. WHAT AnT pNE&Y
v RBUSINESS
R: A self-learn tutorial ANAL\‘TIU%

1 Introduction

D

R is a software language for carrying out complicated (and simg}é) statistical analyses. It includes
routines for data summary and exploration, graphical presentation and data modelling. The aim of
this document is to provide you with a basic fluency in the language. It is suggested that you work
through this document at the computer, having started an R session. Type in all of the commands
that are printed, and cmnderstand how they operate. Then try the simple exercises
at the end of each section. = R LEASE P 1T,
When you work in R you create objects that are stored in the current workspace(sometimes
called image). Each object created remains in the image unless you explicitly delete it. At the end
of the session the Workspace will be lost unless you save it. You can save the workspace at any
: 88 joon-at : USiNGg THE CoMMawsp SAVE
Commands written in R are saved in memory throughout the session. You can scroll back to
previous commands typed by using the ‘up’ arrow key (and ‘down’ to scroll back again). You can
also ‘copy’ and ‘paste’ using standard windows editor techniques (for example, using the ‘copy’
and ‘paste’ dialog buttons). If at any point you want to save the transcript of your session, click
on ‘File’ and then ‘Save History’, which will enable you to save a copy of the commands you have
used for later use. As an alternative you might copy and paste commands manually into a notepad
editor or something similar.
You finish an R session by typing

> q0)

at which point you will also be prompted as to whether or not you want to save the current
workspace If you do not, it will be lost.

2 Objects and Arithmetic

R stores information and operates on objects. The simplest objects are scalars, vectors and matrices.
But there are many others: lists and dataframes for example. In advanced use of R it can also be
useful to define new types of object, specific for particular application. We will stick with just the
most commonly used objects here.

An important feature of R is that it will do different things on different types of objects. For
example, type:!

> 4+6 g 3 K now #)\) \role ds\feq o\-b d«:n«e Q

CT V(& GAlN
The result should be {'\\o\{’ but ?\GO»S‘ = PRAC >
[1] 10 > ScatsR Is A ‘FancYT weAY To SAY Numeer (s this ce
So, R does arithmetic returning the scalar value 10. (In actual fact, R returns a vector of
length 1 - hence the [1] denoting first element oftﬂe_ctor_/’—\

We can assign objects values for subsequent use. For example: Do %o\) vemenn by
x<-6 THE CONCERT oF
y<-4 VECTOR, R\GWT ¢
z<-xX+y :

1We adopt the convention of using typeface font to denote things typed in R. The > sign is not typed however; it
- ("h-\mw Tle Dioinl svimhol

would do the same calculation as above, storing the result in an object called z. We can look at
the contents of the object by simply typing its name:

z
(1] 10
At any time we can list the objects which we have created:
2 - = CTO2J
> 180) &’ \TU's)asy he DIRsS 2¢
[1] IIXII llyll Ilzll

Notice that 1s is actually an object itself. Typing 1s would result in a display of the contents of
this object, in this case, the commands of the function. The use of parentheses, 1s(), ensures that
the function is erecuted and its result - in this case, a list of the objects in the directory - displayed.

More commonly a function will operate on an object, for example .
Ny MO \woﬂfx’/ex (F

T:l:Tqu(lﬁ) /7 (S MT CLEAR,

calculates the square root of 16. Objects can be removed from the current workspace with the rm
function:

> rm(x,y)

for example.
There are many standard functions available in R, and it is also possible to create new ones.
Vectors can be created in R in a number of ways. We can describe all of the elements:

———

> z<-c(5,9,1,0)

Note the use of the function ¢ to concatenate or ‘glue together’ individual elements. This function
can be used much more widely, for example

> x<-c(5,9)
> y<-c(1,0)
> z<-c(x,y)

would lead to the same result by gluing together two vectors to create a single vector.
Sequences can be generated as follows:

> x<-1:10
while more general sequences can be generated using the seq command. For example:

> seq(1,9,by=2)
[11 13579

and

> seq(8,20,length=6)
[1] 8.0 10.4 12.8 15.2 17.6 20.0

These examples illustrate that many functions in R have optional arguments, in this case, either
the step length or the total length of the sequence (it doesn’t make sense to use both). If you leave
out both of these options, R will make its own default choice, in this case assuming a step length

af L _So for examnle

__aof a vectar__

5 S vevy. ..
HECRSWl | ~TRY 1T
> x<-seq(1,10) OJIT

also generates a vector of integers from 1 to 10.

At this point it’s worth mentioning the help facility. If you don’t know how Yo use a function,
or don’t know what the options or default values are, type help(functionname) where function-
name is the name of the function you are interested in. This will usually help and will often include
examples to make things even clearer.

