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Information
Measure

How much information is 
received when we observe a  
specific value for a discrete 
random variable x ?

Amount of information is 
degree of surprise

• Certain means no information

• More information when event is 
unlikely



Information 
Measure

Depends on probability distribution 
p(x), 

A quantity h(x) can be defined

If there are two unrelated events x 
and y we want h(x,y)=  h(x) + h(y)

Thus we choose h(x)= - log2 p(x)

• Negative assures that information 
measure is positive



Information Measure

Average amount of information transmitted is the expectation wrt p(x)

referred to as entropy

H(x)=-x p(x) log2 p(x)



Entropy

• Uniform Distribution
– Random variable x has 8 possible states,

each equally likely
• We would need 3 bits to transmit

• Also, H(x) = -8 x (1/8)log2(1/8)=3 bits



Entropy

• Non-uniform Distribution
• If x has 8 states with probabilities
• (1/2,1/4,1/8,1/16,1/64,1/64,1/64,1/64)
• H(x)=2 bits

• Non-uniform distribution has smaller entropy
than uniform distribution 



Take advantage of non-uniform 
distribution to use shorter codes for 
more probable events, at the expense 
of longer codes for the less probable 
events, in the hope of getting a 
shorter average code length.
• If x has 8 states (a,b,c,d,e,f,g,h) with

probabilities

(1/2,1/4,1/8,1/16,1/64,1/64,1/64,1/64)

Can use codes
0,10,110,1110,111100,111101, 111110,111111

average code length =
(1/2)1+(1/4)2+(1/8)3
+(1/16)4+4(1/64)6
=2 bits

• Same as
entropy of
the random
variable

Relationship
of Entropy to
Code Length



Relationship between Entropy and
Shortest Coding Length

Noiseless coding theorem of 
Shannon
Entropy is a lower bound on number of bits 
needed to  transmit a random variable

Natural logarithms are used in 
relationship to  other topics
Nats instead of bits



History: Thermodynamics to 
Information Theory

Entropy is average 
amount of information  

needed to specify 
state of a random  

variable

The concept used in 
physics

Context of equilibrium 
thermodynamics

Later given deeper 
interpretation as 

measure  of disorder 
(developments in 

statistical  mechanics)



History of Entropy
• Ludwig Eduard Boltzmann (1844-1906)

• Created Statistical Mechanics

• First law: conservation of energy

• Energy not destroyed but converted from
one form to other

• Second law: principle of decay in nature–
entropy increases

• Explains why not all energy is available to
do useful work

• Relate macro state to statistical behavior of 
microstate

• Claude Shannon (1916-2001)

• Stephen Hawking (Gravitational Entropy)



Entropy

• In ith bin there are ni! ways of reordering objects

– Total no of ways of allocating N objects to bins is

• Called Multiplicity (also weight of macrostate)

• N objects into bins so that ni are in ith bin where

•
i

ni = N

• No of different ways of allocating objects to bins
– N ways to choose first, N-1 ways for second leads to N.(N-1) .. 2.1 = N!

– We don’t distinguish between rearrangements within each bin

N!
W =


i
n i!



Entropy

• Entropy: scaled log of multiplicity

– Which gives

• Overall distribution, as ratios ni/N, called macrostate

• In physics, specific arrangement of objects in bin is

microstate

1 1 1H = lnW = ln N!−  ln n i!
N N N i

– Sterlings approx as N → ln N! NlnN - N

H = − i
lim n 

  ln
N N

ni


N →    
 

i i

= − p ln pi i



Entropy

• If X can take one of M values
(bins, states) and p(X=xi)=pi then

H(p)=-i pi ln pi

• Minimum value of entropy is 0 when
one of the pi=1 and other pi are 0

(lim p→0 p ln p =0)



Entropy

• Sharply peaked distribution has low entropy

• Distribution spread more evenly will have higher entropy



Maximum Entropy

• Found by maximizing H using Lagrange 
multiplier to enforce constraint of probabilities

• Maximize

𝐻 = −𝑝 𝑥 ln∑𝑝(𝑥) + 𝜆 ∑𝑝 𝑥𝑖 − 1



Maximum Entropy

i i• Solution: all p(x ) are equal or p(x )=1/M M=no of

states

• Maximum value of entropy is: ln M

• To verify it is a maximum, evaluate second

derivative of entropy

– where Iij are elements of identity matrix

H̃

p(x i)p(x j )
= −Iij

1

pi



Entropy with Continuous Variable

i

(i+1)

 p(x)d(x) = p(x i)

• Divide x into bins of width 

• For each bin there must exist a value xi such that

• Gives a discrete distribution with probabilities p(xi)

• Entropy

• Omit the second term and consider the limit →0

H = − p(x i) ln(p(x i)) = − p(x i) ln p(x i) − ln



Entropy with continuous variable

• Known as Differential Entropy

• Discrete and Continuous forms of entropy differ by 
quantity ln  which diverges
– Reflects to specify continuous variable very precisely requires a 

large no of bits



Entropy with Multiple Continuous 
Variables

• Differential Entropy for multiple continuous 

variables

• For what distribution is differential entropy 

maximized?

