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The book authors, Kenneth P. Burnham and David R.
Anderson have worked closely together for the past 28 years
and have jointly published 9 books and research monographs
and 66 journal papers on a variety of scientific issues.
Currently, they are both in the Colorado Cooperative Fish
and Wildlife Research Unit at Colorado State University.

Kenneth P. Burnham (a statistician) has applied and
developed statistical theory for 30 years in several areas of
life sciences, especially ecology and wildlife. He is the recipient
of numerous professional awards. Dr. Burnham is a fellow of
the American Statistical Association.

David R. Anderson is a senior scientist with the Biological
Resources Division within the U.S. Geological Survey and a
professor in the Department of Fishery and Wildlife Biology,
Colorado State University. He is the recipient of numerous
professional awards, including the Meritorious Service Award
given by the U.S. Department of the Interior.

The reviewer, Eric-Jan Wagenmakers, received his Ph.D. in
psychology under the direction of Jeroen G. W. Raaijmakers.
In 2000 he received a Fulbright scholarship to work with
Richard M. Shiffrin at Indiana University. From 2001 to 2003
he was a postdoctoral research fellow with Roger Ratcliff at
Northwestern University. His research interests include model
selection, time series analysis, and bootstrap methods.

When a psychologist makes inferences from a limited
set of data, she generally uses a model to differentiate
the replicable, structural information from the idiosyn-
cratic, non-replicable information. The quality of
inference thus relates directly to the quality of the
model: An appropriate model will capture a lot of the
structure and will at the same time treat idiosyncratic
information as ‘noise’, thereby maximizing the prob-
ability of correct inference.

The book under review here, “Model Selection and
Multimodel Inference” (henceforth MSMI) by Ken
Burnham and David Anderson is one of the relatively
few books that is entirely devoted to model selection.
The book includes an in-depth discussion of the general
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philosophical issues involved in model selection and
very clear and non-technical description of the proposed
methodology. The authors illustrate their ideas with
numerous examples, all taken from the field of biology.
Fortunately for readers whose main interest is in
psychology, the examples are either very general (e.g.,
variable selection in regression analysis) or they can be
readily translated to psychological phenomena. For
instance, models for mortality rates could be interpreted
as models for human forgetting by replacing the concept
of an animal with the concept of a memory trace for a
studied item.

MSMI is mainly devoted to one specific model
selection method, namely Akaike’s Information Criter-
ion (AIC; Akaike, 1974; Bozdogan, 1987; Parzen,
Tanabe, & Kitagawa, 1998; Sakamoto, Ishiguro, &
Kitagawa, 1986). A substantial part of the book shows
how the AIC can be used for multimodel inference, a
theme that was hitherto mostly associated with Bayesian
model averaging (cf. Wasserman, 2000).

To foreshadow the conclusion, I believe MSMI is a
very provocative, well-written book. It will certainly be
very useful to psychologists who want to know about
the philosophical and statistical foundations of AIC.
The practical examples from the book invite the reader
to apply the proposed methodology in his or her own
research. The first five chapters require only a rudimen-
tary knowledge in statistics, making the book perfectly
suitable for an introductory course on model selection.
The authors have taken considerable care to motivate
their claim that AIC is the best general purpose method
for model selection in the life sciences, using both
analytical derivations and simulations. I believe some of
the work presented in MSMI could be the starting point
of a exciting scientific discussion.

Below I will first summarize several key ideas
advocated by the authors of MSMI, and then turn to
a more evaluative discussion of the book. Please note
that this review is concerned with the second, much



Book review | Journal of Mathematical Psychology 47 (2003) 580-586 581

improved edition of MSMI. The second edition contains
more material and fewer mistakes than the 1998 edition.
Also, the presentation of ideas is much more structured
in the second edition than it was in the first.

1. Selective overview of key issues

Chapters 1 and 2 of MSMI provide the philosophical
background and basic ideas. Chapters 3-5 illustrate the
proposed methodology using many examples from
biological research. Finally, Chapters 6 and 7 are mostly
concerned with statistical theory. As a whole, MSMI
aims to present a coherent and principled strategy for
the analysis of empirical data, with an emphasis on AIC
model selection and multimodel inference.

