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Utility Functions
Indifference Curve

Take L = 2 and consider an utility function u : R2
+ ! R that represents a

convex preference relation % in X = R2
+.

Assume u is twice continuously differentiable C2.

Let c 2 U be an element in the image of u. We construct an indifference
curve

u(x1, x2) = c. (1)

that is the locus of all pairs (x1, x2) 2 R2
+ that yield the same utility level

c to the consumer.
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Indifference Curve

Let X1 = {x1 2 R+ : 9x2 2 R+ s.t. u(x1, x2) = c}. By construction,

X1 is non–empty;

for each x1 2 X1, since u is quasi-concave there exists a unique x2 2 R+

such that u(x1, x2) = c.

Equation (1) then defines a function f : X1 ! R+ such that
u(x1, f (x1)) = c for all x1 2 X1.
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Indifference Curve and Marginal Rate of Substitution

Since all pairs of bundles (x1, x2) which belong to a given indifference
curve yield to the consumer the same level of utility, say c. Then, by
totally differentiating (1), we derive that

dx2

dx1
= �

@u
@x1

(x1, x2)

@u
@x2

(x1, x2)
⌘ �MRS1,2(x1, x2) (2)
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The Consumer’s Problem

Assume % is a rational, continuous and locally non-satiated preference
relation, and therefore represented by a continuous utility function u
(Theorem 1).

The consumer’s problem (henceforth, UMP) is then given by

max u(x)
s.t. w � p · x � 0

x � 0

Does this problem have a solution?
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The Consumer’s Problem
Existence

For all p � 0 and w > 0, B(p,w) is closed and bounded.

Bounded: if x 2 B(p,w), then xi � 0 and xi  w/pi for each
i 2 {1, . . . , n}.

Closed: let {xk} be a converging sequence in B(p,w). Since xk � 0 for all
k � 1, we have that lim xk = x � 0 as well.
Consider g0(x) = w � p · x, which is a continuous function in x, that is
g0(xk) converges to g0(x), notice that g0(xk) � 0 for all k implying that
g0(x) � 0. Thus, x 2 B(p,w).

Since u is a continuous function and the set B(p,w) is closed and
bounded, by Weierstrass Theorem: UMP has a solution for all p � 0 and
w > 0.
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The Utility Maximization Problem - UMP

max u(x)
s.t. w � p · x � 0

x � 0

The solution to this problem x(p,w) is called the Walrasian demand
correspondence (function).

We call v(p,w) = u(x(p,w)) the indirect utility function.

Since % is a continuous preference relation, x(p,w) and v(p,w) are
continuous by the Theorem of Maximum.
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The Consumer’s Problem

Theorem 3
Suppose that u(.) is a continuous utility function representing a LNS
preference relation % on X = RL

+. Then, the Walrasian demand
correspondence has the following properties:

i) x(p,w) is homogeneous of degree zero in (p,w), i.e.
x(↵p,↵w) = x(p,w) for every ↵ > 0;

ii) x(p,w) satisfies Walras’ law, i.e. p · x = w for every x 2 x(p,w);
iii) if % is convex, and u(.) is quasi-concave, then x(p,w) is a convex set. If

% is strictly convex, and u(.) is strictly quasi-concave, then x(p,w) is a
singleton.
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The Walrasian demand correspondence
Proof of Theorem 3

Let us prove all three properties.

i) Follows immediately from the fact that B(p,w) = B(↵p,↵w) for all
↵ > 0.

ii) x(p,w) satisfies Walras’ law, i.e. p · x = w for every x 2 x(p,w). It
follows from LNS.
Assume by contradiction that p · x < w at an x 2 x(p,w).
By LNS, there exists an ✏ > 0 small enough and a bundle y in an
✏-neighborhood of x, ||y � x||  ✏, such that y � x and p · y  w.
This contradicts that x 2 x(p,w).
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The Walrasian demand correspondence
Proof of Theorem 3

iii-a) Take u(.) is quasi-concave (% convex) and let x 2 x(p,w) and
x0 2 x(p,w) solve UMP.

We have to show that ↵x + (1 � ↵)x0 ⌘ x00 2 x(p,w) for every ↵ 2 [0, 1].

Since x and x0 solve UMP, it must be u(x) = u(x0), denote it u⇤.

Since u(.) is quasi-concave, u(x00) = u(↵x + (1 � ↵)x0) � u⇤.

Since B(p,w) is a convex set, x00 2 B(p,w). Indeed both x and x0 are in
B(p,w), and since x00 ⌘ ↵x + (1 � ↵)x0, it also satisfies
p(↵x + (1 � ↵)x0)  w.

Hence, x00 is a budget-feasible bundle which yields utility u(x00) � u⇤,
therefore is must be x00 2 x(p,w). Therefore, x(p,w) is a convex set.
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The Walrasian demand correspondence
Proof of Theorem 3

iii-b) Take u(.) is strictly quasi-concave (% strictly convex) and assume by
contradiction that x, x0 with x 6= x0 are two solutions to UMP, i.e.
x 2 x(p,w) and x0 2 x(p,w).

Consider ↵x + (1 � ↵)x0 ⌘ x00 for every ↵ 2 (0, 1). Since x and x0 solve
UMP, it must be u(x) = u(x0), denote it u⇤.

Since u(.) is strictly quasi-concave, u(x00) = u(↵x + (1 � ↵)x0) > u⇤.

Since B(p,w) is a convex set, again it holds that x00 2 B(p,w).

Hence, x00 is a budget-feasible bundle which yields utility u(x00) > u⇤,
hence neither x nor x0 can solve UMP. Therefore, x(p,w) must contain
only one element. ⌅
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The Consumer’s Problem

Theorem 3
Suppose that u(.) is a continuous utility function representing a LNS
preference relation % on X = RL

+. Then, the Walrasian demand
correspondence has the following properties:

i) x(p,w) is homogeneous of degree zero in (p,w);
ii) x(p,w) satisfies Walras’ law;
iii) if % is convex, x(p,w) is a convex set. If % is strictly convex, x(p,w) is a

singleton.
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The Walrasian demand function

When % is strictly convex, the solution of UPM is called the Walrasian
demand function, denote it x⇤(p,w).

Let us now focus on x⇤(p,w) for some comparative-statics exercises.

We discuss wealth effects and price effects.
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The Walrasian demand function
Comparative statics: wealth effects

Fix the price level at p̄, and consider x⇤(p̄,w) as a function of w, this is
the Engel curve.

Consider how the demand function x⇤(p̄,w) changes for different values
of wealth, the set of all the values {x⇤(p̄,w) : w > 0} is the wealth
expansion path.
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The Walrasian demand function
Comparative statics: wealth effects

Holding the price level fixed at p̄, take x⇤(p̄,w) differentiable. We can
compute for each commodity k,

@x⇤k(p̄,w)
@w

this is the wealth effect on the demand of good k.

If
@x⇤k(p̄,w)

@w
� 0, good k is a normal good;

if
@x⇤k(p̄,w)

@w
< 0, good k is an inferior good.

How would the wealth expansion path of a normal good look like? and
of an inferior good?
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