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Introduction

We studied the demand side of the economy.

In particular, how by disciplining preference relations we are led to an
equivalent representation through the utility functions, and from there to
consumer’s demand, as the result of an optimal choice over a set of
feasible (affordable) alternatives.

Now, we look at the supply side of the economy.

The economic agent of interest now is the firm.
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Introduction

Assume the firm is atomistic and non–strategic.

No specific assumption is made on the market structure in which the firm
operates at this stage.

Being atomistic and non-strategic, it takes the market prices as given, for
the production good as well as for the inputs.
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Production Technology
Primitives

Suppose there are m goods in the economy.

A production plan is a vector y = (y1, . . . , ym) ∈ Rm, in which

yi > 0 means good i is an output, and yi is the amount produced;

yi < 0 means good i is an input, and −yi is the amount used as input.

A production plan is feasible if it belongs to the production set Y ,
that is y ∈ Y . Y is exogenously given.
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The Production Function
Example with a single output

When we want to represent a firm that produces a single output, the
production set Y is described by means of the production function, which
represents the technology that uses inputs to produce the output.

Then, a production plan is y = (q, z1, . . . , zm−1) ∈ Rm in which q is the
output, and (z1, . . . , zm−1) represent the amount of goods that can only
be used as inputs.

f : Rm−1
+ → R+ is the production function, which yields the maximum

amount of output that can be obtained combining the inputs
(z1, . . . , zm−1) according to the technology f (.)
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The Production Function
Marginal Rate of Technical Substitution

Let the production function f be differentiable. Fix the output level at
q = f (z) and consider two inputs l, k.

The marginal rate of technical substitution of input l for input k at z is

MRTSlk(z) = −
∂f (z)
∂zl

∂f (z)
∂zk

MRTSlk(z) measures by how much the use of input k has to increase, if
we decrease the use of input l by one marginal unit, to keep the level of
output at q.

MRTSlk(z) measures the slope of the production function at point z.
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Production Technology
Assumptions on Production Set

Properties of the production set Y = {y ∈ Rm : q − f (z1, · · · , zm−1) ≤ 0}.

i) Y is non – empty.

ii) Y is closed.

iii) Possibility of inaction: 0 ∈ Y .

The firm can shut down completely. This is possible if there are no sunk
costs, i.e., no commitments to the use of some inputs for production.
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Production Technology
Assumption on Production Set

iv) No Free Lunch: Y
⋂
Rm
+ ⊆ {0}.

This implies that there is no y > 0 in Y . In other words, there is no feasible
production plan where some goods are produced with no inputs.

v) Free Disposal: Y − Rm
+ ⊆ Y .

This implies that if y ∈ Y and we take any y′ ≤ y, then y′ ∈ Y .
A production plan y′ ≤ y implies that we can produce lower or equal
quantities of outputs as in y with at least as much of the inputs in y.

vi) Irreversibility: if y ∈ Y and y ̸= 0, then −y /∈ Y .

This implies that switching the roles of inputs and outputs in a production
plan is never feasible.
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Production Technology
Assumptions on Production Set

vii) Non–Increasing Returns to Scale: αY ⊆ Y for all α ∈ [0, 1].

Every production plan can be scaled down up to inaction/complete shut
down.

viii) Non–Decreasing Returns to Scale: αY ⊆ Y for all α ≥ 1.

Every production plan can be scaled up.

ix) Constant Returns to Scale: αY ⊆ Y for all α ≥ 0.

This combines non-increasing and non-decreasing returns to scale.

When the returns to scale are constant, the production set is a cone.
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Production Technology
Assumptions on Production Set

x) Convexity: Y is convex.

The production set is convex if for every pair of plans y, y′ ∈ Y ,
αy + (1 − α)y′ ∈ Y for every α ∈ [0, 1].

Notice that if inaction is possible, then convexity implies non–increasing
returns to scale.
Indeed, if Y is convex, then αy = αy + (1 − α)0 ∈ Y for all α ∈ [0, 1] and
for every y ∈ Y .
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Single-output Production Technology and convexity

1 We now show that for the single-output case, Y is convex if and only if
f (z) is a concave production function.
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Production Technology
Assumptions on Production Set

xi) Additivity: Y + Y ⊆ Y .

