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Introduction
What is Time Series Analysis?



Introduction

Since social and economic conditions are constantly changing over time, data
analysts must be able to assess and predict the effects of these changes, in

order to suggest the most appropriate actions to take

It's therefore required to use appropriate forecasting techniques to support
business, operations, technology, research, etc.

More accurate and less biased forecasts can be one of the most effective
driver of performance in many fields

Time Series Analysis, using statistical methods, allows to enhance
comprehension and predictions on any quantitative variable of interest (sales,
resources, financial KPls, logistics, sensors’ measurements, etc.)
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Applications

The fields of application of Time series Analysis are numerous: Demand Planning

is one of the most common application, however, from industry to industry there are
other possible uses. For instance:

k\ Logistics & Forecasting of shipped packages: workforce plannin

Forecasting of sales during promotions: optimizing warehouses

Claims prediction: determining insurance policies

Predictive Maintenance: improving operational efficiency

Energy load forecasting: better planning and trading strategies
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TS data vs. Cross Sectional data

A Time series is made up by dynamic data collected over time! Consider the
differences between:

1. Cross Sectional Data
Multiple objects observed at a particular point of time

Examples: customers’ behavioral data at today’s update, companies’ account balances
at the end of the last year, patients’ medical records at the end of the current month, ...

2. Time Series Data

One single object (product, country, sensor, ..) observed over multiple equally-spaced
time periods

Examples: quarterly Italian GDP of the last 10 years, weekly supermarket sales of the
previous year, yesterday’s hourly temperature measurements, ...
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Examples

Time series example 1
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Examples

Time series example 2
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Examples

Time series example 3
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Examples
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Examples

Time series example 5
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Objectives

Main Objectives of Time Series Analysis
Summary description (graphical and numerical) of data point vs. time

Interpretation of specific series features (e.g. seasonality, trend, relationship
with other series)

Forecasting (e.g. predict the series valuesint + 1,t + 2,...,t + k)
Hypothesis testing and Simulation (comparing different scenarios)
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Objectives

Once someone said: «Forecasting is the art of saying what will happen in the
future and then explaining why it didn’t»

Frequently true... history is full of examples of «bad forecasts», just like IBM Chairman’s famous
quote in 1943: “there is a world market for maybe five computers in the future.”

The reality is that forecasting is a really tough task, and you can do really bad, just
like in this cartoon..

RS You CAN SEE, BY LATE

NEXT MONTH YOU'LL HAVE But we can do definitely better

OVER FOUR DOZEN HUSBANDS, using quantitative methods.. and

) BETTERGETA common sense!

BULK RATE ON

WVEDDING CAKE. GOAL: Reduce uncertainty and
improve the accuracy of our
forecasts
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Definition

General definition: “A time series is a collection of observations made
sequentially through time, whose dynamics is often characterized by
short/long period fluctuations (seasonality and cycles) and/or long period
direction (trend)”

Such observations may be denoted by since data are
usually collected at discrete points in time

The interval between observations can be any time interval (seconds, minute, hours, days, weeks,
months, quarters, years, etc.) and we assume that these time periods are equally spaced

One of the most distinctive characteristics of a time series is the mutual dependence between the
observations, generally called SERIAL CORRELATION OR AUTOCORRELATION
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Time Series Properties: Main Elements

TREND

The general direction in which the series
is running during a long period

A TREND exists when there is a long-term
increase or decrease in the data.

It does not have to be necessarily linear
(could be exponential or others functional
form).

Linear Trend Example
800
780
760
740
720
700
680

Sales

660

620 1 { |

600 /"

12 3 4 5 6 7 8 9 10 11 12 13 14 15
Period

© 2021 KNIME AG. All rights reserved.

CYCLE

Long-term fluctuations that occur regularly in
the series A CYCLE is an oscillatory
component (i.e. Upward or Downward
swings) which is repeated after a certain
number of years, so:
May vary in length and usually lasts several
years (from 2 up to 20/30)

Difficult to detect, because it is often
confused with the trend component

Cycle Example:
Monthly Sunspot Numbers
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Time Series Properties: Main Elements

SEASONAL EFFECTS

Short-term fluctuations that occur regularly —
often associated with months or quarters

A SEASONAL PATTERN exists when a
series is influenced by seasonal factors (e.g.,
the quarter of the year, the month, day of the
week). Seasonality is always of a fixed and
known period.