– For discrete distribution, it is uniform

– For continuous, it is Gaussian



Entropy as
Functional

Ordinary calculus 
deals with functions

A functional is an 
operator that takes a  
function as input 
and returns a scalar



Entropy as 
functional

We are interested in the maxima and  minima 
of functionals analogous to those  for 

functions

Called calculus of 
variations

A widely used functional in machine  learning 
is entropy H[p(x)] which is a  scalar quantity



Maximising
Entropy as 
Functional

Constraints incorporated using Lagrangian

Finding shortest curve length between two  points on a sphere 
(geodesic)

With no constraints it is a straight line
When constrained to lie on a surface 

solution  is less obvious– may be several

For what function is it maximized?

Functional: mapping from set of functions  to real value



Maximising Differential Entropy

• Assuming constraints on first and second moments of

p(x) as well as normalization

• Constrained maximization is performed using 

Lagrangian multipliers. Maximize following functional 

wrt p(x):



Maximising 

• Using the calculus of variations derivative of functional 
is set to zero:

• Backsubstituting into three constraint equations 

leads to the result that distribution that maximizes

differential is Gaussian

1 2 3

2p(x) = exp{−1+  +  x +  (x −) }



Differential Entropy of Gaussian

• Distribution that maximizes Differential Entropy  
is Gaussian

• Value of maximum entropy is

be negative for

2

• Entropy increases as variance increases

• Differential entropy, unlike discrete entropy, can

H(x) =
11+ ln(2 2)

 2 1/(2e)



Conditional Entropy

• If we have joint distribution p(x,y)
– We draw pairs of values of x and y

– If value of x is already known, additional information to specify 
corresponding value of y is –ln p(y|x)

• Average additional information needed to specify y is the 
conditional entropy



Conditional Entropy

• By product rule H[x,y] = H[y|x] + H[x]

• where H[x,y] is differential entropy of p(x,y)

• H[x] is differential entropy of p(x)

• Information needed to describe x and y is given by

information needed to describe x plus

additional information needed to specify y given x



Relative
Entropy

If we have modeled unknown 
distribution p(x) by  approximating 
distribution q(x)

• i.e., q(x) is used to construct a coding scheme 
of  transmitting values of x to a receiver

• Average additional amount of information 
required to  specify value of x as a result of 
using q(x) instead of true  distribution p(x) is 
given by relative entropy or K-L  divergence

Important concept in Bayesian 
analysis

• Entropy comes from Information Theory

• K-L Divergence, or relative entropy, comes 
from Pattern  Recognition, since it is a 
distance (dissimilarity) measure



• Not a symmetrical quantity:

• K-L divergence satisfies KL(p||q)≥0 with 
equality iff p(x)=q(x)

– Proof involves convex functions

Relative Entropy or K-L Divergence

• Additional information required as a result of 
using q(x) in place of p(x)

KL( p || q) = −  p(x) ln q(x)dx − ( p(x ) ln p(x )dx)
 p(x)

 
= −  p(x ) ln

q(x )
dx

KL(p||q) ≠ KL(q||p)



Convex Function

• A function f(x) is convex if every chord lies on 

or above function

– Any value of x in interval from x=a to x=b can be 

written as a+(1-)b where 0<<1

– Corresponding point on chord is

f(a)+(1-)f(b)

– Convexity implies

f(a+(1-)b) <  f(a)+(1-)f(b)
Point on curve < Point on chord

– By induction, we get Jensen’s inequality
 M

 i=1



 i=1

M

f ix i i f (x i)

i i
i

where   0 and   =1



Proof of positivity of K-L Divergence

• If we interpret 𝜆𝑖 as the probability distribution over a discrete 
variable 𝑥 taking the values {𝑥𝑖}:

𝑓 E 𝑥 ≤ E(𝑓(𝑥))

• For continuous variables:
𝑓 ∫ 𝑥𝑝 𝑥 𝑑𝑥 ≤ 𝑓 𝑥 𝑝 𝑥 𝑑𝑥

𝐾𝐿(𝑝||𝑞) = −∫ 𝑝 𝑥 ln
𝑝 𝑥

𝑞 𝑥
𝑑𝑥 ≥ − ln ∫ 𝑞 𝑥 𝑑𝑥 = 0

−ln(𝑥):convex function 

∫ 𝑞 𝑥 𝑑𝑥 = 1
𝑞 𝑥 = 𝑝 𝑥

K-L divergence is a measure of the dissimilarity of two distributions  



Mutual Information
• Given joint distribution of two sets of variables

p(x,y)

– If independent, will factorize as p(x,y)=p(x)p(y)

– If not independent, whether close to independent is 

given by

• KL divergence between joint and product of marginals

• Called Mutual Information between variables x and y



Mutual Information

• From the properties of K-L divergence:

≥ 0

If and only if x and y are independent.



Mutual
Information