Another useful function for building vectors is the rep command for repeating things. For
example

> rep(0,100)

[11 0O0000000000000000000000000000000C00CO0O00O0
[38 000000000000000000000000000000O00O0OO0CO0O00O00O
[fT531 000000000000000000000000O00O
or
> rep(1:3,6)

[1] 123123123123123123
Notice also a variation on the use of this function

> rep(1:3,c(6,6,6))
[1] 11 1111222222333333

which we could also simplify cleverly as

> rep(1:3,rep(6,3))
[11 111111222222333333

As explained above, R will often adapt to the objects it is asked to work on. For example:

> x<-c(6,8,9)

> y<-c(1,2,4) b . YY\O-JY\‘ b\ﬁ NO\ e

> x+y

[1] 7 10 13 de&\ W@ ‘\'\"h \]GCT—O?-J

and

> X*y
[1] 6 16 36

showing that R uses componentwise arithmetic on vectors. R will also try to make sense if objects
are mixed. For example,

> x<-c(6,8,9)
> x+2
[1] 8 10 11

though care should be taken to make sure that R is doing what you would like it to in these
circumstances.

Two particularly useful functions worth remembering are length which returns the length of a
vector (i.e. the number of elements it contains) and sum which calculates the sum of the elements

Rlese TY
o TTHen ML
OB U) 0V [Se %

Decide what the result will be of the following:

Use R to check your answers.

2. Decide what the following sequences are and use R to check your answers:

)
) seq(2,9)
(c) seq(4,10,by=2)
) seq(3,30,length=10)
(e) seq(6,-4,by=-2)
3. Determine what the result will be of the following R expressions, and then use R to check
you are right:
(a) rep(2,4)
(b) rep(c(1,2),4)
(c) rep(c(1,2),c(4,4))
(d) rep(1:4,4)
(e) rep(1:4,rep(3,4))
4. Use the rep function to define simply the following vectors in R.
(a) 6,6,6,6,6,6

(b) 5,8,5,8,5,8,5,8
(c) 5’575’5’8’8’8)8

3 Summaries and Subscripting

Let’s suppose we’ve collected some data from an experiment and stored them in an object x:
> x<-c(7.5,8.2,3.1,5.6,8.2,9.3,6.5,7.0,9.3,1.2,14.5,6.2)
Some simple summary statistics of these data can be produced:

> mean(x)

[1] 7.216667 TTHCG QU,L\.RT (LES \Z W e ‘
> vered ‘ s WeeK's
[1] 11.00879 / o ‘f’gem lh ‘(‘R” e

> summary (x) Iec—ko (e

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.200 6.050 7.250 7.217 8.475 14.500 =

which should all be self explanatory. It may be, however, that we subsequently learn that the first
6 data correspond to measurements made on one machine, and the second six on another machine.
This might suggest summarizing the two sets of data separately, so we would need to extract from
x the two relevant subvectors. This is achieved by subscripting:

> x[1:6]

and

> x[7:12]

give the relevant subvectors. Hence,

> summary (x[1:6])
Min. 1st Qu. Median Mean 3rd Qu. Max.
3.100 6.075 7.850 6.983 8.200 9.300
> summary(x[7:12])
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.200 6.275 6.750 7.450 8.725 14.500

Other subsets can be created in the obvious way. For example:

> x[c(2,4,9)]
[1] 8.2 5.6 9.3

Negative integers can be used to exclude particular elements. For example
x[-(1:6)]

has the same effect as x[7:12].

Exercises

1. If x<- ¢(5,9,2,3,4,6,7,0,8,12,2,9) decide what each of the following is and use R to
check your answers:
(a) x[2]
(b) x[2:4]

—{FE o vl i

(d) =lel1:5,10:12)]
(e) x[-(10:12)]
2. The data y<-c(33,44,29,16,25,45,33,19,54,22,21,49,11,24,56) contain sales of milk

in litres for 5 days in three different shops (the first 3 values are for shops 1,2 and 3 on
Monday, etc.) Produce a statistical summary of the sales for each day of the week and also

for each shop.
i SUZER 1N LORTANT
4 Matrices _\-:-7

Matrices can be created in R in a variety of ways. Perhaps the sirhplest is to create the columns
and then glue them together with the command cbind. For example,

> x<-c(5,7,9)
> y<_c(6,3;4)

> z<-cbind(x,y) \Xj€ KAN Em&c{ §5 QOP\ @PTP S{l

i Tae _ Folw ofF 7
4t HATR &

The dimension of a matrix can be checked with the dim command:

> dim(z)
[1] 3 2

i.e., three rows and two columns. There is a similar command, rbind, for building matrices by
gluing rows together.

The functions cbind and rbind can also be applied to matrices themselves (provided the di-
mensions match) to form larger matrices. For example,

> rbind(z,z)

(.11 [,2]
[1,] 5 6
[2,] 7 3
(3,1 9 4
[4,] 5 6
(5,] 7 3
(6,] 9 4

Matrices can also be built by explicit construction via the function matrix. For example,

z<-matrix(c(5,7,9,6,3,4) ,nrow=3) :

results in a matrix z identical to z above. Notice that the dimension of the matrix is determined
by the size of the vector and the requirement that the number of rows is 3, as specified by the
argument nrow=3. As an alternative we could have specified the number of columns with the
argument ncol=2 (obviously, it is unnecessary to give both). Notice that the matrix is ’filled up’
column-wise. If instead you wish to fill up row-wise, add the option byrow=T. For example,

> z<-matrix(c(5,7,9,6,3,4) ,nr=3,byrow=T)
> z
[,11 [,2]
[1,] 5 7
[2,] 9 6
[3,] 3 4

Notice that the argument nrow has been abbreviated to nr. Such abbreviations are always
possible for function arguments provided it induces no ambiguity - if in doubt always use the full
argument name.

