
Sorting Algorithms

Global Governance, 3rd year
Science and Technology Major

Algorithms, Data and Security
A.Y. 2024/25

Valeria Cardellini

Sorting

• Given a set of items, the goal is to sort the
items in the set

• Examples: sort alphabetically a list of names,
a list of numbers, etc...

• Basic algorithm used in many problems
– E.g., if you sort, then you can do binary search

• See visualization https://visualgo.net/bn/sorting

Valeria Cardellini - ADS 2024/25 1

Sorting algorithms and running times
• We will study four sorting algorithms

– We will sort an array (or list) of integer numbers in
non-decreasing order (i.e., from smallest to largest)

• E.g., 1 2 2 3 3 4 5 6 6

– All the algorithms we will consider are comparison-
based, i.e., they sort by comparing elements

• Running times: O(n2), O(n log n)
– n is the number of items to sort

Valeria Cardellini - ADS 2024/25 2

n 10 100 1000 106 109

n log2 n ~ 33.3 ~ 665 ~ 104 ~ 2×107 ~ 3×1010

n2 100 104 106 1012 1018

Running times

• Some common big O functions

Valeria Cardellini - ADS 2024/25 3

Logarithmic: O(log n)

Linear: O(n)
Superlinear: O(n log n)

Quadratic: O(n2)

Input size n

R
un

ni
ng

 ti
m

e

SelectionSort

Valeria Cardellini - ADS 2024/25 4

Figure (from top to bottom):
white: still unsorted

grey: already sorted

blue: minimum and swap

17 12 14 15 13 11

11 12 14 15 13 17

11 12 13 15 14 17

11 12 13 14 15 17

11 12 13 14 15 17

11 12 13 14 15 17

• Idea: repeatedly select the smallest element
(i.e., the minimum) from the unsorted portion
of the list and swaps it with the first element
of the unsorted portion
– Incremental approach

• Example

11 12 14 15 13 17

(a)

(b)

(c)

(d)

(e)

(f)

(g)

SelectionSort: how to find minimum

• Initialize smallest to i
• Look at every value from i+1

onwards and update smallest
only when you find a value
smaller than the one at
smallest

Valeria Cardellini - ADS 2024/25 5

• How to find the minimum element from a particular
position onwards
– We will refer to that position as i

• smallest place marker keeps track of the position of
the smallest value we have seen so far

SelectionSort: how to find minimum

• Example of finding minimum value from a
particular position (i=1) onwards

Valeria Cardellini - ADS 2024/25 6

1 2 3 4 5 6

smallest = 1

j = 2
smallest = 2 because L[2] < L[smallest]
j = 3

j = 4
j = 5
j = 6

smallest = 6 because L[6] < L[smallest] The minimum value
is L[6], that is 11

when j=3,4,5 we do not update smallest

SelectionSort: algorithm

Valeria Cardellini - ADS 2024/25 7

Running time?

Find minimum in
the unsorted portion
of the list

Swap minimum with
the leftmost
unsorted element (if
needed)

SelectionSort: running time

Valeria Cardellini - ADS 2024/25 8

• Let’s focus on the number of comparisons
• At step k, finding minimum takes O(n-k) time

– Finding minimum value from position 1 onwards:
n-1 comparisons

– Finding minimum value from position 2 onwards:
n-2 comparisons

– …
– Finding minimum value from position n-1 onwards:

1 comparison
• In total, (n-1) + (n-2) + … + 1 comparisons

– Let’s express (n-1) + (n-2) + … + 1 as

SelectionSort: running time

• At step k, finding minimum takes O(n-k) time
• In total, the running time is:

To solve: set i=n-k and use the arithmetic series
formula to express the sum by its closed form value

Valeria Cardellini - ADS 2024/25 9

InsertionSort

• Insertion sort works the way you might sort a
hand of playing cards

Valeria Cardellini - ADS 2024/25 10

InsertionSort

Valeria Cardellini - ADS 2024/25 11

17 12 14 15 13 11(a)

12 17 14 15 13 11(b)

12 14 17 15 13 11(c)

12 14 15 17 13 11(d)

12 13 14 15 17 11(e)

11 12 13 14 15 17(f)

• Idea: extend sorted portion from k-1 to k
items by inserting the k-th item in the proper
position among the first k-1 items
– Incremental approach

• Example

InsertionSort: algorithm

Valeria Cardellini - ADS 2024/25 12

Running time?

