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The indirect utility function v(p,w)

Theorem 4
Suppose that u(.) is a continuous utility function representing a LNS
preference relation % on X = RL

+. Then, the indirect utility function has the
following properties:

i) v(p,w) is homogeneous of degree zero in (p,w);
ii) v(p,w) is strictly increasing in w and non-increasing in p;
iii) v(p,w) is quasi-convex, that is the set {(p,w) : v(p,w)  v̄} is convex

for any v̄;
iv) v(p,w) is continuous in p and w.
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The indirect utility function
Proof of Theorem 4 - ii)

ii) We prove that v(p,w) is increasing in w.

Take w0 > w, then B(p,w) ✓ B(p,w0).

In particular, if x⇤ is the optimal bundle at wealth w, then x⇤ is feasible
when wealth is w0. Hence, v(p,w0) � u(x⇤) = v(p,w).

Since % is LNS, there exists x0 that ||x0 � x⇤||  ✏ such that x0 � x⇤ and
x0 2 B(p,w0) when ✏ is small enough, hence u(x0) > u(x⇤).

Thus, v(p,w0) � u(x0) > u(x⇤) = v(p,w).

Using a similar reasoning, show that v(p,w) is non-increasing in p.
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The Expenditure Minimization Problem
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The Expenditure Minimization Problem

The basic idea behind the consumer’s problem is to choose a bundle that
maximizes utility without violating feasibility.

There is a second way for the consumer to choose a consumption bundle:
pick the least costly bundle that yields him a desired utility level.

This second form of choice is the one we explore now.
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The Expenditure Minimization Problem

Let U = {u(x) : x 2 RL
+} denote the set of attainable utility levels.

For each u 2 U and p � 0, the expenditure minimization problem (EMP)
is

min p · x
s.t. u(x) � u

x � 0

We denote h(p, u) the solution to this problem, this is the Hicksian (or
compensated) demand correspondence.

The value function e(p, u) = p · h(p, u) is called the expenditure function.
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The Expenditure Minimization Problem
Existence and Uniqueness

Existence and uniqueness of a solution to EMP are guaranteed by p � 0
and continuity and strict convexity of %.

These are the same conditions that guarantee existence and uniqueness
of a solution to UMP.

In what follows, we assume the existence conditions are satisfied.
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Duality

In neoclassical theory, UMP and EMP are two mirroring ways to look at
the same problem.

On one hand, in UMP the consumer seeks to maximize utility given a
fixed wealth/expenditure, namely w.

On the other hand, in EMP the consumer seeks to minimize the
expenditure necessary to reach a certain utility level, u.

We can formally state this intuition.
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Duality: implications for the value functions

Theorem 8
Suppose that u(.) is a continuous utility function representing a LNS
preference relation % on X = RL

+ and that p � 0. Then,
i) if x⇤ is optimal in UMP when wealth is w > 0, then x⇤ is optimal in EMP

when the required utility is u(x⇤). Moreover, the minimized expenditure
level in EMP is exactly w, that is p · x⇤ = w;

ii) if x⇤ is optimal in EMP at utility u > u(0), then x⇤ is optimal in UMP
when wealth is equal to p · x⇤. Moreover, the maximized level of utility
in UMP is exactly u, that is u(x⇤) = u.
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Duality
Proof of Theorem 8

We prove i).

i) By contradiction, assume x⇤ solves UMP, but is not optimal in EMP
when the required utility is u(x⇤).

Then, there must exist an x0 such that p · x0 < p · x⇤ and u(x0) � u(x⇤).
Since x⇤ solves UMP, p · x⇤  w.

By LNS of %, we can find x00 in an ✏-ball around x0, i.e. ||x00 � x0||  ✏,
that satisfies p · x00 < w and x00 � x0 $ u(x00) > u(x0).

This implies that x00 2 B(p,w) and that x⇤ is not optimal in UMP. A
contradiction.

Hence, x⇤ is optimal in EMP and the minimized expenditure is p · x⇤.
Since x⇤ solves UMP, it satisfies Walras’ law, i.e. p · x⇤ = w.
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Duality
Proof of Theorem 8

Let us prove part ii) of Theorem 8.

ii) Observe that since u � u(0), then x⇤ 6= 0 and p · x⇤ > 0.

By contradiction, assume x⇤ solves EMP but it is not optimal in UMP at
wealth p · x⇤.

Then, there must exist an x0 such that p · x0  p · x⇤ and u(x0) > u(x⇤).

