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Abstract

This paper combines machine learning with economic theory in order to analyse high school
dropout. It provides an algorithm to predict which students are going to drop out of high
school by relying only on information from 9th grade. This analysis emphasizes that using
a parsimonious early warning system – as implemented in many schools – leads to poor
results. It shows that schools can obtain more precise predictions by exploiting the available
high-dimensional data jointly with machine learning tools such as SupportVector Machine,
Boosted Regression and Post-LASSO. Goodness-of-fit criteria are selected based on the-
context and the underlying theoretical framework: model parameters are calibrated by taking
into account the policy goal – minimizing the expected dropout rate - and the school budget
constraint. Finally, this study verifies the existence of heterogeneity through unsupervised
machine learning by dividing students at risk of dropping out into different clusters.

I. Introduction

High school dropout is a key issue in the US educational system: only 83.2% of students
graduated with a regular high school diploma within 4 years of starting 9th grade in 2015.
According to the OECD (2016), the US upper-secondary graduation rate of 82% is below
average among advanced economies (85%), and far from the graduation rates in Germany
(91%), Japan (97%) and Finland (97%). Furthermore, there are substantial gender, racial
and geographical gaps within the United States (IES, 2016).1

This issue has been extensively analysed by researchers in economics and public policy
(De Witte et al., 2013; Murnane, 2013). The U.S. Department of Education provided
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It should be mentioned that graduation rates, racial differences and time trends are extremely sensitive to the sam-
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almost $1.5 billion in grants to schools investing in innovative practices aimed at increas-
ing graduation rates between 2010 and 2016 (Office of Innovation & Improvement, 2016).
Failing to graduate from high school has high costs, as only 12% of all jobs in the econ-
omy will require less than a high school diploma by 2020 (Carnevale, Smith and Strohl,
2013). Schooling also has several non-pecuniary benefits ranging from health to happiness,
marriage, trust, and work enjoyment (Oreopoulos, 2007; Oreopoulos and Salvanes, 2011).

This paper shows how machine learning (ML) and economic theory can be jointly
applied in education. In particular, this paper creates a model that identifies students who
are at risk of dropping out using information from their first year of high school. In doing
so, it also illustrates how ML can be used to identify top predictors and heterogeneity
among students. In addition, the first part of this paper demonstrates that trying to predict
vulnerable students using a limited number of educational variables can detect only a
small fraction of those students who actually end up dropping out of high school. This
result is especially relevant since schools often rely on these few early warning indicators
to identify students who are struggling academically (O’Cummings and Therriault, 2015).
Indeed, educators are advised to focus only on attendance, school behaviour and course
grades to find students at-risk, even when there is minimal empirical evidence to support this
recommendation (Rumberger et al., 2017). In contrast to these practices, this paper shows
how schools can exploit available big data, jointly with ML techniques, to substantially
improve these predictions. These more advanced algorithms have the potential to correctly
identify thousands of additional students who are at risk of dropping out every year.

After having identified vulnerable students, this paper illustrates the application of
unsupervised ML to cluster such individuals into different groups based on their observable
characteristics. Clustering students has two advantages. First, it emphasizes that these
students are not a homogeneous group: the ML algorithm may classify some students as
at-risk because they are academically weak, while others may be predicted as dropouts
because they live in unsafe neighbourhoods or they come from very poor households. The
latter group would likely require different programmes than the first one. Tutoring might be
more appropriate for students struggling in certain subjects, while combining tutoring with
counselling might be more effective for students with disadvantaged backgrounds. ML can
therefore be used to identify students at-risk, and to help design treatments appropriate for
each sub-population. Second, it is possible to evaluate how a policy has different impacts
among students in various clusters. Indeed, any dropout prevention programme can have
different effects depending on student’s gender, race, ability, income, as well as by sub-
populations. In this way, it is possible to estimate heterogeneous effects not only on different
demographic groups, but also on multidimensional groups.

This paper is related to the emerging literature in ML. The main focus of econometric
techniques is causal inference, i.e. to provide unbiased or consistent estimates of the impact
of a variable x on an outcome y. On the other hand, ML is more appropriate for prediction
since its goal is to maximize out-of-sample prediction.Algorithms can identify patterns too
subtle to be detected by human observations (Luca, Kleinberg and Mullainathan, 2016),
thus outperforming econometric models built using heuristic or theory-based approaches.
Although there are several policy-relevant issues that do not require causal inference,
but rather accurate predictions (Kleinberg et al., 2015), ML applications have been quite
limited in economics so far. However, ML is gaining momentum (Belloni, Chernozhukov
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and Hansen, 2014; Varian, 2014; McKenzie and Sansone, 2017; Mullainathan and Spiess,
2017) and scholars have started to use these algorithms in education for teacher tenure
decisions (Chalfin et al., 2016), as well as to reduce dropout rates in college (Aulck et al.,
2016; Ekowo and Palmer, 2016).

A disadvantage of using off-the-shelf ML techniques to tackle classification problems
– applications where the dependent variable is discrete – is that there is no unique method
to measure performance. Practitioners generally adopt rules-of-thumb and criteria such
as pseudo-R2 and accuracy (Bowers, Sprott and Taff, 2013), but they often do not justify
the reason behind such choices. This paper builds an economic model in order to derive
a criterion consistent with the school objective function which can be used to compare
the performances of different algorithms, as also advocated in Subrahmanian and Kumar
(2017). In other words, a school’s constrained optimization problem is taken into account
while calibrating the algorithms to maximize prediction performances. Therefore, this
paper provides a microeconomic foundation to the choice of the particular criterion used in
the paper to select the optimal values of the model parameters and to evaluate the algorithms.