Seasonal effect example (Weekly seasonality):
Newspapers Daily Sales
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RESIDUAL

Whatever remains after the other components
have been taken into account

The residual/error component is everything
that is not considered in previous components

Typically, it is assumed to be the sum of a set
of random factors (e.g. a white noise series)
not relevant for describing the dynamics of the
series

Example of White Noise Series

Values
-1 0
1

Time
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Seasonal effect: additive seasonality

When the seasonality in Additive, the dynamics of the components are
independents from each other; for instance, an increase in the trend-cycle will
not cause an increase in the magnitude of seasonal dips

The difference of the trend and the raw data is roughly constant in similar
periods of time (months, quarters) irrespectively of the tendency of the trend
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Seasonal effect: multiplicative seasonality

In the multiplicative model the amplitude of the seasonality increase (decrease)
with an increasing (decreasing) trend, therefore, on the contrary to the additive
case, the components are not independent from each other

When the variation in the seasonal pattern (or the variation around the trend-
cycle) appears to be proportional to the level of the time series, then a

multiplicative model is more appropriate.
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Graphical Analysis: Time Plot

The first chart in time series analysis is the TIME PLOT - the observations
are plotted against the time of observation, normally with consecutive
observations joined by straight lines

Example of TS Plot of Australian monthly wine sales Example of TS Plot of Air Passengers (monthly) series
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Graphical Analysis: Time Plot

Insights you can get just from a simple Time plot
Is there a trend? Could it be linear or not?
Is there a seasonality effect?

Are there any long term cycles?
Are there any sharp changes in behaviour? Can such changes be explained?

Are there any missing values or “gap” in the series?
Are there any outliers, i.e. observations that differ greatly from the general pattern?

Is there any turning point/changing trend?

Series with a turning point Series with an outlier

Series with gaps

B
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Graphical Analysis: Time Plot

The TIME PLOT is very useful in cases where the series shows a very
constant/simple dynamic (strong trend and strong seasonality), but in other
cases could be difficult to draw clear conclusions
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Other graphical analyses and summary statistics could
improve/extend the insights given by the simple time plot!
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Graphical Analysis: Seasonal Plot

Produce the Seasonal plot of the Time series in order to analyze more in detail
the seasonal component (and possible changes in seasonality over time)

Season plot
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Numerical analysis: Auto Correlation Function (and ACF plot)

In order to go deeper inside the autocorrelation structure of the time series, you
can create the Auto Correlation Function plot (ACF plot), also called correlogram:
in this chart you can read the linear correlation index between the values in t and
all the possible lags (-1, t-2, ..., t-k); the chart below shows all the correlations up

to lag number 48

ACF Plot with 95% CI

1.0
0.9
038
07
067
05
o 04
S
® 037
2
S 02
o
0.1
0.0 \ 7 X 72
0.17
02
03
0.41
05
2 0 2 4 & 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 35 40 42 44 46 48 50
Lag v
Reset  Apply Close

nnnnnnnnnnnnnnnnn

© 2021 KNIME AG. All rights reserved. KNIME



Numerical analysis: Auto Correlation Function (and ACF plot)

Together with the ACF, sometimes it is useful to analyze also the Partial
Autocorrelation Function

The ACF plot shows the autocorrelations which measure the linear relationship
between y, and y,_, for different values of k but consider that:

if y, and y,_, are correlated, then y,_; and y,_, must also be correlated

But then y, and y,_, might be correlated, simply because they are both connected to y;_;

- The Partial Autocorrelation Function (PACF) consider the linear relationship between y, and
v:_x after removing the effects of other time lags 1,2,3,...,k—1

PACF Plot with 95% CI
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Agenda

Descriptive Analytics: Non-stationarity, Seasonality, Trend

© 2021 KNIME AG. All rights reserved.
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Descriptive Analytics

Stationarity, Seasonality, Trend



Stationarity

A time series can be defined as “stationary” when jts properties does not depend
on the time at which the series is observed, so that:
the values oscillate frequently around the mean, independently from time

the variance of the fluctuations remains constant across time
the autocorrelation structure is constant over time and no periodic fluctuations exist

So, a time series that shows trend or seasonality is not stationary

Non-Stationary Time Series example 1 Non-Stationary Time Series example 2
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Stationarity

Typical examples of non-stationary series are all series that exhibit a deterministic
trend (i.e. y. = a + B - t+ ¢;) or the so-called “Random Walk”

Random Walk (without drift) 2 vy, = y,_; + & (Where g, is white noise)

A random walk model is very widely used for non-stationary data, particularly

financial and economic data. Random Walk Example

Random walks typically have:
long periods of apparent trends up or down .
sudden and unpredictable changes in direction @ -
variance and autocorrelation that depends on time!

