
Time Series Forecasting with GRNN in R:
the tsfgrnn Package
Francisco Martinez, Maria P. Frias, Antonio Conde, Ana M. Martinez

In this document the tsfgrnn package for time series forecasting using generalized regression neural networks
(GRNN) is described. The package allows the user to build a GRNN model associated with a time series and use
the model to predict the future values of the time series. It is possible to consult how the prediction has been
done. Two different strategies for forecasting horizons greater than one are implemented. It is also possible to
assess the forecast accuracy of the model.

Introduction
A general regression neural network is a variant of an RBF network characterized by a fast single-pass learning.
A GRNN consists of a hidden layer with RBF neurons. Normally, the hidden layer has so many neurons as
training examples. The center of a neuron is its associated training example and so, its output gives a measure
of the closeness of the input vector to the training example. Commonly, a neuron will use the multivariate
Gaussian function:

where and are the center and the smoothing parameter respectively (is the input vector).

Given a training set consisting of training patterns (vectors) and their associated targets,
normally scalars (), the GRNN output for an input pattern is computed in two steps. First, the
hidden layer produces a set of weights representing the closeness of to the training patterns:

Note that the weights decay with distance to the training pattern. The weights sum to one and represent the
contribution of every training pattern to the final result. The GRNN output layer computes the output as follows:

so a weighted average of the training targets is obtained, where the weights decay with distance to the training
patterns. The smoothing parameter controls how many targets are important in the weighted average. When is
very large the result is close to the mean of the training targets because all of them have a similar weight. When

 is small only the closest training targets to the input vector have significant weights.

Time series forecasting with GRNN
In this section we describe how the tsfgrnn package can be used to predict the future values of a time series.
The key function is grnn_forecasting that builds a model and uses the model to generate forecasts. Let us see
an example:

In this case the forecast horizon is 4, so the next four future values of the time series are predicted.
grnn_forecasting returns an S3 object with information of the model and the prediction. In the example we have
printed the prediction through the element named prediction. You can get a plot of the forecast using the plot
function:

G(x,) = exp(−)xi

∥x − xi∥
2

2σ2

xi σ x

n { , , … }x1 x2 xn n
{ , , … }y1 y2 yn x

x

=wi

exp(−)∥x−xi∥
2

2σ 2

exp(−)∑n
j=1

∥x−xj∥
2

2σ 2

=ŷ ∑
i=1

n

wiyi

σ

σ

library(tsfgrnn)

pred <- grnn_forecasting(UKgas, h = 4)
pred$prediction

#> Qtr1 Qtr2 Qtr3 Qtr4

#> 1987 1217.9250 661.3641 388.1723 817.3653

plot(pred)

or, alternatively, the autoplot function:

Next, we list the parameters of grnn_forecasting (in the previous call most of these parameters were
automatically selected):

timeS : the time series to be forecast.

h : the forecast horizon, that is, the number of future values to be predicted.

lags : an integer vector indicating the lagged values used as autoregressive variables (for instance, 1:2 means
that lagged values 1 and 2 should be used).

sigma : the sigma parameter of the GRNN model. By default, it is selected using an optimization algorithm.

msas : the multi-step ahead strategy for generating multi-step ahead forecasts. This is explained in the next
section.

tranform : whether a multiplicative, additive or no transformation is applied to the training examples. A
transformation is recommended, specially for time series with trend.

Currently, we have implemented two multi-step ahead strategies: MIMO and recursive, which are explained in
the next section.

Multiple step ahead strategies
Normally, you need to forecast more than one value into the future. To this end, a forecasting multiple step ahead
strategy has to be chosen. Our package implements two common strategies: the MIMO approach and the
recursive or iterative approach (when only one future value is predicted both strategies are equivalent). Let us
see how they work.