The motivation for model selection is ultimately
derived from the principle of parsimony (cf. Forster,
2000). In the glossary, Burnham and Anderson define
parsimony as

The concept that a model should be as simple as
possible concerning the included variables, model
structure, and number of parameters. Parsimony is a
desired characteristic of a model used for inference,
and it is usually defined by a suitable tradeoff
between squared bias and variance of parameter
estimators. Parsimony lies between the evils of under-
and over-fitting.

The principle of parsimony is also known as Occam’s
razor: to remove all that is unnecessary (“‘it is vain to do
with more what can be done with fewer”, William of
Occam, from Griinwald, 2000, p. 133). A model that is
not very parsimonious will capture relatively much of
the idiosyncratic information (i.e., noise) in the data.
Note that by just adding parameters, it is possible to fit
almost anything (about 30 parameters suffices when
fitting an elephant, Burnham & Anderson, 2002, p. 30).
Such a model might provide an excellent fit to the data
at hand, but because its parameter estimates are quite
variable the model will generalize poorly to novel data
sets. Hence, inference from unparsimonious, over-fitted
models is hazardous and should be avoided. Of course, a
model that captures relatively little structural informa-
tion (i.e., an under-fitted model) is also not well suited
for inference. Ideally, inference should be based on
simple models that describe the data well. The authors
argue that AIC obeys the principle of parsimony as a by-
product of its derivation, to which we turn next.

One of the core ideas in MSMI is that in the life
sciences, an exact understanding of reality is an
unattainable goal. Thus, truth is effectively considered
to be infinitely dimensional, and we can only hope to
find a useful approximation to this complex, unknown
truth. In the following, f and g will denote continuous
probability distributions that refer to unknown truth

and an approximating model, respectively. From
information theory we know that the distance between
f and g is given by the Kullback—Leibler information 7
(e.g., Kullback & Leibler, 1951):

0= [ o tos (1755 W

where x denotes the data and 0 is a vector of free
parameters. I( f, g) is often called K-L distance and can
be interpreted as the information lost when ¢ is used to
approximate f. The K-L distance I(f,g) is zero when
g = f, and positive otherwise. Using statistical expecta-
tions with respect to truth f instead of integrals, Eq. (1)
can be re-written as

1(f,9) = Er[log (f(x))] — Ef[log (g(x|0))]. (2)

Since truth is the same for all candidate models, it drops
out as a constant C, and hence —Er[log (¢(x|0))] =
I(f,g9) — C gives the relative K-L distance. Note that
the parameter values for g are not known, but have to be
estimated. The maximum likelihood parameter esti-
mates for é, based on some specific data set x, will
generally not equal their true values, which can ideally
be approximated by the average of 6 over replicate data
sets from the same data generating process. This
parameter uncertainty can be taken into account by
using an approach similar to cross-validation. Denoting
a replicate data set by y, the minimum expected K-L
distance is E,[I(f,g(-|0(»)))], which is larger than the
K-L distance based on the unknown, ideal parameter
estimates 0,. After some rewriting, the minimum
expected K-L distance is given by

E,Ex[log (9(x|0(»)))], 3)

where x and y are independent samples from the same
data generating process, and expectation is with respect to
unknown truth. Asymptotically, this quantity can be
estimated by the log likelihood minus the number of
parameters (Section 7.2 in MSMI gives the mathematical
details). Multiplied by -2, this quantity yields the AIC:

AIC = —2 log L + 2K, (4)

where L is the maximum log likelihood and K is the
number of free parameters. The model with the smallest
AIC value thus has the smallest expected K—L distance
and is the closest approximation to the complex truth.
Thus, AIC rewards models for goodness-of-fit through
—2 log L, and punishes models for lack of parsimony
through the penalty term 2 K that solely depends on the
number of free parameters. When the number of free
parameters is relatively large compared to sample size,
the authors strongly recommend a small-sample version
of AIC (e.g., Hurvich & Tsai, 1989):

2K(K + 1)