T T
0 50 100 150
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Stationarity

Besides looking at the time plot of the data, the ACF plot is also useful for
identifying non-stationary TS:

for a stationary time series, the ACF will drop to zero (i.e. within confidence
bounds) relatively quickly, while the ACF of non-stationary data decreases slowly

Stationary Time Series example Non-Stationary Time Series example 1 (random walk!)
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Differencing

One way to make a time series stationary is to compute the differences between
consecutive observations -~ This is known as DIFFERENCING
Differencing can help stabilize the mean of a time series by removing changes in the level of a time
series, and so eliminating trend (and also seasonality, using a specific differencing order)
The Order of Integration for a Time Series, denoted I(d), reports the minimum number of differences
(d) required to obtain a stationary series (note: I(0) - it means the series is stationary!)
Transformations such as logarithms can help to stabilize the variance of a time series

Differenced
Time Series (first order)

Yt yé =Yt — Yt—1

CYCLE_ |WEEK_| DATE_ | COLLI_ARR‘| DIFF_1
1 1 11 983 ,
1 2012 1478 495 1478 — 983 = 495
1 313 1822 345
1 4 14 1883 B1
1 5 15 1913 30
1 B 16 2001 88
1 7017 2077 76
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Differencing

Example: use differencing to make stationary a non-stationary series

Non-Stationary Time Series example 1 (Random Differenced Time Series (first order)
g Walk) ©
8 1 5 ©
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Differencing

Occasionally the differenced data will not appear stationary and it may be
necessary to difference the data a second time to obtain a stationary series

( )"

Original Time Series: non-stationary (mean and variance) First Order Differencing: non-stationary (mean and variance)
250
200 ’J/
150 f

: 11 ; :
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* it's almost never necessary to go beyond second-order differences

nnnnnnnnnnnnnnnnn

© 2021 KNIME AG. All rights reserved. KNIME




Differencing

A seasonal difference is the difference between an observation and the
corresponding observation from the previous (seasonal) cycle

Ve =Yt — Vi-F
Where F is the (seasonal) cycle frequency

The seasonal differencing removes strong and stable seasonality pattern
(and transform into a white noise the so called “seasonal random walk”,

.. V¢ = Yeor T &)

Consider that:

Sometimes it's needed to apply both “simple” first differencing and seasonal differencing
in order to obtain a stationary series
It makes no difference which is done first—the result will be the same

However, if the data have a strong seasonal pattern, it's recommended that seasonal differencing be
done first because sometimes the resulting series will be stationary and there will be no need for a
further non-seasonal differencing
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Differencing

Consider the following example where a set of differencing has been applied to
“Monthly Australian overseas visitors” TS

2 4

Original Time Series (y;) 6 Seasonal Differencing (y; — y¢-12)
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Applying first differencing to seasonal Use log trasformation in order to stabilize the variance
differenced series (log(yo) —log(ye-1)] — [log(ye-12) — log(¥e-13)])
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Differencing

Same example of the previous slide, but changing the differencing process order
the final result is...

Original Time Series (y;) e First Order Differencing (y; — ¥¢-1)
: 'J T T T T g: ™ T T T T
1985 1990 1995 2000 2005 1985 1990 1995 2000 2005
First Order Diff. after log transformation Applying seasonal differencing to first order
(log(ye) —log(yi-1)) differenced of log series
0 0 (log(yo) —1og(ye-1)] ~ [log(Ve-12) — log(¥e-1)])

0.0
1
0.0
1
-~

o The series
e is now
< .
< stationary
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1985 1990 1995 2000 2005 ! ! ! '
1990 1095 2000 2005
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Numeric Errors: Formulas

Error Metric

R-squared

Mean absolute error (MAE)

Mean squared error (MSE)

Root mean squared error (RMSE)

Mean signed difference

Mean absolute percentage error
(MAPE)

© 2021 KNIME AG. All rights reserved.

Formula

i1 (f () —)?