Despite the aforementioned limitation, ML approaches provide several advantages.
First, they offer an inexpensive alternative to the numerous tests and assessments that are
used to sort and categorize students since kindergarten (Shields, Cook and Greller, 2016).
Second, since these algorithms use only information from 9th grade, school counsellors and
teachers can detect students at-risk before it is too late to intervene. Even if some scholars
have argued for a focus on early childhood education (Carniero and Heckman, 2003), recent
studies have shown that it is possible to design effective interventions for disadvantaged
and low-skilled adolescents (Cook et al., 2014; Fryer, 2017), thus supporting the need to
identify the students most at risk of dropping out. For instance, Cortes, Goodman and Nomi
(2015) found that double-dose algebra in 9th grade targeted towards below-average math
students increased high school graduation. Similarly, Rodriguez-Planas (2012) estimated
that low-performing 9th graders were more likely to graduate on-time when assigned to a
programme offering mentoring, educational services, and financial rewards. At the same
time, researchers have reported limited or even negative effects of universal programmes
that require all students to take college preparatory courses (Allensworth et al., 2009; Clot-
felter, Ladd and Vigdor, 2015), thus emphasizing the importance of targeting intervention
in order to improve their efficiency and impacts.

To summarize, this paper applies modern state-of-the-art techniques to improve schools’
response to elevated school dropout rates. In addition to this, it combines economic theory
with ML to adapt these tools to the specific educational context. Finally, it introduces
unsupervised ML as a first step toward offering more personalized treatments to students
at risk of dropping out.

II. Data

Data source

This paper uses the High School Longitudinal Study of 2009 (HSLS:09), which is a panel
micro study interviewing around 21,440 students in 9th grade from about 940 participating
schools. The survey design has two levels. First, private and public schools were selected
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at the national level. Second, around 30 students were randomly drawn among 9th graders
from every school selected in the previous step.

In the first round, information was collected from the selected 9th graders, their parents,
math and science teachers, school administrators and lead school counsellors. The parent
questionnaire was completed by the parent or guardian most familiar with the 9th grader’s
school situation and experience. The students were interviewed between September 2009
and April 2010. The first follow-up was in the spring of 2012, and a brief update was
conducted in 2013 (summer and fall) to record students’ postsecondary plans. Students,
parent, school administrators and counsellors were interviewed again in 2012. This wave
did not include new questionnaires for teachers. Finally, only students and parents were
interviewed in 2013.

A math assessment was first administered to students in 9th grade (2009), and then
in 11th grade (2012). Data from the students’ transcripts including their GPA, their AP
class grades, their SAT scores, and the number of credits taken in each subject during high
school are also available.2

From a policy perspective, the use of the HSLS:09 implies another substantial contri-
bution of this paper. The results presented in the empirical analysis not only focus on the
general issue of high school dropout, but are derived from data on a recent cohort, thus
offering a new perspective on Millennials and their educational choices. Indeed, most of
the previous literature has exploited data such as the NLSY:79, which are attractive since
they contain a rich variety of information and span over several decades, but they estimate
parameters which may have changed over time, thus lacking external validity.

Outcome variable

The aim of section III is to predict who is eventually going to drop out of high school
using information available in 9th grade, i.e. in the first year of high school. Notably,
45% of the schools in the sample had a formal dropout prevention programme in 2009.
These programmes included a variety of initiatives: the most common were tutoring and
graduation counselling, but some schools also offered job counselling, childcare for stu-
dents’ children, occupational-focused courses, or even incentives for better attendances
and classroom performance. When school counsellors were asked in the HSLS:09 how
students were selected in order to participate in these programmes, the two most common
answers indicate a focus on individuals with poor grades (93%) and fewer credits (89%).

The main outcome variable used in the empirical analysis is Ever dropout. This is an
indicator variable equal to one if there is at least one known dropout episode regarding
the student, and zero otherwise. It is important to note that alternative completers (such
as GED recipients) are considered as dropouts. This is in line with the literature that
emphasizes the differences between GED recipients and high school graduates (Heckman
and Rubinstein, 2001; Heckman, Humphries and Mader, 2011; Zajacova, 2012). Non-
respondents are counted as zero. Re-taking a year is also not considered equivalent to
dropping out of school.

2
Additional documentation about the HSLS:09 can be found in the technical reports provided by the U.S. Depart-

ment of Education (Ingels et al., 2011, 2014, 2015). For security reason, all sample size numbers have been rounded
to the nearest 10.
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Among the interviewed students, almost 11% had at least one known dropout episode
before the second follow-up interview. It is important to note that 82% of the schools in the
sample had at least one interviewed student with a recorded dropout episode. In line with
the findings from other studies (Adelman et al., 2018), dropouts were not concentrated in a
few schools. Therefore, merely targeting low-performing schools would lead to substantial
misallocation of resources.

III. Predictions

Technical considerations

Before showing the results from the prediction analysis, it is important to highlight a few
technical points. The first one concerns over-fitting, i.e. having a high in-sample predictive
power, but a low out-of-sample one. For instance, if the true relation between y and x is
quadratic, a linear model would be an under-fit (high bias), while estimating a 4th degree
polynomial would lead to an over-fit (high variance). As suggested by Ng (2016), the
solution is provided by dividing the data into three samples. The training sample (60%
of the data) is used to estimate the algorithm. The optimal model parameters (such as
the penalization term in LASSO) are selected using a grid-search in order to maximize
performances in the cross-validation sample (CV sample: 20% of the data, around 4,290
observations). Therefore, the risk of overfitting is reduced by estimating the model using
the training data and measuring the performances using the CV sample. Finally, the out-
of-sample performances are reported using the test sample (20% of the data). This last -
less common – step is required since an extensive grid-search may still lead to overfitting
the CV sample.