Additivity implies that for every y ∈ Y and y′ ∈ Y , the plan y + y′ ∈ Y.

It is a weaker version of non–decreasing returns to scale, which is called
free entry. Free entry implies that if y is feasible, then replicating y twice
is also feasible, i.e., if y ∈ Y then 2y ∈ Y
Now change 2 into any positive integer k, you can then consider an
arbitrary number of firms who can possibly become active in the market
you are considering.
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Production Technology
Properties of the Production Set

Observe that the properties of Convexity and of Constant Returns to
Scale imply that Y is a convex cone.

The production set is a convex cone if for every pair of plans y, y′ ∈ Y
and constants α ≥ 0 and β ≥ 0, then

αy + βy′ ∈ Y.
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Production Technology
Properties of the Production Set

One can show that.

Proposition 1
The production set is additive and satisfies non-increasing returns to scale if
and only if it is a convex cone.

E. Campioni Producer Theory November 25, 2024 14 / 48



Production Technology
Proof of Proposition 1

Proof of Proposition 1.
By definition, if Y is a convex cone, then additivity and non-increasing
returns to scale are implied.
We just need to prove that if Y satisfies additivity and non-increasing
return to scale, then it is a convex cone, that is
for every y, y′ ∈ Y , for every α ≥ 0 and β ≥ 0,

αy + βy′ ∈ Y

Pick a pair α ≥ 0 and β ≥ 0, and let k be any integer such that
k > max{α, β}. By additivity, both ky ∈ Y and ky′ ∈ Y hold.
By construction, α

k < 1, and αy =
(
α
k

)
ky ∈ Y by non-increasing returns

to scale.
Similarly for βy′, β

k < 1 and βy′ =
(β

k

)
ky′ ∈ Y .

Again, by additivity αy + βy′ ∈ Y . ■
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Production Technology
Properties of the Production Set

One way to think about the assumption of convexity of the production set
is that it is an implication of additivity, i.e. the possibility to replicate
feasible production plans in bigger scale without creating negative
interferences to the production activity, and of non-increasing returns to
scale, i.e. the possibility to always scale down any input-output
combination.
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Profit Maximization

Examine the market behavior of an individual firm.

The firm takes as given the market price of each good, (p1, . . . , pm).

We consider that the objective of the firm is to maximize profits.
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Profit Maximization
The Profit Maximization Problem (PMP)

Let p = (p,w1, . . . ,wm−1) ≫ 0 be the vector of prices of the unique
output good p and of the (m − 1) inputs wi with i = 1, ...,m − 1.

The profit maximization problem (PMP) of the firm is then

maxq,z≥0 p q − w · z

s.t. q − f (z) ≤ 0

The constraint set in this problem is closed and bounded, when we add
the condition of free disposal, the PMP has a solution.

E. Campioni Producer Theory November 25, 2024 18 / 48



Profit Maximization

Lemma 1
If Y is closed, bounded and satisfies free-disposal, the profit maximization
problem (PMP) has a solution.
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Profit Maximization
Profit Function and Supply Correspondence

As with UMP for the consumer, we name the solution to and the value
function of the profit maximization problem:

the supply correspondence,

y(p) = {(q, z) ∈ Rm : q − f (z) ≤ 0 and the profit is maximum}

and the profit function,

π(p) = max{pq − w · z : q − f (z) ≤ 0}.
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Profit Maximization
A closer look at the Profit Maximization Problem

The optimizer of PMP gives to the firm the highest possible profits, given
the technological constraint (f (y)).

It corresponds to a point which simultaneously belongs to an iso-profit
curve and to the production set.