AICC:—210gL+2K+n_K_1,

(5)

where 7 is sample size.
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The original derivation of the AIC assumed that the
data generating process is among the set of candidate
models. Later, a more general derivation resulted in a
different information criterion, TIC (Takeuchi’s Infor-
mation Criterion; Takeuchi, 1976). TIC does not assume
the candidate model is in the set, and this is more in line
with the research philosophy advocated by the authors.
However, MSMI argues that the calculation of TIC is
more involved than calculation of AIC, and that TIC
leads to more variable results. Further, simulations
show that the penalty term of AIC is very close to the
penalty term of TIC, especially when a model gives a
reasonable fit. For models that do not fit the data, the
precise form of the penalty term for lack of parsimony
will be much less important than the penalty term for
lack of descriptive accuracy. For these reasons, the
authors prefer AIC over TIC.

When AIC model selection is used in practice, the aim
is almost invariably to select a single best model and
base all inferences on that model. This practice might
stem from the common misconception that any differ-
ence in AIC, no matter how small, is somehow
meaningful, so that only the AIC best model is relevant.
Burnham and Anderson outline a straightforward
method on how to assess differences in AIC (cf.
Wagenmakers & Farrell, in press). First, for each
candidate model i, one calculates the difference in AIC
between it and the AIC-best candidate model: A; =
AIC; — AICpes. This highlights the fact that only
differences in AIC are important, not the absolute
values. The likelihood of model i, given the data, is
proportional to exp (—3A;). The probability of model i
being the K—-L best model, given the data and the set of
candidate models, is then given by the Akaike weight

exp (—5 A))
25:1 exp (_% Ar),

where R is the number of candidate models. Thus, if
R =2 and wy; = 0.6, this means that the second best
model is still very likely to be the K-L best model (i.e.,
wy = 0.4). In this case, the likelihood ratio in favor of
the AIC best model is only 1.5.

Chapter 4 of MSMI discusses a further purpose of the
model weights from Eq. (6): multimodel inference.
When model selection is used only to select the best
model, then inference is effectively conditional on that
model. Hence, the uncertainty that is associated with
the model selection enterprise is ignored, which leads to
an overestimate of precision. In other words, it is risky
to base inference on a single model when this model is
not clearly superior to its competitors. Burnham and
Anderson propose to eliminate this risk by basing
inference on all candidates models simultaneously,
weighing their impact by the Akaike weights. Thus,
when 0 is either a predicted value of interest, or a

(6)

w; =

parameter of interest that is common to all candidate
models (such as in variable subset selection in regression
analysis), the model averaged value 0 is given by

R A
= Z W,‘0i7 (7)
i=1

where R notes the total number of candidate models.'

The sampling variance of a parameter conveys
information about its precision. The estimates of
sampling variance that are usually reported are condi-
tional on a specific model. An estimate of parameter
sampling variance v that is unconditional on a specific
candidate model is given by

R —1?
() = [} i \J66i1g0) + (6 — ef] , (8)
i=1

e

where ¢; denotes candidate model i. This estimate
incorporates the conditional variance estimate through
5(6;|g;), and a variance component for model selection
uncertainty through (0; — 0)*. Monte Carlo simulations
show that the unconditional variance is a more accurate
reflection of precision than is the conditional variance
(which is biased downward). Multimodel inference
generally results in predictions and estimates that have
less bias and more precision. The practical advantages
of multimodel inference are illustrated throughout
Chapter 4.

Chapters 5 and 6 deal with a wide variety of model
selection issues. In particular, the authors compare
performance of AIC model selection to that of model
selection using the Bayesian Information Criterion
(BIC; Schwarz, 1978). BIC is given by —2log L+
K log n, where n is the number of observations (for
details see Kass & Raftery, 1995). BIC is often reported
to be superior to AIC, in particular because as n— oo,
BIC but not AIC will select the correct data generating
model with probability p— 1. Hence, it is often said that
BIC is ‘dimension consistent’ (Bozdogan, 1987). For
n>e’>~ 8, the BIC penalty term is more strict than the
AIC penalty term, thus resulting in the selection of
relatively low-dimensional models. Burnham and An-
derson perform several Monte Carlo simulations, and
from these they conclude that “BIC selection cannot be
recommended. It requires very large sample sizes to
achieve consistency; and typically, BIC results in a
selected model that is underfit (e.g., biased parameter
estimates, overestimates of precision, and achieved
confidence interval coverage below that achieved by
AIC -selected models).” (p. 213).