L i—y)?
1 n
=3 If G - il
i=1
1 n
5Z(f(xi) -2

1 n

N GEOREDE
i=1

1 n

;Z(f(x» - )

Notes

Universal range: the closer to 1 the
better

Equal weights to all distances
Same unit as the target column

Common loss function

Weights big differences more
Same unit as the target column

Only informative about the direction
of the error

Requires non-zero target column
values
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Numeric Scorer Node

Dialog - 0:393 - Numeric Scorer . O X

Evaluate numeric predictions

Options Flow Variables Job Manager Selection Memory Policy

Compare actual target column values to reteenes e [

Predicted column || D | MA(Irregular Component) +

predicted values to evaluate goodness of fit. S

[[] Change column name

Re po rt R2 , R M S E , M AP E , etC . Output column name [MA(Irregular Component

Provide scores as flow variables

Prefix of flow variables

[[] Output scores as flow variables

oK Apply Cancel @
Statistics - 0:393 - Numeric Scorer - O X
File Hilite Navigation View
N umeric scorer Table "Scores”™ -Rows: 6 Spec - Column: 1 Properties Flow Variables
Row ID [ D] MA(trregular Component)

21 RA2 0.343
| 4 & | 4 mean absolute error 0.773
mean squared error 2,413
root mean squared error 1.553
. mean signed difference -0.003
mean absolute percentage error 7.064

Open for Innovation
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Partitioning for Time Series

When Partitioning data for training
a Time Series model it is important
your training data comes before
your test data chronologically.

This will mirror how the model is used in
deployment, always forecasting the future.

To do this make sure your data is properly
sorted and partition with the “Take from top”
option. In the KNIME node.

© 2021 KNIME AG. All rights reserved.

Partitioning

»
p OO
e

A\ Dialog - 6:397 - Partitioning
File

First partition Flow Variables Job Manager Selection Memory Policy

Choose size of first partition

(O Absolute 100 3
(@ Relative[%)] 8015
(® Take from top

(O Linear sampling

(O Draw randomly

Stratified sampling

Use random seed 1,572,291,213,7

oK Apply Cancel @
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In-Sample vs. Out-sample

Out-Sample Static In-Sample Static

Random Forsst Learner Random Forest Learner
(Ragr by Forest 2!

(Regression) Numeric Scorer
r ok (Regression)  Numeric Scorer > ;

-—:n»—» o - ®

Data used to train is the sample data
Forecasts on the sample data are called In-Sample Forecasts
Forecasts on other data are called Out-Sample Forecasts

Either Forecast is called Dynamic if it uses prior Forecasts as its inputs,
if real values are used it is called Static

© 2021 KNIME AG. All rights reserved.
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Model Evaluation

Assess the expected forecast accuracy of your model by comparing actual and
predicted time series

Training data vs. in-sample predictions
Test data vs. out-of-sample predictions

Visual comparison in a line plot: Numeric comparison by error metrics:

Forecast Comparison Forecast Comparison Forecast Accuracy
Fondom Foret UrearRogresson Comparison of Different Methods
" "
. . mean mean root mean mean mean absolute
. s absolute  squared  squared signed percentage
i j Name Time R*2 error error error difference error
20100818 woron Fe s TN m00sz LSTM oMinutes | 03 1.241 2858 1.964 0982 015
= roacton = sgna Jee— 39 Seconds
Forecast Comparison Forecast Comparison Random  SMinses 098 0458 0.385 062 0.16 0.079
. ‘s Forest 19 Seconds
14 "
» M Linear OMinutes7 098 0451 0.394 0628 0.159 0.074
" o Regression  Seconds
. .
: N ARIMA 27Minutes 098 0441 0377 0614 0203 0.072
aonests 00520 Fr 2 e 200820 wiaoes 24 Seconds
oo "o
“paton = st " praton =St Seasonal  OMinutes3  0.979  0.436 0.397 063 0111 0.069
Forecast Comparison Forecast Comparison Naive Seconds
o Lsm
pe ‘s
M " Mean OMinutes3 098 0444 0.381 0617 021 0.072
2 = Seconds
» w
: : Showing 1 10 6 of 6 entries
. .
2 201008-18 20100920 20100923 20100918 2010-09-20 20100923
Towid o
[Eee—— [P p—

Reset Apply |« Close o

Reset| Aony = Close |~
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Agenda

Quantitative Forecasting: Classical techniques
ARIMA Models: ARIMA(p,d,q)

© 2021 KNIME AG. All rights reserved.
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Exercise 2: Inspecting and Removing Seasonality

Time Series Analysis

Use ACF plots to inspect seasonality 02. Inspecting & Removing Seasonality
from energy consumption data Summary: e e senee v condtonat b
n this exercise we’ explore seasonality In the time series using conditional box plots
Remove seasonality and check again nete Ererpes
Instructions:
the ACF p lot 1) Run the workflow up through the Missing Value node, this is where we left offin the
previous exercise
Com pare hou rIy energy consum ptl on 2) Use the Inspect Seasonality Component to kook atthe ACF and PACF plots of the
. Time Series. Do we have any Seasonality?
values before and after removing ) -
. 3) Use the Remove Seasonality Component to remove the seasonality we discovered
Seaso n al Ity 4) Apply another copy of the Inspect Seasonality component after the removal. Does

the ACF plot look better?