Specifically, any production plan that solves PMP, y∗ ∈ y(p), is a point at
which the highest iso-profit curve of the firm is tangent to the boundary
of the production set, identified by the production function.
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The Profit Maximization Problem (PMP)

Given p = (p,w1, . . . ,wm−1) ≫ 0, the profit maximization problem
(PMP) of the firm is

maxq,z p q − w · z

s.t. q − f (z) ≤ 0

z ≥ 0
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Profit Maximization: single output

Suppose f (.) is a differentiable function, the necessary first order
conditions for z∗ to solve this optimization problem are

p
∂f (z∗)
∂zk

≤ wk for every k = 1, . . . ,m − 1 (1)

with (1) holding as an equality if z∗k > 0.
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Profit Maximization: single output

The first order conditions in (1) imply that at the solution z∗, for every
pair of inputs l, k

MRTSl,k(z∗) =
wl

wk

That is, at the optimum, the marginal rate of technical substitution be
equal to the ratio of input prices, which is the economic rate of
substitution, for every pair of inputs.

If Y is convex, the first-order conditions are necessary and sufficient for
identifying the maximum production plan.
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Profit function and supply correspondence: properties

Theorem 1
Suppose that Y is non-empty, closed and satisfies free-disposal. Let π(p) be
the profit function and y(p) the supply correspondence of the profit
maximization problem for Y , then

i) π(p) is homogeneous of degree one, i.e. π(αp) = απ(p) for every
α > 0;

ii) π(p) is convex;

iii) if Y is convex, then Y = {y ∈ Rm : p · y ≤ π(p) for all p ≫ 0};

iv) y(p) is homogeneous of degree zero;
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Profit function and supply correspondence: properties

Theorem 1- continued
v) if Y is convex, y(p) is a convex set for all p. If Y is strictly convex, y(p) is

a singleton;

vi) [Hotelling′s lemma] If y(p̄) is a singleton, then π(.) is differentiable at p̄
and ∇π(p̄) = y(p̄);

vii) If y(p̄) is a function differentiable at p̄, then Dy(p̄) = D2π(p̄) is a
symmetric and positive semi-definite matrix, with Dy(p̄) · p̄ = 0.
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The profit function and the supply correspondence
Proof of Theorem 1

i) Homogeneity of degree one of π(p) follows immediately from the
linearity of the profit function.

iii) π(p) gives a way to characterize the technology through the profit
function.

iv) If all the input prices and the output one vary by the same proportion, the
firm’s optimal demands of inputs and supplies of outputs do not change
(y(p) is homogeneous of degree zero).
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The profit function and the supply correspondence
Proof of Theorem 1- ii) π(p) is convex

π(p) convex in p implies that, for every pair (p, p′) and α ∈ [0, 1],

π(αp + (1 − α)p′) ≤ απ(p) + (1 − α)π(p′)

Take two price profiles, p and p′ and supply correspondences, y(p) and
y(p′), respectively. Consider their convex combination αp + (1 − α)p′,
and an optimal production plan at that combination,
ỹ ∈ y(αp + (1 − α)p′)

Evaluate the value of the profit function at ỹ,
π(αp + (1 − α)p′) = (αp + (1 − α)p′)ỹ = αpỹ + (1 − α)p′ỹ ≤
αpy(p) + (1 − α)p′y(p′) = απ(p) + (1 − α)π(p′). ■
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The profit function and the supply correspondence
Proof of Theorem 1

v) Uniqueness (multiplicity) result parallels what we found for the
consumer problem(s); here it depends on the convexity of Y .

vi) Same idea of the Shephard’s Lemma.

vii) The positive semi-definiteness of D2π(p) identifies the law of supply,
i.e., the own price effects on the (net) supply correspondence of each
good are non-negative. That is, if the price of an output increases, its
(optimal) supply increases, and if the price of an input increases, its
(optimal) demand decreases.
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Cost Minimization

Notice that when solving PMP the firm looks for the least costly
combination of the inputs that allows to produce the optimal levels of
output goods, given her technology

Hence, as an implication of choosing the profit-maximizing production
plan, the neoclassical firm minimizes her costs of production

Consider the single-output case, and formulate the cost-minimization
problem of the firm when p is the price of the output, and
w = (w1, · · · ,wm−1) is the vector of the (m − 1) input prices
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Cost Minimization Problem: single-output case