This is a surprising conclusion, since many Monte
Carlo studies have shown BIC model selection to

"When 0 only occurs in a subset of candidate models, one can either
base inference about 6 on that specific subset, or one can set 0 to zero
for those candidate models that do not contain it.
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perform better than AIC model selection. However,
these previous Monte Carlo studies can generally be
characterized as follows: (1) there is a true model, and it
is in the set of candidate models; (2) the true model has
relatively few parameters, and (3) performance is
evaluated by how often the true data-generating model
is recovered. Burnham and Anderson argue that such
simulations are not realistic. In many of the Monte
Carlo simulations from MSMI, the true data-generating
model is not in the set of candidate models, and, more
importantly, the data-generating model has tapering
effects such that, for instance, treatment effects gradu-
ally diminish over time. This means that as the number
of observations increases, evermore small (but real)
effects can be uncovered. Tapering effects are consistent
with the philosophy of an infinitely dimensional truth,
and, it is argued, they are more representative of
biological reality than models with fixed effects.

In the MSMI simulations, performance is assessed not
by correcting model recovery rates—this can only be
done when the correct model is in the set of candidate
models—but instead by achieved confidence interval
coverage (i.e., whether the confidence interval for a
given parameter estimate encompasses the true para-
meter value).

Chapter 6 also compares AIC model selection for
nested models to the likelihood ratio test (LRT). The
LRT is based on the fact that minus two times the
difference in log likelihood is x> distributed with the
number of degrees of freedom equal to the difference in
the number of free parameters. The authors point out
that AIC and LRT are based on quite different
procedures. AIC is based on model selection (i.e.,
minimizing the expected K-L distance), and LRT is
based on a null-hypothesis testing framework. In
practical applications, one often finds that LRT is used
for nested models, whereas AIC 1is reserved for
nonnested models only—conceptually, this is an awk-
ward mixture of analysis paradigms.

Burnham and Anderson argue that model selection
based on LRT rather than AIC does not have a “sound
theoretical basis”. The authors provide the following
scenario to illustrate their claim. Assume a set of nested
models, each successive model having one additional
free parameter. Also, assume the AIC values for each of
the models are exactly the same; hence, the data
supports every model to an equal extent. When LRT
is applied to the above situation, it turns out that the
null-hypothesis of model g;, where the subscript denotes
the number of free parameters, is rejected with increas-
ing strength as the number of additional parameters in
the alternative model increases. For instance, the
difference between g; and g;4; is ;{f,f:l distributed. For
a difference in —2log (L;/L;y1) of 2 (ie., equal AIC
values), the p value is 0.157. When model g; is compared
to model g;+39, however, this results in a p value of

0.001. The authors cite Akaike (1974), who explains that
“The use of a fixed level of significance for the
comparison of models with various numbers of para-
meters is wrong, because it does not take into account
the increase of the variability of the estimates when the
number of parameters is increased.” (MSMI, p. 339).

Chapter 7 contains ‘statistical theory and numerical
results’. This chapter can be skipped by the reader who
just wants to know how to apply and interpret AIC and
multimodel inference in his own work. Section 2 is the
most important section in this chapter, as it gives a
general derivation of AIC. Finally, Chapter 8 provides
an overall summary of the contents of the book.

2. Evaluation and discussion
2.1. Style of presentation

One feature of MSMI that sets it apart from most
other books is the style of presentation. The authors
have done an excellent job clarifying their procedures,
thus making the material accessible to the applied
biologist/psychologist/econometrician. The flip side of
this is that the same ideas are repeated many times
throughout the book, almost as if the authors are
attempting to brainwash or indoctrinate the reader. The
introduction of MSMI does contain a subtle warning for
the reader, as the authors expressed hope that ““(...) the
text does not appear too dogmatic or idealized.” (p. x).
Such a statement will lead any psychologist to expect a
great number of dogmas in the text. Here is a listing of
the most important ones.