Multiple Input Multiple Output strategy

The Multiple Input Multiple Output (MIMO) strategy for forecasting multiple values is based on using as training
targets vectors of consecutive values of the time series. The length of these vectors is equal to the length of the
forecasting horizon. Let us see how this strategy works in the tsfgrnn package. We are going to use a simple
artificial time series to facilitate the explanation.

library(ggplot2)

autoplot(pred)

In this case the time series consists of the values 1 to 10, the forecast horizon is 2 and the autoregressive lags
are 1 and 3. The grnn_examples function returns the training examples of the model. Each row represents a
training example. The first one is the pattern (1, 3) and its target (4, 5). Notice that the targets have length 2 as
the forecasting horizon. The pattern associated with a target are lagged values of the target (lags 1 and 3).
grnn_forecasting has computed a prediction and we can consult the weights of the different training examples in
the prediction:

The output of grnn_weights shows that the GRNN is fed by the input (8, 10), the pattern associated with the
forecast. We can see the weights of the different training examples. A weighted average of all the training targets
is computed to generate the forecast. In this case, the last training pattern (6, 8) is the closest one to the input
pattern and has practically all the weight (so the prediction will be very close to its target (9, 10)). If a large weight
has been assigned to a training pattern is because the automatically selected smoothing parameter must be
small. Let us check it with the summary function:

It is possible to see a plot with the time series, the forecast, the input pattern and one of the training instances:

pred <- grnn_forecasting(timeS = 1:10, h = 2, lags = c(1, 3), msas = "MIMO", transform = "none")

grnn_examples(pred)

#> Lag3 Lag1 H1 H2

#> [1,] 1 3 4 5

#> [2,] 2 4 5 6
#> [3,] 3 5 6 7

#> [4,] 4 6 7 8

#> [5,] 5 7 8 9

#> [6,] 6 8 9 10

grnn_weights(pred)

#> $input

#> Lag 3 Lag 1

#> 8 10

#>

#> $examples

#> Lag3 Lag1 H1 H2 weight

#> [1,] 1 3 4 5 0.000000e+00
#> [2,] 2 4 5 6 0.000000e+00

#> [3,] 3 5 6 7 5.358040e-190

#> [4,] 4 6 7 8 7.000777e-109

#> [5,] 5 7 8 9 8.619411e-46

#> [6,] 6 8 9 10 1.000000e+00

summary(pred)

#>

#> Call: grnn_forecasting(timeS = 1:10, h = 2, lags = c(1, 3), msas = "MIMO",

#> transform = "none")

#>

#> Multiple-Step Ahead Strategy: MIMO

#> Sigma (smoothing parameter): 0.2195128

#> Autoregressive lags: 1 3
#> Type of training samples transformation: none

#> Forecasting horizon: 2

#> Forecast:

#> Time Series:

#> Start = 11

#> End = 12

#> Frequency = 1

#> [1] 9 10

library(ggplot2)

plot_example(pred, 1)

In this case we have selected to see the closest training example (in blue and green) to the input pattern (in
magenta), to select the fourth closest training example:

The recursive strategy

In the recursive or iterative strategy a model that can only forecast one-step ahead is built. This model is applied
iteratively to generate n-steps ahead forecasts. The recursive strategy is used by successful methodologies such
as ARIMA or exponential smoothing. Let us see how this strategy works using the tsfgrnn package. First, we
build a model and generate the forecasts for a given time series:

plot_example(pred, 4)

predr <- grnn_forecasting(1:10, h = 2, lags = c(1, 3), msas = "recursive", transform = "none")

predr$prediction

#> Time Series:

#> Start = 11

#> End = 12

#> Frequency = 1
#> [1] 10 10

plot(predr)

Let us see the training examples of the model:

As can be seen, the length of the training targets is one, because the underlying model only predicts one-step
ahead values. To see how, starting from a model that only predicts one-step ahead, the 2-steps ahead forecasts
are generated we can use the plot_example function. Let us see first, the one-step ahead forecast:

In the function call, the parameter h indicates that we are interested in seeing the forecasting horizon 1 and the
parameter position that we want to see the closest training example. In the forecast, in red, the horizon 1 is
highlighted. The input vector used by the GRNN model are the lags 1 and 3 of the one-step ahead value, that is,
the vector (8, 10), in magenta.