Fix the level of output at q, and consider the following problem

maxz − (w1z1 + ...+ wm−1zm−1)

s.t. f (z1, ..., zm−1) ≥ q

This is equivalent to

minz (w1z1 + ...+ wm−1zm−1)

s.t. f (z1, ..., zm−1) ≥ q
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Cost Minimisation Problem: single-output case

At fixed q, the cost minimisation problem (CMP) is

maxz − (w1z1 + ...+ wm−1zm−1)

s.t. f (z1, ..., zm−1) ≥ q

The solution to CMP is a profile of inputs (z∗1, ..., z∗m−1) that minimizes
the firm’s cost of production, for given q and input prices (w1, ...,wm−1)

Each z∗i (w, q) is the conditional factor demand for input i at prices w and
production level q

The value of the problem is the cost function, labelled C(w, q).
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Cost Minimization: single output
Characterization by Lagrange method

Suppose f (.) is differentiable, the necessary first order conditions for a
solution to such optimization problem are

wk ≥ λ
∂f (z∗)
∂zk

for every k = 1, . . . ,m − 1 (2)

with equality if z∗k > 0

If Y is convex, i.e., f (.) is concave, these first-order conditions are
necessary and sufficient for identifying the cost-minimasing vector of
inputs.

E. Campioni Producer Theory November 25, 2024 33 / 48



Cost Minimization: single output
Optimality conditions

As for the PMP, the first order conditions in (2) imply that at the solution
z∗, for every pair of inputs l, k

MRTSl,k(z∗, q) =
wl

wk

That is, at the optimum, the marginal rate of technical substitution be
equal to the ratio of input prices, which is the economic rate of
substitution, for every pair of inputs

The marginal rate of technical substitution is the slope of the isoquant
associated to the production level q
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Cost Minimization: single output
Lagrange multiplier

Interpret the Lagrange multiplier as the marginal value of relaxing the
constraint of CMP, i.e., f (z) ≥ q

Specifically, λ now measures the marginal cost of production, ∂C(w,q)
∂q

(See proof in the Note)
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Cost function and conditional factor demands: properties

Theorem 2
Suppose that Y is non-empty, closed and satisfies free-disposal. Let C(w, q)
be the cost function and z(w, q) be the conditional factor demands for the
(m − 1) inputs of the cost minimization problem for a single-output
technology Y with production function f , then

i) C(w, q) is homogeneous of degree one in w, and non-decreasing in q;

ii) C(w, q)) is concave in w;

iii) if the set {z ≥ 0 : f (z) ≥ q} is convex for every q, then
Y = {(−z, q) ∈ Rm : w · z ≥ C(w, q) for all w ≫ 0};

iv) z(w, q) is homogeneous of degree zero in w;
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Cost function and conditional factor demands: properties

Theorem 2- continued
v) if the set {z ≥ 0 : f (z) ≥ q} is convex, z(w, q) is a convex set. If the set

{z ≥ 0 : f (z) ≥ q} is strictly convex, z(w, q) is a singleton;

vi) [Shepard′s lemma] If z(w, q) is a singleton, then C(.) is differentiable at
w̄ and ∇wC(w̄, q) = z(w̄, q);

vii) If z(w, q) is a function, differentiable at w̄, then Dwz(w̄, q) = D2
wC(w̄, q)

is a symmetric and negative semi-definite matrix, with Dwz(w̄, q) · w̄ = 0;
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Cost function and conditional factor demands: properties

Theorem 2- continued
viii) If f (.) is a homogeneous of degree one, i.e., it exhibits constant returns to

scale, then z(.) and C(.) are homogeneous of degree one in q;

ix) If f (.) is concave, then C(.) is a convex function of q, and the marginal
costs are non-decreasing in q.
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Cost function and conditional factor demands: properties
Proof of Theorem 2

i) Total costs linearly increase in input prices.

iii) It is a way to characterize the technology through the cost function,
parallel to PMP, and it builds a dual relationship between costs and
profits.