As usual, R will try to interpret operations on matrices in a natural way. For example, with 2
as above, and

> y<-matrix(c(1,3,0,9,5,-1) ,nrow=3,byrow=T)

>y

[,11 [,2]
[1,] 1 3
(2] 0 9
[3,] 5 -1

we obtain

> y+z

[,11 [,2]

[1,] 6 10
[2,] 9 15
[3,] 8 3

and

> y*z

[,11 [,2]
[1,] 5 21
[2,1] 0 54
[3,] 15 -4

Notice, multiplication here is componentwise rather than conventional matrix multiplication. In-
deed, conventional matrix multiplication is undefined for y and z as the dimensions fail to match.
Let’s now define

> x<-matrix(c(3,4,-2,6) ,nrow=2,byrow=T)
> X

(.11 [,2]
[1,] 3 4 S;f}},
[2,] -2 6 £

—

Other useful functions on matrices are t to calculate a matrix transpose and solve to calculate

11 [,2]1 [,3]

[1,] 9 3
[2,] 6 4
and

] [,2]
[1,] 0.23076928 -0.1538462
[2,] 0.07692308\ 0.1153846

As with vectors 1Y is useful to be able to extract sub-components of matrices. In this case, we
may wish to pick out Mdividual elements, rows or columns. As before, the [] notation is used to
subscript. The following examples should make things clear:

> z[1,1]
[1] 5

> z[c(2,3),2]
[1] 6 4

> z[,2]
[11 7 6 4

> z[1:2,]

[,11 [,2]
[1,] 5 7
[2,] 9 6

Exercises

1. Create in R the matrices

and

Calculate the following and check your answers in R:
(a) 2*%x

(b) x*x

AR VA VA S— — e ——

2. With x and y
your answers in

(a) x[1,]
(b) x[2,]
(c) x[,2]
(d) yl1,2]
(e) y[,2:3]

above, calculate the effect of the following subscript operations and check

5 Attaching to objects

R includes a number of datasets that it is convenient to use for examples. You can get a description
of what’s available by typing

> data()

To access any of these datasets, you then type data(dataset) where dataset is the name of the
dataset you wish to access. For example,

Garatirenn) e — Yoo wll Flws TTRE DD
Lyping S=x ond \d oy WweeKs pace

> trees[1:5,]
Girth Height Volume

Y

-

1 8.3 70 10.3
2 8.6 65 10.3
3 8.8 63 10.2
4 10.5 72 16.4
5 10.7 81 18.8

gives us the first 5 rows of these data, and we can now see that the columns represent measurements
of girth, height and volume of trees (actually cherry trees: see help(trees)) respectively.

Now, if we want to work on the columns of these data, we can use the subscripting technique
explained above: for example, trees[,2] gives all of the heights. This is a bit tedious however, and
it would be easier if we could refer to the heights more explicitly. We can achieve this by attaching
to the trees dataset:

> attach(trees)

Effectively, this makes the contents of trees a directory, and if we type the name of an object, R
will look inside this directory to find it. Since Height is the name of one of the columns of trees,
R now recognises this object when we type the name. Hence, for example,

> mean(Height)
[1] 76

S —_—

> mean(trees[,2])
[1] 76

are synonymous, while it is easier to remember exactly what calculation is being performed by
the first of these expressions. In actual fact, trees is an object called a dataframe, essentially a
matrix with named columns (though a dataframe, unlike a matrix, may also include non-numerical
variables, such as character names). Because of this, there is another equivalent syntax to extract,
for example, the vector of heights:

> trees$Height

which can also be used without having first attached to the dataset.

Exercises

1. Attach to the dataset quakes and produce a statistical summary of the variables depth and
mag.

2. Attach to the dataset mtcars and find the mean weight and mean fuel consumption for
vehicles in the dataset (type help(mtcars) for a description of the variables available).

6 \\ The apply function

ible to write loops in R, but they are best avoided whenever possible. A common situation
e want to apply the same function to every row or column of a matrix. For example,

> apply(trees,2,
Girth Height
13.24839 76.00000 30\17097

has the effect of calculating
instead of a 2 if we wanted thé\mean of every row.

Any function can be applied\in this way, though if optional arguments to the function are
required these need to be specified gs well - see help(apply) for further details.

e mean of each column (dimension 2) of trees. We’d have used a 1

Exercise

1. Repeat the analyses of the datasets Quakes and mtcars using the function apply to simplify
the calculations.

2. If

what is the result of apply(y[,2:3],1,mean)? ChecR\your answer in R.

10