Optlonal Spl It energy Consu m ptlon 5) Use the Extract Datg&Time Fields node to extractthe Hour from the timestamp (Row
data Into a trend, Seasonallty, and ID column) after the Missing Value node

H 6) Use the Number to String node to convert the Hour values into string
residual

7) Use the Conditional Box Plot node to visualize the Energy Usage by hour, do we see
a pattern?

8) Repeat steps 5-7 after the Remove Seasonality component, does it look better?

Optional) Use the Decompose Signal component after the Missing Value node and
look atthe view

nnnnnnnnnnnnnnnnn
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Quantitative Forecasting
Classical Techniques



Qualitative vs. Quantitative

The approaches to forecasting are essentially two: qualitative approach and
quantitative approach

Qualitative forecasting methods are adopted when historical data are not
available (e.g. estimate the revenues of a new company that clearly doesn't
have any data available). They are highly subjective methods.

Quantitative forecasting techniques are based on historical quantitative data;
the analyst, starting from those data, tries to understand the underlying
structure of the phenomenon of interest and then to use the same historical
data for forecasting purposes

nnnnnnnnnnnnnnnnn
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Quantitative forecasting

The basis for quantitative analysis of time series is the assumption that there are
factors that influenced the dynamics of the series in the past and these factors
continue to bring similar effects in also in the future

Main methods used in Quantitative Forecasting:

Classical Time Series Analysis: analysis and forecasts are based on identification of
structural components, like trend and seasonality, and on the study of the serial
correlation — univariate time series analysis

Explanatory models: analysis and forecasts are based both on past observations of the
series itself and also on the relation with other possible predictors = multivariate time
series analysis

Machine learning models: Different Artificial Neural Networks algorithms used to
forecast time series (both in univariate or multivariate fashion)

nnnnnnnnnnnnnnnnn
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Classical Time Series Analysis

The main tools used in the Classical Time Series Analysis are:

Classical Decomposition: considers the time series as the overlap of several
elementary components (i.e. trend, cycle, seasonality, error)

Exponential Smoothing: method based on the weighting of past observations,
taking into account the overlap of some key time series components (trend and
seasonality)

ARIMA (AutoRegressive Integrated Moving Average): class of statistical models
that aim to treat the correlation between values of the series at different points in
time using a regression-like approach and controlling for seasonality

nnnnnnnnnnnnnnnnn
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Which model?

The choice of the most appropriate method of forecasting
is influenced by a number of factors, that are:

Forecast horizon, in relation to TSA objectives
Type/amount of available data

Expected forecastability

Required readability of the results

Number of series to forecast

Deployment frequency of the models
Development complexity

Development costs

© 2021 KNIME AG. All rights reserved.
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Interpretation issues

IMPORTANT: Remember that quantitative data ARE NOT JUST NUMBERS..
.. they have a story to tell, especially if your data are time series!

So.. always try to understand what’s going on from a logical/business point
of view: try to give an interpretation to the observed dynamics!

Peak Break-Up Times

According to Facebook status updates

[ 2 weeks before Ml
([ winter holidays [ V)

Valentine’ s Day ) \ April Fool's Day summer (‘»_.“ |
| ‘ holiday
Example 1: A Mondays Mg
| U1
\ M|
can you draw Yy | “ Christmas ‘ !
something useful N\ | A A “toocruel” _J ‘
looking at this N VY VAVN V.V A
series? NV : Ahas \
|
JAN FEB MAR APR MAY JUN JUL AUG SEP 0CT NOV DEC
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ARIMA Models

ARIMA(p,d,q)



Goal of this Section

Introduction to ARIMA
ARIMA Models

ARIMA Model selection
ARIMAX

© 2021 KNIME AG. All rights reserved.
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Exponential Smoothing vs. ARIMA

While exponential smoothing models are based on a description of level, trend and sea-
sonality in the data, ARIMA models aim to describe the autocorrelations in the data

REMINDER: Just as correlation measures the amount of a linear relationship
between two variables, AUTOCORRELATION measures the linear relationship
between lagged values of a time series

