ACHINE LEARNING AND A




Topics

Entropy as an Information Measure

Entropy for discrete and continuous
distributions

Maximum Entropy

Conditional Entropy

Relative entropy: Kullback-Leibler
Divergence

Mutual Information




How much information is
received when we observe a
specific value for a discrete
random variable x ?

Information

Measure Amount of information is
degree of surprise

e Certain means no information

e More information when event is
unlikely



Depends on probability distribution
p(x),

A quantity h(x) can be defined

Information

Measure If there are two unrelated events x

and y we want h(x,y)= h(x) + h(y)

Thus we choose h(x)=- log, p(x)

e Negative assures that information
measure is positive




Information Measure

Average amount of information transmitted is the expectation wrt p(x)
referred to as entropy

H(X)=- 24 p(x) log; p(X)



* Uniform Distribution

— Random variable x has 8 possible states,
each equally likely

 We would need 3 bits to transmit
» Also, H(x) = -8 x (1/8)log,(1/8)=3 bits




* Non-uniform Distribution
* If x has 8 states with probabilities
* (1/2,1/4,1/8,1/16,1/64,1/64,1/64,1/64)
* H(x)=2 bits

* Non-uniform distribution has smaller entropy
than uniform distribution




Relationship

of Entropy to
Code Length

Take advantage of non-uniform
distribution to use shorter codes for
more probable events, at the expense
of longer codes for the less probable
events, in the hope of getting a
shorter average code length.

« |f x has 8 states (a,b,c,d,e,f,g,h) with
probabilities

(1/2,1/4,1/8,1/16,1/64,1/64,1/64,1/64)

Can use codes
0,10,110,1110,111100,111101, 111110,111111

average code length= < Same as
(1/2)1+(1/4)2+(1/8)3 entropy of

+(1/16)4+4(1/64)6 the random
—9 bits variable



Relationship between Entropy and

Shortest Coding Length

Noiseless coding theorem of Natural logarithms are used in
Shannon relationship to other topics
Entropy is a lower bound on number of bits Nats instead of bits

needed to transmit a random variable



History: Thermodynamics

to

Information Theory

Entropy is average
amount of information
needed to specify
state of a random
variable

physics

The concept used in

Context of equilibrium
thermodynamics

Later given deeper
interpretation as
measure of disorder

(developments in
statistical mechanics)




History of Entropy

* Ludwig Eduard Boltzmann (1844-1906)
* Created Statistical Mechanics
* First law: conservation of energy

* Energy not destroyed but converted from
one form to other

* Second law: principle of decay in nature—
entropy increases

* Explains why not all energy is available to
do useful work

* Relate macro state to statistical behavior of
microstate

* Claude Shannon (1916-2001)
* Stephen Hawking (Gravitational Entropy)




Entropy

* N objects into bins so that n; are in ith bin where

Zini:N

* No of different ways of allocating objects to bins
— N ways to choose first, N-1 ways for second leads to N.(N-1) .. 2.1 = N!
— We don't distinguish between rearrangements within each bin

 Inith bin there are n;! ways of reordering objects

— Total no of ways of allocating N objects to binsis w =
« Called Multiplicity (also weight of macrostate) Hi n;!

N!




Entropy

- Entropy: scaled log of multiplicity| H== inw =X inNi-£ 3 inn;

N N N
— Sterlings approx asN — o In N~ NInN-N

— Which gives L lim Z(ﬁ;)'”{ﬁ;jz_zpimp‘

_N—>ooi

« Overall distribution, as ratios n;/N, called macrostate

* In physics, specific arrangement of objects in bin Is
microstate



Entropy

e |f X can take one of M values
(bins, states) and p(X=x;)=p;then
H(p)=-2;p; Inp,

* Minimum value of entropy is 0 when
one of the p;=1 and other p,are 0

(lim ;0 p In p =0)
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« Sharply peaked distribution has low entropy
» Distribution spread more evenly will have higher entropy



Maximum Entropy

* Found by maximizing H using Lagrange
multiplier to enforce constraint of probabillities
* Maximize

H = —p()n}p(x) + AXp(x;) — 1)



Maximum Entropy

 Solution: all p(x;) are equal or p(x;)=1/M M=no of
 Maximum value of entropy is: In M

* To verify it Is a maximum, evaluate second

derivative of entropy = 5x5- ">

—where [;; are elements of identity matrix




Entropy with Continuous Variable

Divide x into bins of width 4
For each bin there must exist a value x; such that

(i+1)A

[ pe)d(x) = p(x)a

1A

Gives a discrete distribution with probabillities p(x;)4
Entropy Ha =-2.p(x)AIN(p(x;)A) =2 p(x;)AIn p(x;) - InA
Omit the second term and consider the limit A-=>0

H, =~ [ p@)In p(x)dx



Entropy with continuous variable

H, =~ p@)In p(x)dx

« Known as Differential Entropy

* Discrete and Continuous forms of entropy differ by
qguantity In A4 which diverges

— Reflects to specify continuous variable very precisely requires a
large no of bits



Entropy with Multiple Continuous
Variables

 Differential Entropy for multiple continuous
variables

H(x) = —fp x)In p(x)dx

* For what distribution is differential entropy
maximized?
— For discrete distribution, it is uniform
— For continuous, it Is Gaussian



Ordinary calculus
deals with functions

ntropy as
Unctional

A functional is an
operator that takes a
function as input
and returns a scalar




Entropy as
functional

A widely used functional in machine learning
is entropy H[p(x)] which is a scalar quantity

We are interested in the maxima and minima
of functionals analogous to those for
functions

Called calculus of
variations




Maximising
Entropy as
Functional

Functional: mapping from set of functions to real value

For what function is it maximized?