The main concerns with this simple form of CV are that not all data are exploited to
calibrate the model and, in case of relatively small samples as in this case, there is a risk that
outliers may be overrepresented in one of the three samples. These issues can be avoided
using 5-fold CV. In fact, the data have been divided into five sets and combined in all
possible ways in order to create five different splits among train, CV, and test samples. The
in-sample and out-of-sample performances are estimated five times – one for each data
split – and the 5-fold average out-of-sample performances are then reported. The k-fold
CV is a rather common resampling technique, and while there is no formal rule, 5 or 10
is the usual choice for k since it is computationally less burdensome than other techniques
such as the leave-one-out cross-validation and it performs well in simulations (Kuhn and
Johnson, 2013).

The second technical point worth mentioning is that there is not a unique measure of
performances when the dependent variable y is binary. Indeed, while the Mean Square
Error (MSE) or the R2 offer a clear metric when the dependent variable is continuous, such
criteria are not appropriate in classification problems. There are two classes of indices in
this setting. The first one, which includes the pseudo-R2 and the McFadden-R2, compares
the performances of the algorithm with the prediction of a simple model that contains only
a constant. The second class comprises all the indices that compare observed values with
predicted ones. The usual starting point in this case is the so-called ‘confusion matrix’,
which tabulates the frequencies of the actual values of the dependent variable against the
values predicted by the model.
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Predicted values

0 1

Actual values 0 Correct0 (c0) Wrong1 (wr1)
1 Wrong0 (wr0) Correct1(c1)

Which is typically also interpreted as follows:

Predicted values

0 1

Actual values 0 True Negative (TN) False Positive (FP)
1 False Negative (FN) True Positive (TP)

The most frequent criterion used to evaluate a classification algorithm is the accuracy
rate:

Accuracy= TP + TN
Total number of observations (n)

= c1 + c0

n
.

However, when classes are imbalanced as in this application, i.e. when the number of
positive values (n1) of the dependent variable – i.e. the number of high school dropouts
– is much smaller than the number of zeros (n0), such criterion is not appropriate since a
naïve model with just a constant would reach a very high accuracy rate. In these cases, it
might be desirable to select a model with lower accuracy but higher predictive power; that
is, a model performing better under alternative performance metrics. The criteria which
are commonly used are:

Precision (or Positive Predicted Value)= TP
TP + FP

= c1

c1 +wr1

Specificity= TN
TN + FP

= c0

c0 +wr1

!=Recall (or Sensitivity)= TP
TP + FN

= c1

c1 +wr0

Other available criteria are the F1-score and the Negative Predicted Value. Given this
variety of measurements, most analysts tend to arbitrary pick one or two of them following
common practices or rules of thumb. In what follows, the analysis focuses on the recall
rate since predicting that a student is not at risk when he or she actually ends up dropping
out is an error which can have bigger consequences that the opposite mistake, i.e. when
a student who graduates from high school is identified as at-risk. Section Microeconomic
foundation formally justifies this choice using a microeconomic constrained optimization
model.

Finally, almost all algorithms (with the notable exception of Support Vector Machines)
produce predicted probabilities. The models in section A Basic model follow the conven-
tion to predict one when such probability is equal or <0.5, zero otherwise. This is in line
with the Bayes classifier (Hastie, Tibshirani and Friedman, 2009), where accuracy rate
is maximized by assigning each observation to the most likely class, given its predicted
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TABLE 1

Basic model (5-fold average)

Algorithm Inputs Performances

Individual School Interactions AUC Accuracy Recall

1 Logit ! ! 0.80 89.9% 15.2%
2 OLS ! ! 0.79 89.6% 6.4%
3 Probit ! ! 0.80 89.9% 13.9%
4 Logit ! ! ! 0.80 89.9% 15.5%

Note:This table reports out-of-sample performances of different models estimating the prob-
ability that a student drops out of high school. Individual indicates that the algorithm uses
as inputs the selected variables from the student and parent questionnaires. School refers
to selected inputs from principal, while Interaction indicates that the algorithm includes
two-way interaction terms between gender, race, income, GPA and family characteristics.

probabilities. Lower thresholds lead to higher recall rates, but lower accuracy. Subsequently,
section Microeconomic foundation shows how to choose such cut-off during the CV proce-
dure in order to optimize the school objective function. It also illustrates how this procedure
is related to the ROC curve, which can be generated non-parametrically using each pos-
sible predicted probability as a classification threshold and computing the corresponding
sensitivity and 1-specificity, thus highlighting the trade-off between these two criteria. The
area under such curve (AUC) is commonly used as a performance criterion.

A basic model

As discussed in section outcome variable, most schools select students who need to par-
ticipate in dropout prevention programmes based on their past achievement (GPA and
number of credits). Therefore, a natural way to start the analysis is to test the power of
these predictors. In other words, it is possible to estimate a simple logit model using as
regressors student past performances, school attendance and behaviour, as well as all the
others variables highlighted in the literature: demographics, school characteristics, and
family background.3 As shown in Table 1 Model 1, the performances are strikingly low:
even though the average out-of-sample accuracy rate is almost 90%, the recall rate is just
15%. This means that only a small percentage of the students in the test sample who did
eventually end up dropping out are identified as at-risk. These performances are even worse
for the OLS and Probit estimates (Model 2 and 3 respectively).