There are several autocorrelation coefficients, depending on the lag length

r, measures the relationship between y, and y;_;, r, measures the relationship
between y, and y;_,, and so on

Before starting with ARIMA models is useful to give a look to a preliminary concept:
what is a linear regression model?

nnnnnnnnnnnnnnnnn
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ARIMA Models: General framework

An ARIMA model is a numerical expression indicating how the observations of a target
variable are statistically correlated with past observations of the same variable

ARIMA models are, in theory, the most general class of models for forecasting a time series which
can be “stationarized” by transformations such as differencing and lagging

The easiest way to think of ARIMA models is as fine-tuned versions of random-walk models: the fine-
tuning consists of adding lags of the differenced series and/or lags of the forecast errors to the
prediction equation, as needed to remove any remains of autocorrelation from the forecast errors

In an ARIMA model, in its most complete formulation, are considered:
An Autoregressive (AR) component, seasonal and not

A Moving Average (MA) component, seasonal and not
The order of Integration (l) of the series

That’s why we call it ARIMA (Autoregressive Integrated Moving Average)

nnnnnnnnnnnnnnnnn
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ARIMA Models: General framework

The most common notation used for ARIMA models is:
ARIMA(p,d,q) (P,D,Q)s

where:
p is the number of autoregressive terms
d is the number of non-seasonal differences
q is the number of lagged forecast errors in the equation
P is the number of seasonal autoregressive terms
D is the number of seasonal differences
Q is the number of seasonal lagged forecast errors in the equation
s is the seasonal period (cycle frequency using R terminology)

In the next slides we will explain each single component of ARIMA models!

© 2021 KNIME AG. All rights reserved.
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ARIMA Models: Autoregressive part (AR)

In a multiple regression model, we predict the target variable Y using a linear
combination of independent variables (predictors)—> In an autoregression model,

we forecast the variable of interest using a linear combination of past values of the
variable itself

The term autoregression indicates that it is a regression of the variable against itself
An Autoregressive model of order p, denoted AR(p) model, can be written as

Ve =CH+ P1Yeq1 + D2Vi2 + o+ Py +E;

Where:

y. = dependent variable

Ye-1,Ye-2, -, Ye—p= independent variables (i.e. lagged values of y, as predictors)
01, ¢o, ..., ¢, = regression coefficients

.= error term (must be white noise)

nnnnnnnnnnnnnnnnn
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ARIMA Models: Autoregressive part (AR)

Autoregressive simulated process examples:

AR(1) process example (¢1=0.5) AR(2) process example (¢,=0.5, ¢,=0.2)

0 20 40 60 80 100 0 20 40 60 80 100

Time Time

Consider that, in case of AR(1) model:
When ¢, = 0, y, is a white noise
When ¢, = 1 and ¢ = 0, y, is a random walk
In order to have a stationary series the following condition must be true: —1 < ¢, < 1

© 2021 KNIME AG. All rights reserved.
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ARIMA Models: Moving Average part (MA)

Rather than use past values of the forecast variable in a regression, a Moving
Average model uses past forecast errors in a regression-like model

In general, a moving average process of order q, MA (q), is defined as:

Ve =Ct+ & + 0169+ 026 5+ +0,6_
The lagged values of ¢; are not actually observed, so it is not a standard regression

Moving average models should not be confused with moving average smoothing
(the process used in classical decomposition in order to obtain the trend
component)> A moving average model is used for forecasting future values while
moving average smoothing is used for estimating the trend-cycle of past values

nnnnnnnnnnnnnnnnn
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ARIMA Models: Moving Average part (MA)

Moving Average simulated process examples:

MA(1) process example (6,=0.7) MA(2) process example (6,=0.8 , 6,=0.5)
™
~ 4
o~ ) (
T -7 || / \I\ W/\/{’\f
N \
7 o - \ L \J‘V'
\ \\
- \
A \
V
o | J |
o [ y
("I') —
[ap T
T T T T T T !
0 20 40 60 80 100 T T T T T :
0 20 40 60 80 100
Time

Time

Looking just the time plot it's hard to distinguish between an
AR process and a MA process!
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ARIMA Models: ARMA and ARIMA

If we combine autoregression and a moving average model,
we obtain an ARMA(p,q) model:

Vi = CH+P1Yi1 +P2Yro + o+ PpYep + 0161 + 0265 + - +0,6_, + &

To use an ARMA model, the series must be STATIONARY!