Finding shortest curve length between two points on a sphere
(geodesic)

When constrained to lie on a surface

With no constraints it is a straight line N .
solution is less obvious— may be several

Constraints incorporated using Lagrangian




Maximising Differential Entropy

« Assuming constraints on first and second moments of
p(x) as well as normalization

fp(x)dx =1 fxp(x)dx = u f(x —uw) p(x)dx=0"

« Constrained maximization is performed using
Lagrangian multipliers. Maximize following functional
wrt p(x): - [ PO p(xr)dx+2, ([ px)dx=1)

+ 2 ([xp(x)dx = ) + A ([(x = @) p(x)dx=-07)



Maximising

 Using the calculus of variations derivative of functional
IS set to zero:

p(X) =exp{-1+ 4 + A, X+ A3(x = 1)’}

« Backsubstituting into three constraint equations
leads to the result that distribution that maximizes
differential Is Gaussian



Differential Entropy of Gaussian

Distribution that maximizes Differential Entropy
IS Gaussian
I (—(x—u)"

(23'[0‘2)1/2 CXP- o> .

p(x) =

Value of maximum entropy Is
H(x) = % fl+In(2702))

Entropy increases as variance increases

Differential entropy, unlike discrete entropy, can
be negative for &2 <1/(2)



Conditional Entropy

 If we have joint distribution p(x,y)
— We draw pairs of values of x and y

— If value of x is already known, additional information to specify
corresponding value of y is —In p(y|x)

« Average additional information needed to specify y Is the
conditional entropy

HIy |x]==[[p(y[x)In p(y | X)dydx



Conditional Entropy

« By product rule{H[x,y] = H[y|x] + H[X]
« where H[x,y] Is differential entropy of p(X,y)
« H[x] is differential entropy of p(x)

« Information needed to describe x and y is given by
information needed to describe x plus
additional information needed to specify y given x




Relative
Entropy

If we have modeled unknown
distribution p(x) by approximating
distribution g(x)

e i.e., g(x) is used to construct a coding scheme
of transmitting values of x to a receiver

e Average additional amount of information
required to specify value of x as a result of
using q(x) instead of true distribution p(x) is
given by relative entropy or K-L divergence

Important concept in Bayesian
analysis

e Entropy comes from Information Theory

e K-L Divergence, or relative entropy, comes
from Pattern Recognition, since itis a
distance (dissimilarity) measure




Relative Entropy or K-L Divergence

« Additional information required as a result of
using d(x) in place of p(x)

KL(pI19) = - [ pO)Ina(dx - (] p(x)In p(x)dx)

— | p(x)ln{&}dx

q(x)

 Not a symmetrical quantity: KL(plla) # KL(al|p)

» K-L divergence satisfies KL(p||g)=0 with
equality Iff p(x)=q(x)

— Proof involves convex functions



Convex Function

» Afunction f(x) is convex if every chord lies on
or above function

— Any value of x in interval from x=a to x=b can be
written as Aa+(1-A)b where 0<4<1

— Corresponding point on chord Is o
Af@@)+@-AH)fb) ] e \ 7/
— Convexity implies T
f(ha+(1-1)b) < 2 f(@)+(1-L)f(b) :

Point on curve < Point on chord

— By Induction, we get Jensen’s inequality
LZ&XJ<Zlf(x)

where 4. >0 andz/i =1



Proof of positivity of K-L Divergence

* If we interpret A; as the probability distribution over a discrete
variable x taking the values {x; }:

f(EM)) < E(f(x))
* For continuous variables:

f(J xp(x)dx) < f(x)p(x)dx

3 p(x)
KL(pllq) = —J p(x) lnq(x)

—In(x):convex function

J q(x)dx =1
q(x) = p(x)

dx > —In[ q(x)dx =0

K-L divergence is a measure of the dissimilarity of two distributions



Mutual Information
« Given joint distribution of two sets of variables

p(X.y)
— If independent, will factorize as p(x,y)=p(X)p(y)

— If not iIndependent, whether close to independent is
given by

« KL divergence between joint and product of marginals
I[x,y] = KL p(x,y) || p(x) p(y))

_ Vvl p(X)p(y))d r
[[pex.y) n( oy |

 Called Mutual Information between variables x and y




Mutual Information

* From the properties of K-L divergence:

I[x,y]= KL p(x,y) || p(x) p(y))

_ffp(x y)ln( p(x)p(y) )dxdy >0

P(X,y)

If and only if x and y are independent.



e Using Sum and Product Rules
Mutual * I[xyl=H[x] - H[x|y] = Hly] - H[y |x]

| nfO 'Mm at|O N e Mutual Information is reduction in
uncertainty about
/ e x given value of y (or
vice versa)
o * Bayesian perspective:

* if p(x) is prior and p(x|y) is
posterior, mutual
information is reduction in
uncertainty after vy is
observed