We can also see the weights of the training instances used in the prediction of the forecasting horizon 1:

grnn_examples(predr)

#> Lag3 Lag1 H1

#> [1,] 1 3 4
#> [2,] 2 4 5

#> [3,] 3 5 6

#> [4,] 4 6 7

#> [5,] 5 7 8

#> [6,] 6 8 9

#> [7,] 7 9 10

plot_example(predr, position = 1, h = 1)

grnn_weights(predr)[[1]]

#> $input
#> Lag 3 Lag 1

#> 8 10

#>

#> $examples

#> Lag3 Lag1 H1 weight

#> [1,] 1 3 4 0.000000e+00

#> [2,] 2 4 5 0.000000e+00

#> [3,] 3 5 6 0.000000e+00

#> [4,] 4 6 7 1.724617e-204

Due to the fact that in a recursive prediction a one-step ahead model is used iteratively as many times as the
length of the forecast horizon, the function grnn_weights returns a list with the different weights used by the model
in the different predictions. As we are interested in the forecast for horizon 1 we consult the weights associated
with that forecast. The training pattern with the highest weight is (7, 9), that was highlighted in the last plot.

Now, we plot information about how the forecast horizon 2 has been generated:

In order to select the input vector associated with the forecasting horizon 2, the lags 1 and 3 are used. lag 3 (9) is
obtained from the historical values of the time series. However, the time series cannot be used to obtain lag 1. In
this situation, the recursive approach uses the predicted values. In this case, the lag 1 corresponds with the
forecast for horizon 1, so the forecasted value (10) is used. This can also be checked with the grnn_weights
function:

Assessing the model
The function rolling_origin uses the rolling origin technique to assess the forecasting accuracy of a GRNN
model. In order to use this function a GRNN model must have been built previously. We will use the artificial time
series 1:20 to see how the function rolling_origin works:

The function rolling_origin uses the model returned by a grnn_forecasting call to apply rolling origin evaluation.
The object returned by rolling_origin contains the results of the evaluation. For example, the test sets can be
consulted as follows:

#> [5,] 5 7 8 2.119513e-109

#> [6,] 6 8 9 1.767415e-41

#> [7,] 7 9 10 1.000000e+00

plot_example(predr, position = 1, h = 2)

grnn_weights(predr)[[2]]

#> $input

#> Lag 3 Lag 1

#> 9 10

#>

#> $examples

#> Lag3 Lag1 H1 weight

#> [1,] 1 3 4 0.000000e+00
#> [2,] 2 4 5 0.000000e+00

#> [3,] 3 5 6 0.000000e+00

#> [4,] 4 6 7 3.048113e-245

#> [5,] 5 7 8 1.438120e-136

#> [6,] 6 8 9 4.603817e-55

#> [7,] 7 9 10 1.000000e+00

pred <- grnn_forecasting(ts(1:20), h = 4, lags = 1:2)

ro <- rolling_origin(pred, h = 4)

print(ro$test_sets)

#> h=1 h=2 h=3 h=4

#> [1,] 17 18 19 20

Every row of the matrix contains a different test set. The first row is a test set with the last h values of the time
series, the second row a test set with the last h - 1 values of the time series and so on. Each test set has an
associated training test with all the data in the time series preceding the test set. For every training set a GRNN
model with the parameters associated with the original model is built and the test set is predicted. You can see
the predictions as follows:

and also the errors in the predictions:

Several forecasting accuracy measures applied to all the errors in the different test sets can be consulted:

It is also possible to consult the forecasting accuracy measures for every forecasting horizon:

Finally, a plot with the predictions for a given forecast horizon can be generated:

The rolling origin technique is very time-consuming, if you want to get a faster assessment of the model you can
disable this feature:

#> [2,] 18 19 20 NA

#> [3,] 19 20 NA NA

#> [4,] 20 NA NA NA

print(ro$predictions)