If the series is NOT stationary, before estimating and ARMA model, we need to apply one or more
differences in order to make the series stationary: this is the integration process, called I(d), where d=
number of differences needed to get stationarity

If we model the integrated series using an ARMA model, we get an ARIMA (p,d,q) model where
p=order of the autoregressive part; d=order of integration; g= order of the moving average part

nnnnnnnnnnnnnnnnn
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ARIMA Models: ARMA and ARIMA

ARIMA simulated process examples

ARMA(2,1) process example, equal to ARIMA(2,0,1) ARIMA(2,1,1) process example (¢1=0.5, ¢,=0.4, 6,=0.8)
(¢1=0.5, ¢,=0.4, 6,=0.8)
2
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Time Time
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ARIMA Models: Model identification

General rules for model indentification based on ACF and PACF plots:

The data may follow an ARIMA(p, d, 0) model if the ACF and PACF plots of the
differenced data show the following patterns:

the ACF is exponentially decaying or sinusoidal

there is a significant spike at lags p in PACF, but none beyond lag p

The data may follow an ARIMA(O, d, q) model if the ACF and PACF plots of the

differenced data show the following patterns:
the PACF is exponentially decaying or sinusoidal
there is a significant spike at lags q in ACF, but none beyond lag q

For a general ARIMA(p, d, q) model (with both p and q > 1) both ACF and PACF plots show
exponential or sinusoidal decay and it's more difficult to understand the structure of the model
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ARIMA Models: Model identification

Specifically:

TIME SERIES

AR(1)

AR(p)

MA(1)

MA(q)

© 2021 KNIME AG. All rights reserved.

ACF

Exponential decay:

From positive side or
alternating (depending on the
sign of the AR coefficient)

Exponential decay or alternate
sinusoidal decay

Peak at lag 1, then decays to
zero: positive peak if the MA
coefficient is positive, negative
otherwise

Peaks at lags 1 up to q

PACF

Peak at lag 1, then decays to
zero: positive peak if the AR
coefficient is positive, negative
otherwise

Peaks at lags 1 up to p

Exponential decay:

From positive side or alternating
(depending on the sign of the MA
coefficient)

Exponential decay or alternate
sinusoidal decay
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ARIMA Models: Model identification

CF

AR(2): ®1>0, ®2>0 ‘ g

AR(2): P1<0, $2>0 ‘
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ARIMA Models: Model identification

MA(1): 81>0 ‘

MA(1): 81<0 ‘
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ARIMAX Models: Adding explicative variables

A special case of ARIMA models allows you to generate forecasts that depend on
both the historical data of the target time series (Y) and on other exogenous
variables (X, )—> we call them ARIMAX models

This is not possible with other classical time series analysis techniques (e.g. ETS), where the
prediction depends only on past observations of the series itself

The advantage of ARIMAX models, therefore consists in the possibility to include additional
explanatory variables in addition to the target dependent variable lags

Yt = C+ ¢1Yt—1 + + Q)pyt_p + Glgt—l + + qut—q + ﬁle +ﬁ2X2 + + IBka + gt

e /

AUTOREGRESSIVE MOVING AVERAGE EXPLICATIVE VARIABLES ERROR TERM

the forecast depends the forecast depends on Independent variables that White noise (i.i.d, 0
on past observations the past errors (the provide additional information, mean and constant
(weighted with the difference between the useful to improve prediction: variance)
regression observed value and you can add also LAGGED

coefficients) estimated value) effect of explicative variables!!

nnnnnnnnnnnnnnnnn
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ARIMA Models: Seasonal ARIMA

A seasonal ARIMA model is formed by including additional seasonal terms
in the ARIMA models we have seen so far

ARIMA(p,d,q) (P,D,Q)s
S

T T

Non-seasonal part Seasonal part

( of the model > ( of the model )

where s = number of periods per season (i.e. the frequency of seasonal cycle)

We use uppercase notation for the seasonal parts of the model, and lowercase
notation for the non-seasonal parts of the model

As usual, d / D are the number of differences/seasonal differences necessary
to make the series stationary

nnnnnnnnnnnnnnnn
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ARIMA Models: Seasonal ARIMA identification

The seasonal part of an AR or MA model will be seen in the seasonal lags of the
PACF and ACF

For example, an ARIMA(0,0,0)(0,0,1),, model will show:
A spike at lag 12 in the ACF but no other significant spikes
The PACF will show exponential decay in the seasonal lags; that is, at lags 12, 24, 36, ...