These results do not depend on the sample size. Similar accuracy and recall rates are
also obtained when random subsets of the train sample are used (e.g. 30%, 50%, 80%). The
average in-sample accuracy and recall rates for the Logit model are around 90% and 15.7%,

3
In particular, the following 28 variables have been selected: student gender, race, language, school region,

urbanicity, school climate, household income, number of household members, no mother/father in the household,
mother/father high school dropout, mother/father employed, student has repeated a grade, 9th grade math test score,
9th grade GPA, 9th grade number of credits, school attendance, school suspension. The Online Appendix includes
a detailed description of all the variables used in this section. In order to compare results with the ML algorithms,
5-fold CV procedure has also been implemented in these simple models. Moreover, in order to maintain the same
number of observations across specifications, missing values have been imputed to zero while adding an indicator
variable for such missing items. Performances for the models without imputations are comparable to those in Table 1:
the k-fold average accuracy for the Logit model is 91.6%, while recall is 17.2% and AUC is 0.80.
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thus close to the out-of-sample performances. Moreover, even when the Logit model is
estimated using all the available observations instead of the 60% training set, the in-sample
recall rate is only 17% (92% accuracy, 0.81 AUC). Therefore, collecting data on additional
students would not improve these predictions: the algorithm is suffering from high bias
(under-fitting). Including more training observations would not solve this issue.

Interactions terms can be added to take into account potential heterogeneity and use
a more flexible functional form. For instance, boys and girls may have different likeli-
hood of dropping out based on their ethnicity, household composition or parental employ-
ment. Nevertheless, as shown in Model 4, including 14 interaction terms does not improve
performances.

The results discussed in this section suggest that schools cannot use basic statisti-
cal techniques and rely only on traditional demographic characteristics, previous student
achievements, school attendance and behaviour in order to identify students at-risk. In
other words, while it is true that graduation rates are lower, for instance, among African-
American students or children in poor single-parent households, these variables are not
enough to capture the variety of circumstances that lead students to halt their education.
Similar poor results have been found in other studies on early warning indicators actually
adopted in school districts (Deussen, Hanson and Bisht, 2017). Section Machine learning:
results shows how high-dimensional data and ML algorithms can be combined in order to
improve predictions.

Microeconomic foundation

So far, model performances have been evaluated by focusing on the recall rate. This section
builds an economic model and introduce budget considerations to justify the use of the
recall rate as a selection criterion. In this context, the optimization problem of the school (or
school district officials) is the following: schools want to minimize the expected dropout
rate subject to a budget constraint.4 The goal is to correctly identify students at-risk in
order to include them in a dropout prevention programme. This budget constraint takes
into account the fact that the individual cost of the dropout prevention programme (") times
the number of students enrolled in the programme has to be less or equal to total resources
allocated to the programme (B).

The probability of dropping out p(si, ti) is defined as a function of the student’s type
(si) and the treatment (ti), where the treatment is the dropout prevention programme. For
simplicity, it is assumed that si !{0, 1}. In other words, there are two types of students:
students at risk of dropping out (si =1) and students not at risk (si =0). The probability
function p(si, ti) should satisfy certain properties:

p(0, t)=0 (3.1)

@p
(
0, t

)

@t
=0 (3.2)

4
This objective function is consistent with goals set by federal and state legislations such as Every Student Succeed

Act, Race to the Top (U.S. Department of Education, 2009) and the School Progress Report in Philadelphia (District
Performance Office, 2017).

 2018 The Department of Economics, University of Oxford and John Wiley & Sons Ltd



464 Bulletin

p
(
1, t

)
!0. (3.3)

@p
(
1, t

)

@t
< 0. (3.4)

@2p
(
1, t

)

@2t
> 0. (3.5)

Condition (3.1) simply states that students who are not at risk of dropping out have, by
definition, a zero probability of dropping out given any treatment. Similarly, condition (3.2)
ensures that the probability of dropping out for students not at risk is not affected by the
level of treatment. Condition (3.3) means that the probability of dropping out for students
at risk is non-negative. Condition (3.4) makes clear that treatment is effective: more intense
treatment decreases the probability of dropping out for students at-risk. Finally, condition
(3.5) implies decreasing returns to scale, thus it is optimal to allocate resources equally
among students at-risk

However, schools do not directly observe students who at risk, but rather only a signal,
i.e. a predicted probability of dropping out provided by the algorithm. Given this signal,
schools need to decide how many and which students to include in a dropout prevention
programme in order to minimize the dropout rate. Therefore, using the notation introduced
in section Technical considerations, the school optimization problem becomes:

min{n1[(1−!)p(1, 0)+!p(1, t)]}
s.t."t[wr1 + c1]"B

where the objective function is the weighted sum of the number of students who end up
dropping out and are not treated, plus those who are treated, each multiplied by the proba-
bility of dropping out given the treatment. As defined in section Technical considerations,
! is the recall rate, while n1is the number of students who drop out. The cost of the pro-
gramme in the budget constraint depends instead on the students which have been – both
correctly and incorrectly – assigned to the treatment.

In order to obtain a closed-form expression, two assumptions are added. First, ti ! {0, 1}.
Students can only be included or excluded from the dropout prevention programme. This
is realistic in a setting in which a programme has already been designed and schools are
only required to identify the neediest students who need to be included in such programme.
In other words, individual, family and school characteristics are used to identify si, i.e. to
find out who are the students at-risk, thus providing a signal to schools. Condition (3.5)
is no longer required. Given this additional assumption, the following functional form is
imposed:

p(si, ti)= (1− ti)si.