InsertionSort: running time

• Inserting k-th item among the first k-1 items
takes time O(k) in the worst case

• In total, the running time is

To solve: use again the arithmetic series formula

Valeria Cardellini - ADS 2024/25 13

BubbleSort

• Scan the list several times
• At each scan compare adjacent pairs, and

swap them if they are not in the right order
• If no items were swapped during a scan, you

can stop as the list is sorted

• Why BubbleSort? Larger items "bubble" to
the end of the list

Valeria Cardellini - ADS 2024/25 14

BubbleSort
• Example

Valeria Cardellini - ADS 2024/25 15

17 12 14 15 13 11

12 17
14 17

15 17

13 17
11 17

12 14 15 13 11 17

12 14
14 15

13 15

11 15

12 14
13 14

11 14

12 13
11 13

11 12

(a)

(b)

12 14 13 11 15 17(c)

12 13 11 14 15 17(d)

12 11 13 14 15 17(e)

12 14 13 11 15 17(c)
11 12 13 14 15 17(f)

BubbleSort: running time

• Scan the list several times
– At each scan compare adjacent pairs, and swap

them if they are not in the right order
– If no items were swapped during a scan, you can

stop as the list is sorted
• Each scan requires O(n) time
• We have at most O(n) scans
• Therefore, running time is O(n2)
• Is the algorithm correct? Yes

– After k-th scan, the k largest items are at the end
of the list and they are correctly sorted

Valeria Cardellini - ADS 2024/25 16

Can we do better?

• The three sorting algorithms described so far
are simple to understand but relatively slow
– Running time: O(n2)

• Let us analyze a faster sorting algorithm

Valeria Cardellini - ADS 2024/25 17

MergeSort

• Based on an algorithm design technique
known as divide and conquer

• Known also as divide et impera since it was
used by Romans to conquer and rule other
people

• BinarySearch is another algorithm based on
divide and conquer

Valeria Cardellini - ADS 2024/25 18

Divide and conquer

• Top-down approach:
1.Divide the original problem into two or more

subproblems that are similar to the original
problem but smaller in size

2.Conquer the subproblems by solving them
recursively. If the subproblem sizes are small
enough, just solve the subproblems directly
without recursing

3.Combine the subproblem solutions to form a
solution to the original problem

Valeria Cardellini - ADS 2024/25 19

Divide and conquer applied to MergeSort

• Let’s apply divide and conquer to MergeSort
1.Divide: split input (list to be sorted) in two

(roughly equal) halves
2.Conquer: solve the two subproblems

recursively
– If the list has one element, it is sorted
– Otherwise, return to step 1 to sort it

3.Combine: merge the two sorted lists

Valeria Cardellini - ADS 2024/25 20

How to merge?
• Two sorted lists A e B can be merged as follows:

– Choose minimum from A and B, copy it to output list
C and remove it from A or B. Repeat until either A or
B becomes empty

– Take all the elements in the remaining non-empty list
and copy them at the end of C

– Example:

• Running time for merging: O(n), where n is the
total number of elements

Valeria Cardellini - ADS 2024/25 21

B = 6 8 A = 5 7
1) 3)

2)
4)

C = 5 6 7 8

MergeSort: example

22Valeria Cardellini - ADS 2024/25

MergeSort: with words

• Divide the array L[l : r] to be sorted into two
subarrays, each of half the size. To do so,
compute the midpoint m of L[l : r] (taking the
average of l and r), and divide L[l : r] into
subarrays L[l : m] and L[m+1 : r]

• Conquer by sorting each of the two subarrays
L[l : m] and L[m+1 :r] recursively using
MergeSort

• Combine by merging the two sorted
subarrays L[l : m] and L[m+1 : r] back into
L[l : r], producing the sorted output

Valeria Cardellini - ADS 2024/25 23

MergeSort: pseudocode

Valeria Cardellini - ADS 2024/25 24

Merge: pseudocode

25Valeria Cardellini - ADS 2024/25

MergeSort and its call tree: example

26Valeria Cardellini - ADS 2024/25

MergeSort(L, 1, 7)

MergeSort(L, 5, 7) MergeSort(L, 1, 4)

MergeSort(L, 1, 2) MergeSort(L, 3, 4) MergeSort(L, 5, 6) MergeSort(L, 7, 7)