iv) If all the input prices vary by the same proportion, the firm’s optimal
demands of inputs do not change.
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Cost function and conditional factor demands: properties
Proof of Theorem 2

v) Parallel to what we found for the consumer problem(s), and for PMP,
stated for the relevant production set.

vi) Same idea of the Shephard’s Lemma in consumption.

vii) The negative semi-definiteness of D2
wπ(p) identifies the law of supply for

the conditional factor demands, , i.e., if the price of an input increases, its
(optimal) demand decreases.
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Profit Maximization with cost function: single output

Once the cost minimization problem has been solved, the firn has to
determine the optimal level of output q, by solving the following problem

maxq pq − C(w, q)

The solution of this problem is a level of q∗ that maximizes profits while
minimizing the firm’s cost of production, given the technology f (.) and
the input prices (w1, ...,wm−1)
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Profit Maximization with cost function: single output

The necessary first order conditions for a solution to such optimization
problem are

p − ∂C(w, q)
∂q

= 0 (3)

with equality if q > 0

At an interior optimum, price equal marginal cost.

If C(w, q) is convex in q, i.e., f (.) is concave, this first-order condition is
necessary and sufficient for identifying q∗, i.e. the firm’s optimal output
level
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Aggregate Supply

Suppose there are J firms in the economy, each with a given production
set Y1, . . . ,YJ , which is non-empty, closed and satisfies free disposal

The aggregate supply correspondence is the sum of the individual
supplies of each firm

The aggregate profits obtained when each firm maximizes profits
independently are the same that would be obtained if the firms were
coordinating their actions in a joint profit maximization decision
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Efficiency

Are the optimal production plans of a neoclassical firm efficient?

A production plan y ∈ Y is efficient is there exists no other production
plan ỹ ∈ Y , such that ỹ ≥ y and ỹ ̸= y

In other words, for a production plan to be efficient there must be no
other feasible plan that either generates the same output with less inputs,
or that produces more output with the same inputs

In a single-output model of production, efficient plans are those for
which f (z1, ..., zm−1) = q.
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First Theorem of Welfare Economics

First Welfare Theorem
If y ∈ Y is profit maximizing for some p ≫ 0, then it is efficient.

Proof. Suppose by contradiction that there is a y′ ∈ Y such that y′ ≥ y
and y′ ̸= y. Since all prices (output and input) are strictly positive this
implies that p · y′ > p · y, which implies that y is not profit maximizing. ■
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First Theorem of Welfare Economics: comments

The first welfare theorem implies that if many (atomistic) firms
independently maximize profits at prices p ≫ 0, the aggregate result is
efficient for the economy

Having strictly positive prices is essential, otherwise it is possible to find
an example of a production plan y ∈ Y that is profit-maximizing for
some p ≥ 0 (with p ̸= 0) which is socially inefficient!
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Second Theorem of Welfare Economics

Second Welfare Theorem
Assume Y is a convex set. Then, every efficient production plan y ∈ Y is
profit-maximizing for some non-zero price vector p ≥ 0.
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Second Theorem of Welfare Economics
Proof

Proof. Suppose that y ∈ Y is efficient. Define the set
Py = {y′ ∈ Rm : y′ ≫ y}. Py is a convex set and because y is efficient
(hence, on the frontier of the transformation function), Py ∩ Y = ∅.

Using the separating hyperplane theorem, we know that there is some
p ̸= 0 such that p · y′ ≥ p · y′′ for every y′ ∈ Py and y′′ ∈ Y

This implies in particular, that p · y′ ≥ p · y for every y′ ≫ y

Therefore, we must have p ≥ 0 because if pk < 0 for some k, we would
have p · y′ < p · y for y′ ≫ y with y′k − yk sufficiently large

Now take any y′′ ∈ Y . Then, p · y′ ≥ p · y′′ for every y′ ∈ Py.

Because we can choose y′ arbitrarily close to y, we can conclude that
p · y ≥ p · y′′ for every y′′ ∈ Y , that is, y is profit maximizing. ■
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