This linear function satisfies conditions (3.1)–(3.4). From this, it follows that the ob-
jective function becomes (excluding the constant n1):

min{(1−!)*1+!*0}
s.t."[wr1 + c1]"B
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Figure 1. Logit ROC curveNote: Area under ROC curve = 0.79.

This is equivalent to maximizing the recall rate subject to a budget constraint. There-
fore, this simple model provides an economic justification for using the recall rate as
the criterion when tuning the ML algorithms through cross-validation and when compar-
ing performances among them. It is worth emphasizing again that the additional advan-
tage of using the recall rate rather than accuracy in this context is that it counteracts the
negative effects of class imbalance, i.e. of having a relative small proportion of students
not graduating from high school (Kuhn and Johnson, 2013).

Using the recall rate as the criterion can also be justified by imposing different functional
forms on p(si, ti). For instance, the curvature imposed by the positive second derivative of
p(si, ti) (Condition 3.5) can be taken into account by assuming the following functional
form:

p
(
s, t

)
= s

1+ t
.

This would lead to an equivalent optimization problem:

min
{

1− !
2

}

s.t."[wr1 + c1]"B
.

More generally, as long as p(1, 0) > p(1, t), the school objective function is equivalent
to maximizing the recall rate.

A straightforward implementation of the above procedure can be applied to the Logit
model discussed in section A Basic model (Table 1 Model 1). Previously, the threshold
to estimate dropout status given predicted probabilities has been set at 0.5. However, it
is possible to change this parameter to maximize the recall rate in the CV sample while
respecting the budget constraint. This can be interpreted as choosing a point in the ROC
curve depicted in Figure 1.5 Ideally, a school would like to be as high as possible on the

5
The Online Appendix A.2 provides a detailed explanation of how Figure 1 and Table 2 in this section have been

computed.
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TABLE 2

Optimal threshold (5-fold average)

Cost per student Overall Budget

1,000 10,000 100,000

10 Actual cost 970 9,714 42,244
Threshold 0.53 0.14 0.01
Accuracy 89.9% 79.8% 12.2%
Recall 13.9% 61.6% 99.7%

100 Actual cost 1,020 9,700 97,140
Threshold 0.84 0.53 0.14
Accuracy 89.4% 89.9% 79.8%
Recall 2% 13.9% 61.6%

500 Actual cost 1,000 9,700 98,400
Threshold 0.93 0.77 0.40
Accuracy 89.3% 89.6% 89.6%
Recall 0.4% 3.6% 22.9%

Note: This table shows how the optimal accuracy and recall rate
change given different combination of total budget and cost per
student of a hypothetical effective high school dropout intervention
programme.

y-axis, but the selected point cannot be too much on the right of the x-axis otherwise
the programme exceeds the resources available. Indeed, after estimating the individual
probability of dropping out for each student, the ROC curve is obtained by letting the
probability threshold used to divide students between predicted graduates and dropouts to
vary between zero and one, and by then computing the resulting sensitivity and specificity
for each cutoff. In the bottom-left corner, specificity is one that is the algorithm perfectly
predicts those who are going to graduate, but sensitivity is zero, thus the algorithm does not
identify any of the students who end up dropping out. On the other hand, in the top-right
corner, sensitivity is one, thus the algorithm perfectly predicts those who are going to drop
out, but specificity is zero, meaning that none of the graduating students are identified as
high school graduates. Instead of using the area under the ROC curve as main criterion to
compare algorithms as in Bowers et al. (2013), this section provides a theoretical model
to justify the selection of the optimal point on the ROC curve.

Quite interestingly, the use of alternative cutoffs for the predicted probabilities is one
of the strategies suggested to tackle class imbalance (Kuhn and Johnson, 2013). Therefore,
this procedure not only adapts algorithms to the school objective function, but it also
addresses the issues due to the low ratio between high school dropouts and graduates.

Table 2 shows how the optimal accuracy and recall rates change as schools vary the
cost per student and the overall budget of the programme.6 As a result, policy-makers can
follow this procedure to choose the most efficient algorithm and tune its parameters in
order to treat as many students at-risk as possible subject to their budget constraints. It is
worth noting that, thanks the low variability of the Logit estimates between in-sample and
out-of-sample (because of the small number of predictors compared to the sample size),
the actual costs incurred by the school – that is the overall expenditure obtained using

6
It is worth remembering that in the CV (as well as Test) sample there are around 4,290 students and 460 dropouts.
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the test sample - is similar to the planned cost. In other words, the advantage of using an
algorithm with low variance is that there is a lower risk that the cost of a dropout prevention
programme does eventually exceed the resources initially allocated to it.

Machine learning: brief introduction

This section briefly describes the ML algorithms employed in the paper. A more detailed
technical explanation is provided by Hastie et al. (2009), as well as by Ng (2016). The
Online Appendix includes detailed technical implementation information.

Machine Learning is the science of getting computers to learn without being explic-
itly programmed. Standard econometric techniques, i.e. regressions, are considered su-
pervised algorithms. In other words, supervised algorithms are provided with a certain
number of ‘right’ answers, i.e. actual y associated with a certain x, and are asked to pro-
duce other correct answers, i.e. to predict new y given other combinations of x. On the
other hand, unsupervised learning algorithms derive a structure for the data without nec-
essarily knowing the effect of x on y. Supervised ML are applied in section Machine
learning: results to predict high school dropouts, while unsupervised ML are used in sec-
tion IV in order to divide the students predicted to be at risk of dropping out into different
groups.

