1 < 0, P (y = 1) decreases as x increases.

When β1 = 0, the logistic curve flattens to a horizontal line. As x changes,
P (y = 1) approaches 1 at the same rate that it approaches 0.

With multiple explanatory variables, P (y = 1) is monotone in each
explanatory variable according to the sign of its coefficient.

The rate of climb or descent increases as βj increases. When βj = 0, Y is
conditionally independent of xj , given the other explanatory variables.
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Interpretation for β1 uses the odds of success

odds =
P (y = 1)

P (y = 0)

The odds can take any nonnegative value. With an odds of 3 we expect 3
successes for every failure; with an odds of 1/3, we expect 1 success for
every 3 failures.

The log of the odds is the logit, so odds have an exponential relationship
with x. A 1-unit increase in x has a multiplicative impact of eβ1 : The
odds at x = u+ 1 equals the odds at x = u multiplied by eβ1 .
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Poisson regression

Many response variables have counts as their possible outcomes. Counts
{yi} have positive means. It is common to model the logarithm of the
mean through a GLM. The loglinear model is

log(λi) = β0 + β1xi1 + . . .+ βpxip, i = 1, . . . , n

The Poisson loglinear model assumes that the counts are independent
Poisson random variables.

For loglinear models, the mean satisfies the exponential relation

λi = exp(β0 + β1xi1 + . . .+ βpxip)

Interpretation: The mean of y at xij + 1 equals the mean at xij multiplied
by eβj , adjusting for the other explanatory variables.
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Data example

Data refer to a sample of 5000 people with age under 65, out of a random
sample of 100,000 people taken in 2015 from the Tuscany region of Italy,
using administrative sources collected and organized by Istituto Nazionale
di Statistica (Istat).

We model Y = whether the subject is employed, in terms of being present
in any administrative source (1 = yes,0 = no). Explanatory variables are:

G = gender (1 = female, 0 = male)

I = whether an Italian citizen (1 = yes, 0 = no)

P = whether receiving a pension(1 = yes, 0 = no)

Using indicator variables for the binary explanatory variables, the next
output shows that the logistic regression model fit is

log

(
p(yi = 1)

p(yi = 0)

)
= 0.286− 0.639Gi + 0.766Ii − 1.910Pi
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out <- glm(employed ~ female + italian + pension, family = "binomial", data = employ)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.6443 -1.3568 0.7739 1.0080 2.1739

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.28620 0.08475 3.377 0.000733 ***
female -0.63996 0.06139 -10.424 < 2e-16 ***
italian 0.76620 0.08573 8.938 < 2e-16 ***
pension -1.91033 0.11108 -17.198 < 2e-16 ***

Null deviance: 6716.1 on 4999 degrees of freedom
Residual deviance: 6223.9 on 4996 degrees of freedom
AIC: 6231.9

Number of Fisher Scoring iterations: 4

For instance, adjusting for whether an Italian citizen and whether receiving
a pension, the odds that a woman is employed are estimated to be
e−0.639 = 0.53 times the odds that a man is employed.
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Data example 2

The City of Chicago data portal provides open access to many datasets
produced by the city. One of the largest and most well-known is the
Chicago Crime dataset.

This contains one row for any crime reported, by either the police or
through public tips, within the city limits. Variables include the address of
the reported crime, a description of the crime type, the neighborhood
name and a timestamp.

We have grabbed a subset of the data from the first six months of 2017.
Then, we grouped all reported crimes by crime type, hour, month and
community area. Here are the first few rows of data.
head(ca)

community_area hour month type n hourb
7 53 5 1 Robbery 0 (3,17]
40 49 5 1 Robbery 1 (3,17]
47 7 5 1 Robbery 0 (3,17]
61 58 5 1 Robbery 1 (3,17]
68 41 5 1 Robbery 0 (3,17]
77 18 5 1 Robbery 0 (3,17]
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For each group we have counted the number of crimes that occurred in a
given grouping. Our goal is to model the number of crimes as a function
of the month, bucketed hour, and crime type.

The variable of interest in this task is a count value. It seems reasonable
then to fit a generalized linear model using a Poisson distribution. The
next output shows that the poisson regression model fit is

log(λi) = 0.09− 0.16H21−24
i − 0.37H3−17

i − 0.63H0−3
i −

−0.41Bi − 0.66Ni − 0.51Ri
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model <- glm(n ~ factor(hourb) + type, data = ca, family = poisson())
summary(model)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.4858 -1.0622 -0.8827 0.4394 9.0973

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.09881 0.04691 2.106 0.0352 *
factor(hourb)(21,24] -0.16264 0.07186 -2.263 0.0236 *
factor(hourb)(3,17] -0.37515 0.04700 -7.982 1.44e-15 ***
factor(hourb)[0,3] -0.63672 0.06820 -9.337 < 2e-16 ***
typeBurglary -0.41023 0.04984 -8.231 < 2e-16 ***
typeNarcotics -0.66637 0.05407 -12.324 < 2e-16 ***
typeRobbery -0.50868 0.05169 -9.841 < 2e-16 ***

Null deviance: 7675.4 on 4999 degrees of freedom
Residual deviance: 7379.6 on 4993 degrees of freedom
AIC: 11105

Number of Fisher Scoring iterations: 6

The highest rate of crimes occur in the baseline hour bucket, 17:00 to
21:00, corresponding to the evening hours. Assault is the most frequent
crime.
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