Dogma 1: Thou shall not commit data dredging.
Instead, appropriate candidate models should be devel-
oped beforehand. A distinction should be made between
exploratory data analysis (i.e., post-diction) and con-
firmatory data analysis (i.e., prediction). More gener-
ally, careful thinking should motivate the proposed
candidate models. This dogma is very important—it
highlights that it can be dangerous to apply model
selection tools in a completely automated fashion,
disregarding issues such as plausibility, explanatory
adequacy, internal consistency, and interpretability
(e.g., Jacobs & Grainger, 1994). Model selection is a
multifaceted problem, and model selection methods
address only a subset of relevant criteria such as
descriptive accuracy, generalizability, and complexity
(cf. Pitt, Myung, & Zhang, 2002).

Dogma 2: Thou shall not commit null-hypothesis
testing. Instead, one should minimize the expected K—L
distance to obtain an optimal balance between under-
fitting and overfitting.

Dogma 3: Truth is infinitely dimensional and can only
be approximated by our models, but never captured
completely.
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Dogma 4: Thou shall conduct Monte Carlo simula-
tions that include tapering effects. The data-generating
model should preferably not be in the set of candidate
models.

Dogma 5: Inference shall be based on more than one
model, especially if the Akaike weight for the best model
is smaller than 0.9.

Dogma 6: Thou shall not use BIC. Thou shall use
AIC.

2.2. Lay-out

On the positive side, MSMI contains many helpful
figures that nicely support the text. Photos of Fisher,
Boltzmann, Akaike, Kullback, Leibler, Shibata, and
Takeuchi further enliven the presented material. The
references are remarkably up-to-date and comprehen-
sive. On the negative side, the book contains a fair
number of typographical errors, and the index is too
small and selective to be very helpful (e.g., it contains the
word “‘elephant” but does not contain the word
“prior’’). The problems this causes in quickly finding
relevant material is exacerbated by the absence of an
author index.

2.3. Contents

MSMI contains an abundance of interesting ideas,
many of which can be considered open to further
research (see in particular Chapter 6). Here I have
selected for further discussion two important issues that
are recurrent themes throughout the book. The first
issue concerns the use of the bootstrap to approximate
model weights, and the second issue involves the
comparison to other methods of model selection,
particularly BMS and MDL.

2.3.1. Bootstrap model weights

As an alternative to the direct calculation of model
weights according to Eq. (6), Burnham and Anderson
suggested the use of the nonmparametric bootstrap to
approximate these model weights (cf. Buckland, Burn-
ham, & Augustin, 1997). I believe this procedure is
biased, as will be made more explicit below.

The non-parametric bootstrap was introduced by
Efron (1979) and Efron and Tibshirani (1993) and it is
most often used to approximate the standard error for a
parameter estimate (for an application of the bootstrap
methodology to psychometric functions see Wichmann
& Hill, 2001). Let X,, be a set of n observations, X, =
{x1,x2,...,x,}. A statistic such as the median or
correlation coefficient is calculated based on X,,. When
we take X, to represent the population, we can sample,
with replacement, from X, to obtain new, bootstrap,
samples X*. The statistic of interest is then calculated
for each bootstrap sample, and the standard deviation

of the statistic based on its distribution over the
bootstrap samples approximates the standard error.

Burnham and Anderson propose, albeit tentatively, to
employ the bootstrap method to calculate model
weights. That is, each bootstrap sample X is analyzed
as if it were the actual data X,: each of the candidate
models is fit to the bootstrap sample, followed by the
calculation of the corresponding AIC values. Based on a
total of M bootstrap samples (M is usually 10,000 in
MSMI), a bootstrap model weight can be derived by
averaging the Akaike weights over all bootstrap
samples: W} = (1/M) E;Zl wi(j), where i indexes the
model and j the bootstrap sample. An alternative
procedure is to tally the number of bootstrap samples
for which a candidate model has the lowest AIC value—
the model weight is then simply the proportion of
bootstrap samples in which the model under considera-
tion “wins”’. The problem with using these procedures,
however, is that the naive non-parametric bootstrap of
the AIC is biased. Bollen and Stine (1992) have shown
that when the non-parametric bootstrap is used, the
distribution of minus two times the likelihood ratio is no
longer »* distributed with degrees of freedom equal to
the difference in the number of free parameters (see also
Wagenmakers, Farrell, & Ratcliff, in press).