When considering all the relevant variables collected during the baseline interview and
all the possible answers, the number of predictors is more than 1,700.7 Consequently, after
including higher order terms and some interaction terms between the most important pre-
dictors, the number of independent variables can easily reach several thousands. Therefore,
given the limited number of observations, it is not possible to include all of them in an
OLS or a Logit model. Adding too many variables to these models would lead to over-
fitting. Furthermore, OLS cannot be used when the number of regressors is higher than
the number of observations. ML algorithms are the appropriate tools to deal with these
high-dimensional data sets.

LASSO is an example of a model selection algorithm: it identifies the variables with
the highest predictive power, while constraining all the other coefficients to zero. It can be
obtained by adding a penalization term # to the OLS objective function:8

$̂(#)= argmin
$!Rk

n∑

i=1

(yi − x′
i$)2 +#‖$‖1

‖$‖1 ≡
k∑

j=1

|$j|

7
The OnlineAppendix includes a detailed list of all the variables used as inputs in the ML algorithms.These include,

among the others, student demographics, past performances, future expectations, behaviour, sense of school belong-
ing, relationships with adults and peers, opinions about 9th grade teachers, household composition, mother/father edu-
cation and working history, household welfare, school characteristics, and information about teacher and student body.

8
The usual caveat in these techniques is to normalize with zero mean and unit variance all the variables, or to

restrict their domain between zero and one, so that the regularization is not inflated by the different scale of the
variables. Both methods should work correctly (Guenther and Schonlau, 2016).
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Since LASSO introduces bias in the coefficients, it is advisable to run a Post-LASSO OLS
regression using only the variables selected by the ML algorithm. LASSO is one of the
most common ML techniques. Indeed, it is one of the first tools taught in ML courses
(Hastie et al., 2009), and it has also been used by economist for selecting the appropriate
set of controls when estimating causal effects (Belloni et al., 2014). The key assumption is
that the data generating process is sparse, where only a small subset of variables is assumed
to have high predictive power. This may not be realistic in some economic applications
(Giannone, Lenza and Primiceri, 2017).

Support Vector Machines (SVM) can be seen as a modified Penalized Logistic Regres-
sion with the addition of kernels in the objective function:

$̂(C)= argmin
$!Rk

C1

[
n∑

i=1

yi max{0, 1−K ′
i $}+ (1− yi) max{0, K ′

i $−1}
]

+$2.

Here C1 is the penalization parameter. Although kernel functions allow SVM to be ex-
tremely flexible, this comes at the cost of interpretability. The most common kernel is
the Gaussian one, although the sigmoid kernel has also been considered in the empirical
application.

KGaussian

(
x1, x2

)
= similarity

(
x1, x2

)
≡ exp

(
−x1 − x2

2%2

)

Ksigmoid

(
x1, x2

)
≡ tanh

(
&+ 'x′

1x2

) .

It can be shown mathematically that the SVM is a Large Margin Classifier. In other words,
SVM selects the curve (or hyperplane) which separates the two classes with the maximum
margin. Researchers have shown that SVM can achieve higher performances than other
ML algorithms (Maroco et al., 2011).

Boosting (also called Boosted Regression) can be seen as a combination of a sequence
of classifiers where, at each iteration, misclassified observations in the previous classifier
are given larger weights. Indeed, a simple version of Boosting can be illustrated by the
AdaBoost algorithm:
1. Initially assign the same weight 1/ n to all observations
2. Estimate the first classifier (e.g. a logistic regression or tree) with the equally weighted

data
3. Compute the classification errors, increase the weights of the misclassified observations
4. Estimate the second classifier with the new observation weights
5. Repeat steps 3–4 until you have M classifiers
6. Combine all the M individual classifiers by giving more weight to the classifiers with

better predictions.
In other words, this algorithm learns from past mistakes and updates its predictions

over time. The underlying idea is that combining simple algorithms can lead to higher
performances than a single, more complex, algorithm such as Logit.

An example of a simple classifier often used within Boosting is a regression tree. This
algorithm optimally partitions the covariate space into a set of rectangles and it then fits
a simple model (constant) to each rectangle. Therefore, the estimated function is just the
average of the outcomes included in a particular rectangle. In other words, the partition can
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be thought of as a series of if-then statements, and it can be represented by a graph that looks
like a tree. For instance, the observation may be divided into two groups: whether students
have GPA below 2.0 or not. Then, those who satisfy this condition could be further split
according to whether they are taking math in 9th grade, and so on. The simplest possible
tree is called tree stump and it contains only one split and two terminal nodes. Tree stumps
tend to work well in Boosting (Schonlau, 2005).

Boosted regression is actually implemented using the algorithm introduced by Fried-
man, Hastie and Tibshirani (2000) since these authors were able to reinterpret it in a
likelihood framework, thus making it comparable to the objective function of an OLS or
a Logit model. Boosting have been found to have superior performances than other ML
algorithms in many simulations (Bauer et al., 1999, 1999) and has already been used by
Chalfin et al. (2016) in their work on predicting police hiring. Furthermore, ensemble-
based methods such as Boosting have been shown to be effective in the presence of class
imbalances (Chawla, 2010).

The next section presents results from these different algorithms because they offer dif-
ferent combination of interpretability and flexibility. Post-LASSO is easily interpretable
since it just selects a subset of variables to use as predictors in an OLS model. The con-
tribution of each variable is easily understood. On the other hand, SVM and Boosting are
among the most flexible algorithms because they are able to fit an extremely large variety
of functional forms. At the same time, they are ‘black boxes’ which do not provide detailed
information on how the inputs have been combined, and thus lack transparency.