Take x00 = ↵x0 with ↵ 2 (0, 1). By continuity of u(.), when ↵ is close to
1, u(x00) > u(x⇤) and p · x00 < p · x⇤.

This implies that x00 is preferred to x⇤ in EMP, since it guarantees the
desired utility at lower expenditure. A contradiction.

Hence, x⇤ is optimal in UMP and the maximized utility is u(x⇤). Since x⇤

solves EMP, it satisfies no-excess utility, i.e. u(x⇤) = u. ⌅
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Expenditure Minimization Problem: Summary

For each u 2 U = {u(x) : x 2 RL
+} and p � 0, the expenditure

minimization problem (EMP) is

min p · x
s.t. u(x) � u

x � 0

The solution to EMP is the Hicksian (or compensated) demand
correspondence, h(p, u);

The value function of EMP is the expenditure function,
e(p, u) = p · h(p, u).

EMP is dual to UMP.
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Properties of the Hicksian demand h(p, u)

Parallel to what we did for UMP, let us now examine the properties of the
Hicksian demand and of the expenditure function.

Theorem 5
Suppose that u(.) is a continuous utility function representing a LNS
preference relation % on X = RL

+. Then, the Hicksian demand
correspondence has the following properties:

i) it is homogeneous of degree zero in prices, i.e.
h(↵p, u) = h(p, u) 8 ↵ > 0;

ii) it satisfies no excess utility, i.e. u(x) = u for every x 2 h(p, u);
iii) if % is convex, then h(p, u) is a convex set. If % is strictly convex, then

h(p, u) is single-valued.

E. Campioni Microeconomics I A.Y. 2024 - 2025 93 / 138



Properties of the Hicksian demand h(p, u)

Parallel to what we did for UMP, let us now examine the properties of the
Hicksian demand and of the expenditure function.

Theorem 5
Suppose that u(.) is a continuous utility function representing a LNS
preference relation % on X = RL

+. Then, the Hicksian demand
correspondence has the following properties:

i) it is homogeneous of degree zero in prices, i.e.
h(↵p, u) = h(p, u) 8 ↵ > 0;

ii) it satisfies no excess utility, i.e. u(x) = u for every x 2 h(p, u);
iii) if % is convex, then h(p, u) is a convex set. If % is strictly convex, then

h(p, u) is single-valued.

E. Campioni Microeconomics I A.Y. 2024 - 2025 93 / 138



Properties of the Hicksian demand h(p, u)

Parallel to what we did for UMP, let us now examine the properties of the
Hicksian demand and of the expenditure function.

Theorem 5
Suppose that u(.) is a continuous utility function representing a LNS
preference relation % on X = RL

+. Then, the Hicksian demand
correspondence has the following properties:

i) it is homogeneous of degree zero in prices, i.e.
h(↵p, u) = h(p, u) 8 ↵ > 0;

ii) it satisfies no excess utility, i.e. u(x) = u for every x 2 h(p, u);
iii) if % is convex, then h(p, u) is a convex set. If % is strictly convex, then

h(p, u) is single-valued.

E. Campioni Microeconomics I A.Y. 2024 - 2025 93 / 138



Properties of the Hicksian demand h(p, u)

Parallel to what we did for UMP, let us now examine the properties of the
Hicksian demand and of the expenditure function.

Theorem 5
Suppose that u(.) is a continuous utility function representing a LNS
preference relation % on X = RL

+. Then, the Hicksian demand
correspondence has the following properties:

i) it is homogeneous of degree zero in prices, i.e.
h(↵p, u) = h(p, u) 8 ↵ > 0;

ii) it satisfies no excess utility, i.e. u(x) = u for every x 2 h(p, u);
iii) if % is convex, then h(p, u) is a convex set. If % is strictly convex, then

h(p, u) is single-valued.

E. Campioni Microeconomics I A.Y. 2024 - 2025 93 / 138



The Hicksian demand correspondence
Proof of Theorem 5 - i.)

Let us prove all three properties.

i) Immediate: the optimal bundle x that minimizes p · x also minimizes
↵p · x for every ↵ > 0, subject to the same constraint u(x) � u.
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The Hicksian demand correspondence
Proof of Theorem 5 - ii.)

ii) h(p,w) satisfies no excess utility, i.e. u(x) = u for every x 2 h(p, u).

Follows from continuity of u(.). Assume by contradiction that
x 2 h(p, u) is such that u(x) > u.

Consider a bundle x0 = �x, with � 2 (0, 1).