This bias occurs because although the simple model
might be true for the population, it will not hold exactly
for a particular sample. Thus, the bootstrap method for
determining model weights is not to be recommended,
unless some bias-correcting measures are taken first. To
be fair, Burnham and Anderson do state that the bootstrap
method occasionally fails, and they generally prefer the
calculation of Akaike weights according to Eq. (6).

2.3.2. Comparison to other methods of model selection

MMSI is focused on selecting models based on the
expected minimum K-L distance as estimated by AIC.
As noted above, the AIC aims to correct the maximum
likelihood estimation-bias that exists because the same
data are used both for parameter estimation and
estimation of the expected likelihood. Instead of using
Akaike’s asymptotic approximation for this bias (cf.
Eq. (4)), it is also possible to use the bootstrap to
estimate the size of the bias. Such a bootstrap extension
of AIC, called EIC, has received some attention recently
(e.g., Ishiguro, Sakamoto, & Kitagawa, 1997; Konishi &
Kitagawa, 1996; Pan, 1999), and simulations show that
EIC is especially helpful in situations of small sample
size. I believe a subsequent edition of MSMI would do
well to include a more in-depth discussion of EIC—the
current edition devotes not even an entire page (p. 374)
to this interesting procedure.

The only other method for model selection (except
TIC, which is closely related to AIC, see above) that is
discussed in detail is BIC. The authors show that when a
specific non-uniform prior is used, Akaike weights can
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be interpreted as Bayesian posterior model probabilities
(pp. 302-305) as approximated by BIC (but see Kass &
Raftery, 1995). However, the derivation of BIC is based
on large sample asymptotics. A full-fledged Bayesian
approach to model selection (e.g., Kass & Raftery, 1995;
Myung & Pitt, 1997, Wasserman, 2000) selects the
model that has the highest posterior probability of
having generated the data.

The practical disadvantage of such Bayesian model
selection (BMY) is that it is relatively complex and often
requires high-dimensional integrals to be approximated
by computer-intensive Markov chain Monte Carlo
techniques. The advantage of BMS is that it takes not
only the number of parameters into account, but also
their functional complexity. Recall that Burnham and
Anderson defined parsimony as “The concept that a
model should be as simple as possible concerning the
included variables, model structure, and number of
parameters” [italics added]. The penalty terms of AIC
and BIC only take the number of parameters into
account, not their functional complexity. For example,
Stevens’ law of psychophysics can handle both deceler-
ating and accelerating functions, whereas Fechner’s law
can only account for decelerating functions (cf. Pitt et al.,
2002). Thus, Stevens’ law is a priori more flexible,
despite the fact that it has just as many parameters as
has Fechner’s law.

Another important model selection philosophy that
MSMI mostly ignores is minimum description length
(MDL; e.g., Griinwald, 1998, 2000; Li & Vitanyi, 1997;
Pitt et al., 2002; Rissanen, 1996, 2001). MDL imple-
ments the principle that the best model yields the highest
compression of the data. Because probability relates to
code length (high probabilities being associated with
short codes), MDL model selection is related to (but not
identical to) BMS (cf. Griinwald, 2000). The issue of
structural complexity is particularly pressing when the
candidate models are non-nested. For example, Burn-
ham and Anderson (p. 15) list nine models for avian
species-accumulation (from Flather, 1996), the first four
being given by E(y) =ax’ E(y) =a+blog x,E(y) =
a(x/(b+ x)), and E(y) = a(1 — e~"¥). All these models
have three parameters, but some of these models will be
more complex than others. Thus, according to BMS and
MDL, the question is not just how many parameters it
takes to fit an elephant, but rather how many and what
kind of parameters. A nice overview of different model
selection methods can be found in the recent special
issue of Journal of Mathematical Psychology (Myung,
Forster, & Browne, 2000).

3. Overall evaluation

MSMI is a very useful and thought-provoking book
on the advantages and practical application of AIC

model selection. It is a good book to use for a interactive
graduate course on model selection. The authors do not
hesitate to make strong claims that invite further
reading and additional research.
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