As discussed in Aguiar et al. (2015), previous studies predicted high school dropouts
by combining early warning indicators. However, these studies had to decide whether to
predict dropout based on the intersection of two or more indicators (e.g. low grades and
low school attendance), or based on the union of these indicators (e.g. low grades and/or
low school attendance). The advantage of ML is that researchers do not have to specify
ex ante how the variables interact among themselves: the algorithm selects the optimal
combination with the highest predictive power.

Some other studies have used principal component analysis as a preliminary step to
combine several variables into a few indicators to use them as predictors in a Logit model
(Adelman et al., 2018). However, this technique provides a dimensionality reduction by
only summarizing the joint distribution of a set of variable. There is no guarantee that such
transformation preserves the signal with the most predictive power, especially since this is
not the objective of the technique. In other words, the dimension captured by a principal
component may not be the most relevant one when predicting dropout (see also Witten and
Tibshirani, 2010). On the other hand, ML algorithms can handle high-dimensional data,
thus there is no need to reduce the number of predictors ex-ante, and it is possible to fully
capture the predictive power of each variable.

Machine learning: results

Table 3 reports the 5-fold out-of-sample performances of all the ML algorithms introduced
in the previous section. All relevant predictors from 9th grade have been included as inputs
in Models 1–5. Since the objective is to reduce dropout subject to the limited resources
available, the algorithms has been calibrated in order to maximize the recall rate in the CV
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TABLE 3

ML (5-fold average)

Algorithm Inputs Performances

Individual School Interactions School FE AUC Accuracy Recall

1 SVM ! ! 0.77 89.1% 21.7%
2 Boosting ! ! 0.76 88.8% 20.6%
3 OLS Post-LASSO ! ! 0.77 89.9% 16.0%
4 Logit Post-LASSO ! ! 0.79 89.4% 23.0%
5 Logit Post-LASSO ! ! ! 0.78 89.1% 23.1%
6 Logit Post-LASSO ! ! ! 0.77 87.1% 28.1%

Note: This table reports out-of-sample performances of different models estimating the probability that a student
drops out of high school. Individual indicates that the algorithm uses as inputs all the relevant variables from
the student and parent questionnaires. School refers to inputs from the teachers, counsellor and principal, while
Interaction indicates that the algorithm includes two-way interaction terms among the top predictors selected by
LASSO. School FE indicates that school fixed effects are included in the final Logit model.

sample subject to a minimum accuracy rate (0.89, thus similar to the accuracy of the basic
models in Table 1). As discussed in section Microeconomic foundation, the parameters in
the ML algorithms has been chosen to identify as many dropouts as possible while keeping
the number of false positive as low as possible.

As already mentioned in section Machine learning: brief introduction, LASSO tackles
high-dimensional data by selecting the most important predictors among all the inputs.
These variables are then used as regressors in an OLS (Model 3) or a Logit (Model 4)
specification. As reported in Table 3, Post-LASSO algorithms manage to increase the
recall rate up to 23%. Compared to the basic model, this is almost an eight percentage
points increase, or a 51% improvement, while maintaining a comparable accuracy rate.
The magnitude of these gains is substantial when interpreted at a national scale. The
students interviewed in the HSLS:09 are representative of more than 4.1 million 9th grader
in the U.S. Of these, around 483,270 ended up dropping out of high school. Therefore,
each percentage point improvement in the recall rate implies that around 4,830 additional
students would be correctly identified as at risk of dropping out. It is remarkable that, even
if these performances are far from perfect prediction,9 these improvements can be obtained
by schools districts with rich data set at no extra cost by just including additional variables
in their models.

These out-of-sample performances are rather precise. For the Logit Post-LASSO
(Model 4 Table 3), recall rates in the five folds used during cross-validation range be-
tween 19.3% and 27.9%. Therefore, the recall rate for this ML algorithm is higher than the
ones obtained inTable 1 using a limited set of predictors not only on average, but even when
every single fold is considered. Following Kuhn and Johnson (2013), it is also possible
to repeat the 5-fold CV procedure multiple times and then use the different estimates of
the recall rate in order to compute confidence interval and measure the prediction uncer-

9
ML was not actually expected to provide perfect predictions. Indeed, as already mentioned, in order to allow

schools enough time to identify students at-risk and target them with appropriate interventions, all predictors were
collected in 9th grade. The implicit drawback is that the ML algorithms do not take into account all the possible
negative shocks affecting educational decisions which may occur between 9th and 12th grade, e.g. unexpected teen
pregnancy, health problems, unemployment, and divorce.
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tainty more formally. As shown in Table A1, repeating the 5-fold CV five times produces
a confidence interval of [0.168; 0.286], while repeating it 10 times restricts the interval
up to [0.173; 0.277], thus increasing the precision of the estimates while maintaining
performances always superior to those in Table 1.

Similar performances are obtained by SVM (Model 1), Boosting (Model 2) or by
including interaction terms in the Logit Post-LASSO algorithm (Model 5). Including school
fixed effects (FE) in a Logit model together with the individual variables selected by LASSO
produces higher recall rate, but at the cost of lower accuracy (Model 6).