Similarly, an ARIMA(0,0,0)(1,0,0);, model will show:  example of 4ri14(0,0,0)(1,00),, process

CF

--------- S

| 1l 1l -
L L AL L L ]I'I!"

ACF

A single significant spike at lag 12 in the PACF

Exponential decay in the seasonal lags of the ACF ‘

-10 05 00 05 1

Partial A
-10 -05 00 05 1.0
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ARIMA Models: estimation and AIC

Parameters estimation
In order to estimate an ARIMA model, normally it's used the Maximum Likelihood Estimation (MLE)

This technique finds the values of the parameters which maximize the probability of obtaining the
data that we have observed - For given values of (p, d, q) (P, D, Q) (i.e. model order) the algorithm will
try to maximize the log likelihood when finding parameter estimates

ARIMA model order

A commonly used criteria to compare different ARIMA models (i.e. with different values for (p,q) (P,Q) but

fixed d , D ) and to determine the optimal ARIMA order, is the Akaike Information Criterion (AIC)
AIC = —2log (Likelihood) + 2(p)

where p is the number of estimated parameters in the model
AIC is a goodness of fit measure

The best ARIMA model is that with the lower AIC - most of automatic model selection method
(e.g auto.arima in R) uses the AIC for determining the optimal ARIMA model order

nnnnnnnnnnnnnnnnn
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ARIMA Model selection criteria: Manual procedure (outline)

After preliminary analysis (and time series transformations, if needed),
follow these steps:

(1) Obtain stationary series using differencing

(2) Figure out possible order(s) for the
model looking at ACF (and PACF) plot

(3) Compare models from different point of
view (goodness of fit, accuracy, bias, ...)
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ARIMA Model selection criteria: Manual procedure (details)

After preliminary analysis (and time series transformations, if needed),

follow these steps:

If the series is not stationary, use differencing (simple and/or seasonal) in order to obtain a
stationary series - together with graphical analysis, there are specific statistical tests (e.g. ADF)
useful to understand if the series is stationary
Examine the ACF/PACF of the stationary series and try to obtain an idea about residual
structure of correlation - Is an AR(p) / MA(q) model appropriate or you need more complex
model? Do you need to model the seasonality using seasonal autoregressive lags? It is frequent
that you need to consider more candidate models to test
Try your chosen model(s)*, and use different metrics to compare the performance:

Compare goodness of fit using AIC

Compare accuracy using measures like MAPE (in-sample and out-of-sample!)

Model complexity (simple is better!)

Finally, check the residuals from your chosen model by plotting the ACF of the residuals and doing
some test on the residuals (e.g. Ljung-Box test of autocorrelation) = they must be white noise
when the model is ok!

* Always consider slight variations of models selected in point 2: e.g. vary one or both p and q from current model by 1

nnnnnnnnnnnnnnnnn
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ARIMA Performance Comparison

(2,1,1) vs (1,0,0) vs (0,1,0)

ARIMA(p,d,q) RA2 AIC
ARIMA(2,1,1) 0.798 25,899
ARIMA(1,0,0) 0.808 25,405
ARIMA(0,1,0) 0.798 25,924
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MAPE

6.073

5.466

6.048

RMSE

0.870

0.871

0.871
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Exercise 3: ARIMA Models

Train a model with both the ARIMA gm; ;‘»IW:“ ﬁg:gsis
Learner and Auto ARIMA Learner. . '
ummary:

Generate a Forecast for each mOdel In this exercise we'll train and score two ARIMA models.
using the ARIMA Predictor. Instructions:

1) Run the workflow up through the Decompose Signal component, we'll start this
exercise from here

Score your forecasts.
Analyze ARIMA residuals.

2) Partition the data using the Partioning node. Let's use an 80/20 split. Make sure
you check the box to take data from the top. This is important with time series data.

3) Apply both the ARIMA Learner and Auto ARIMA Learner components to the residual
column in the output from the Decompose Signal component. Note that the Auto
ARIMA can take quite a while to run, so be careful to keep the settings low for now.

4) Use an ARIMA Predictor component after the learners, you can configure the
number of values you want to forecast here.

5) Attach the Forecast output from the ARIMA Predictor to the top port of the scoring
metanode and the other half of our Partitioning node to the bottom. Run the scoring
metanode and look at the results. Try this with different numbers of forecasted values.
Do the scores change?

6) Analyze the residuals of the ARIMA model with the Analyze ARIMA Residuals
component. What can you say about the residuals?

Open for Innovation
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