By continuity of u(.), when � is close enough to 1, u(x0) � u and
p · x0 < p · x.

Then, x /2 h(p, u), a contradiction.

Hence, u(x) must be equal to u for every x 2 h(p, u).
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The Hicksian demand correspondence
Proof of Theorem 5 - iii.)

iii-a) Take % convex and let x, x0 be two solutions to EMP, i.e. x 2 h(p, u) and
x0 2 h(p, u).

We have to show that ↵x + (1 � ↵)x0 ⌘ x00 2 h(p, u) for every ↵ 2 [0, 1].

Since x and x0 solve EMP, it must be that p · x = p · x0 = e⇤.

Hence, p(↵x+(1�↵)x0) = ↵p · x+(1�↵)p · x0 = e⇤, that is any convex
combination of solutions of EMP is itself expenditure minimizing.

In addition, we also know that u(x) = u(x0) = u by ii.). Since u(.) is
quasi-concave, u(x00) = u(↵x + (1 � ↵)x0) � u.

Hence, x00 is an expenditure minimizing bundle which yields utility u(x00)
not lower than u, therefore is must be x00 2 h(p, u), too. h(p, u) is a
convex set.
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The Hicksian demand correspondence
Proof of Theorem 5

iii-b) Take % strictly convex, i.e. u(.) strictly quasi-concave, then h(p, u)
contains a single element.

Prove it!!
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Properties of the Expenditure Function e(p, u)

Theorem 6
Suppose that u(.) is a continuous utility function representing a LNS
preference relation % on X = RL

+. Then, the expenditure function has the
following properties:

i) it is homogeneous of degree one in prices, i.e.
e(↵p, u) = ↵e(p, u) 8 ↵ > 0;

ii) it is strictly increasing in u and non-decreasing in pl for every
l = 1, . . . , L;

iii) it is concave in p;
iv) continuous in p and u.

E. Campioni Microeconomics I A.Y. 2024 - 2025 98 / 138



The Expenditure Function e(p, u)
Proof of Theorem 6 - i)

Let us prove properties i)� iii).

i) Follows immediately from the fact that h(p, u) is homogeneous of degree
zero in (p, u). Indeed since h(↵p, u) = h(p, u) for all ↵ 2 [0, 1], then also
↵p · h(↵p, u) = ↵p · h(p, u).
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The Expenditure Function e(p, u)
Proof of Theorem 6 - ii)

ii-a) We prove that e(p, u) is strictly increasing in u.

Suppose, by contradiction, that e(p, u) is not strictly increasing in u, and
let x0 and x00 denote optimal consumption bundles for utility levels u0 and
u00, respectively, with u00 > u0 and p · x0 � p · x00 > 0.

Consider a bundle x̃ = �x00, where � 2 (0, 1).

By continuity of u(·), there exists a � close enough to 1 such that
u(x̃) > u0 and p · x0 > p · x̃, a contradiction.
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The Expenditure Function e(p, u)
Proof of Theorem 6 - ii)

ii-b) To show that e(p, u) is non-decreasing in pl, consider the price vectors p00

and p0 such that p00l � p0l for commodity l, and p00k = p0k for all
commodities k 6= l.

Let x00 be the solution to the EMP for prices p00.

Then, e(p00, u) = p00 · x00 � p0 · x00 � e(p0, u), where the latter inequality
follows from the definition of e(p0, u).
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The Expenditure Function e(p, u)
Proof of Theorem 6 - iii)

iii) To show that e(p, u) is concave in p, we need to prove that

e(↵p + (1 � ↵)p0, u) � ↵e(p, u) + (1 � ↵)e(p0, u)

for every p, p0 and for every ↵ 2 [0, 1].

Denote p00 ⌘ ↵p + (1 � ↵)p0 and let x00 2 h(↵p + (1 � ↵)p0, u) be a
solution to EMP at price p00.
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The Expenditure Function e(p, u)
Proof of Theorem 6 - iii)

Then,

e(p00, u) = p00 · x00 = (↵p + (1 � ↵)p0) · x00 =

↵p · x00 + (1 � ↵)p0 · x00 � ↵p · h(p, u) + (1 � ↵)p0 · h(p0, u)

indeed, x00 is a sub-optimal choice when the prices are either p or p0.

Since ↵p · h(p, u) + (1 � ↵)p0 · h(p0, u) = ↵e(p, u) + (1 � ↵)e(p0, u), the
chain of inequalities above expresses the concavity of the expenditure
function.
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