#> h=1 h=2 h=3 h=4

#> [1,] 17 18 19 20

#> [2,] 18 19 20 NA

#> [3,] 19 20 NA NA

#> [4,] 20 NA NA NA

print(ro$errors)

#> h=1 h=2 h=3 h=4

#> [1,] 0 0 0 0

#> [2,] 0 0 0 NA

#> [3,] 0 0 NA NA

#> [4,] 0 NA NA NA

ro$global_accu
#> RMSE MAE MAPE SMAPE

#> 0 0 0 0

ro$h_accu

#> h=1 h=2 h=3 h=4

#> RMSE 0 0 0 0

#> MAE 0 0 0 0

#> MAPE 0 0 0 0

#> SMAPE 0 0 0 0

plot(ro, h = 4)

In this case only one test and training set are used and therefore only one model is built.

Preprocessing and model selection
In order to use a GRNN model for time series forecasting several parameters have to be selected. Furthermore,
some preprocessing techniques can be applied. In the following subsections we give some information about
this.

Model selection

Apart from selecting the multi-step ahead strategy the user has to select the smoothing parameter and the
autoregressive lags.

The smoothing parameter

This parameter controls the level of smoothing of the training targets. When it is very large all the targets have a
similar weight and therefore the forecast is close to the average of all the targets:

On the contrary, when the smoothing parameter is very small just one or a few training targets have significant
weights:

ro <- rolling_origin(pred, h = 4, rolling = FALSE)

print(ro$test_sets)

#> h=1 h=2 h=3 h=4

#> [1,] 17 18 19 20

print(ro$predictions)
#> h=1 h=2 h=3 h=4

#> [1,] 17 18 19 20

pred <- grnn_forecasting(USAccDeaths, h = 12, lags = 1:12, sigma = 100)

plot(pred)

pred <- grnn_forecasting(USAccDeaths, h = 12, lags = 1:12, sigma = 0.05)
plot(pred)

As seen in previous examples, when this parameter is omitted in the function call it is automatically selected. The
automatic selection is based on maximizing a forecast accuracy measure using the rolling origin evaluation.

The autoregressive lags

The autoregressive lags set which lags are used to create the training instances. If you think that some lags can
be important you should try to use them. You can also rely on the automatic selection. This is carried out
according to the following criteria. The lags are 1:f, where f is the number of periods of the time series. For
example, the lags for quarterly data are 1:4 and for monthly data 1:12. For time series in which the number of
periods is one (for example, annual data) the lags with significant autocorrelation in the partial autocorrelation
function (PACF) are selected. If no lag has a significant autocorrelation, then lags 1:5 are chosen.

Multi-step ahead strategy

As described above, currently it is possible to choose between the MIMO and recursive strategies. In our
experience, the recursive strategy tends to produce better results.

Transformations

Time series forecasting methodologies can take advantage of transforming the data. Next, we describe some of
these techniques.

Detrending

In the previous examples we have used time series, such as 1:10 or 1:20, with a constant trend. We have seen
how GRNN is not capable of capturing these trends well. The reason is simple, GRNN predicts a weighted
average of historical values of the time series, so that it cannot predict correctly values out of the range of the
time series. In your time series has a trend we recommend using the parameter transform to transform the
training samples. Use the value "additive"if the trend is additive or "multiplicative" for exponential time series:

set.seed(5)

timeS <- ts(1:10 + rnorm(10, 0, .2))

pred <- grnn_forecasting(timeS, h = 3, transform = "none")

plot(pred)

Seasonality

When a time series has a seasonal pattern it is important that the forecasting model captures this pattern.
Currently, our package does not implement any strategy to deal with seasonal series. We think that GRNN is
able to work directly with seasonal series as long as you set the right autoregressive lags. In the case of
seasonal series we recommend to use lags 1:f where f is the length of the seasonal period.

Acknowledgements
Funds: This work was partially supported by the project TIN2015-68854-R (FEDER Founds) of the Spanish
Ministry of Economy and Competitiveness.

pred2 <- grnn_forecasting(timeS, h = 3, transform = "additive")

plot(pred2)