MergeSort(L, 1, 1) MergeSort(L, 2, 2) …

Merge (L, 1, 1, 2) Merge (L, 3, 3, 4) Merge (L, 5, 5, 6) Merge (L, 7, 7, 7)

Merge (L, 1, 2, 4) Merge (L, 5, 6, 7)

Merge (L, 1, 4, 7)

MergeSort(L, 6, 6) … MergeSort(L, 5, 5)

MergeSort: running time

• Let T(n) be the number of comparisons done
by MergeSort to sort n elements:
– T(n/2) comparisons to sort the first half (n/2

elements)
– T(n/2) comparisons to sort the second half (n/2

elements)
– cn comparisons to merge the two sorted

subarrays, for some constant c
• T(n) = 2T(n/2) + cn

Valeria Cardellini - ADS 2024/25 27

MergeSort: running time

• Let T(n) be the number of comparisons done
by MergeSort to sort n elements:
T(n) = 2T(n/2) + cn
T(1) = 1

• T(1) = 1 (if the list has only one element,
nothing to do)

• It is a recurrence. How do we solve it?

Valeria Cardellini - ADS 2024/25 28

MergeSort: running time

• We have to solve
T(n) = 2T(n/2) + cn

• If this is true, then we can also say
T(n/2) = 2T(n/4) + cn/2

• Putting this back into the recurrence, we obtain:
T(n) = 2T(n/2) + cn = 4T(n/4) + 2cn/2 + cn

• i.e.,
T(n) = 4T(n/4) + 2cn

Valeria Cardellini - ADS 2024/25 29

MergeSort: running time

• We have
T(n) = 2T(n/2) + cn = 4T(n/4) + 2cn

• We can also say
T(n/4) = 2T(n/8) + cn/4

• Putting this back into the recurrence, we obtain:
T(n) = 4T(n/4) + 2cn = 8T(n/8) + 4cn/4 + 2cn

• i.e.,
T(n) = 8T(n/8) + 3cn

Valeria Cardellini - ADS 2024/25 30

MergeSort: running time

• We can go on like this:
T(n) = 8T(n/8) + 3cn = 16T(n/16) + 4cn = ...

• In general, for k = 1, 2, 3,...
T(n) = 2k T(n/2k) + kcn

• When do we stop? Cannot go on forever…

Valeria Cardellini - ADS 2024/25 31

MergeSort: running time

• We have:
T(n) = 2k T(n/2k) + kcn

• When do we stop? Cannot go on forever…
• We can stop when k is such that n/2k = 1
• i.e., n = 2k, i.e., k = log2n. For this value of k:

T(n) = 2k T(n/2k) + kcn = nT(1) + c n log2n
• Namely:

T(n) = n + c n log2n = O(n log n)

Valeria Cardellini - ADS 2024/25 32

MergeSort: summary

• The number of comparisons T(n) done by
MergeSort to sort n elements is described by
the following recurrence:

T(n) = 2T(n/2) + cn
• The solution of this recurrence is

T(n) = O(n log n)
• MergeSort sorts n elements in time O(n log n)

Valeria Cardellini - ADS 2024/25 33

Take-away

• We described four sorting algorithms:
– SelectionSort, InsertionSort, BubbleSort: O(n2)
– MergeSort: O(n log n)

• If we have to sort 1 billion (n=109) of items, and
each step takes 10 nanosec. (10-8 sec.):
– n2 steps take: 1018×10-8 sec =1010 sec ~ 317 years!
– n log2n steps take: log2(3×1010)×10-8 sec ~ 5.6 sec!

Valeria Cardellini - ADS 2024/25 34

n 10 100 1000 106 109

n log2 n ~ 33 ~ 664 ~ 104 ~ 2×107 ~ 3×1010

n2 100 104 106 1012 1018

Exercise

• Apply the four algorithms to sort the following
list in non-decreasing order: 16, 9, 48, 11, 21,
34, 10, 9

• To check your solution, you can also sort the
list using https://visualgo.net/bn/sorting by
first creating the list of numbers and then
sorting it using the different algorithms

Valeria Cardellini - ADS 2024/25 35

References

• T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein. Introduction
to Algorithms, 4th ed., MIT Press, 2022

• C. Demetrescu, I. Finocchi, G. F. Italiano. Algoritmi e Strutture
Dati, Mc-Graw Hill, 2008 (in Italian)

Valeria Cardellini - ADS 2024/25 36