The above performances of the ML algorithms are in line with a few previous case
studies and extend the work done by other researchers using traditional econometric tech-
niques to predict high school dropout in both developed and developing countries (see for
instance Rumberger and Lim, 2008; Bowers et al., 2013; Adelman et al., 2018). There
have been some very preliminary attempts by data analysts to predict high school dropouts
using ML algorithms. Sara et al. (2015) trained ML algorithms using few variables from
administrative data in Denmark to predict dropout 3 months later. Aguiar et al. (2015)
introduced ML to predict which students are at risk of dropping out in a US school district
using few early warning indicators and demographic variables, while Knowles (2015) used
ML to improve the dropout early warning system in Wisconsin.

As already mentioned in the introduction, this paper expands this literature in several
ways. First, it introduces a theoretical model to justify the goodness-of-fit criterion used to
evaluate different specifications. Second, it strongly warns against the risks of using few
early warning indicators and it relies instead on a large set of variables.Third, it investigates
the performances of alternative ML algorithms and uses them to predict dropout years –
not months – later. Fourth, it applies unsupervised ML for the first time in the educational
context. Last but not least, it is the first one to use a recent US nationally representative
data set, thus reducing the external validity concerns raised for local analysis.

Robustness checks and extensions

Different objective function
The algorithms presented in Table 3 are extremely flexible and can be adapted to different
objective functions. For instance, if Logit Post-LASSO (Model 4) is calibrated in order to
maximize the area under the ROC curve, it reaches an AUC of 0.81, while maintaining
an accuracy of 89.8%, as well as a recall rate of 18.2%. Similarly, if the same algorithm
is calibrated to maximize the accuracy rate, it obtains a similar rate of the one in Table 1
(89.9%), but at the same time the AUC and recall rate are higher than the ones obtained
with the basic model (18.3% and 0.81 compared to 15.2% and 0.80).

These variations demonstrate how these high-dimensional techniques can dominate
basic models under many performance criteria. Changing the criterion used to measure
performances actually matters and lead to different results, even when there is also one
parameter which needs to be selected (the penalization term in LASSO), thus further
motivating the need of a theoretically justified goodness-of-fit measure as discussed in
section Microeconomic foundation.
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Additional specifications and algorithms
Table A2 in the Online Appendix reports results from additional algorithms and specifica-
tions. First, including school fixed effects to SVM (Model 1) or Boosting (Model 2) does
not lead to better performances than those obtained from Post-LASSO Logit (Table 3).
Similarly, including additional interaction terms or school fixed effects to Post-LASSO
OLS does not provide improvements in performances (Models 3 and 4 Table A2).

It is possible that more sophisticated algorithms may provide even higher perfor-
mances. However, this would only support the main message of the paper, i.e. that there
are big advantages for schools in implementing ML techniques. As discussed in sec-
tion Machine learning: brief introduction, it has been decided to only report results for
these three algorithms since there are among the most popular ones and they have been
shown to have superior performances in many simulations. Moreover, their calibration
is not extremely time-consuming, thus avoiding the risk that such techniques may be
computationally infeasible for schools given their limited technological equipment. In-
deed, more advanced algorithms may still be hard to scale up, even for big companies
(Johnston, 2012), or extremely difficult to code, which is the reason behind the very high
prizes – often reaching $1 million (Netflix, 2009) - offered in machine learning competi-
tions.

For the sake of completeness, Table A2 reports the out-of-sample performances for
a Ridge regression (Model 5), as well as a more general Elastic Net (Model 6). These
algorithms are describe in Friedman, Hastie and Tibshirani (2010). As expected given
their objective functions similar to LASSO, both algorithms do not perform better than
Post-LASSO Logit.

Additional or alternative inputs
The main analysis does not include whether the 9th grader participated in certain pro-
grammes that may have affected his or her probability of finishing high school. While it is
true that between 2009 and 2013 some of these students received some treatment to reduce
their risk of dropping out, this holds across all specification, even the ones without ML in
Table 1. Thus, the existence of these programmes does not undermine the conclusion that
ML algorithms provide superior performances. Furthermore, it is unclear whether these
variables should be included as inputs in the algorithm. Adding them may increase the pre-
dictive power of the algorithms, but these gains would be obtained by predicting students at
risk of dropping out by using participation in high school dropout prevention programmes,
which may seem recursive. Model 7 in Table A2 replicates Model 4 in Table 3, but it also
includes whether the 9th graders participated in the following programmes: Talent Search,
Upward Bound, Gear Up,Advancement Via Individual Determination (AVID), and Mathe-
matics, Engineering, Science Achievement (MESA). Section A.3.2 in the Online Appendix
describes these programmes. As expected given the evidence on their (limited) effective-
ness, including these variables as inputs does not substantially affect the performances of
the algorithm.

For a few variables, information has been obtained from the first or second follow-
up interviews because of the lower number of missing values than the baseline survey.
Additional questions were asked to the students in the follow-up interviews if their parents
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had not responded in the baseline survey (or vice versa). Model 8 in Table A2 replicates
Model 4 in Table 3 while using only information from the baseline survey regarding stu-
dent’s ethnicity and language, household income, household size, as well as mother’s and
father’s educational level, employment and occupation. Most of these variables tend to
be time-invariant, so it is not surprising that the out-of-sample performances of the Post-
LASSO Logit do not change substantially.This result is also reassuring since it supports the
idea that schools can already identify students at-risk in 9th grade with sufficient precision.

The HSLS:09 contains some variables that have high predictive power, but are usually
unavailable to schools or might be difficult to obtain. Therefore, in order to estimate the
algorithms under more realistic data scenario, Model 9 inTableA2 estimates the same Post-
LASSO Logit model but with a restricted set of inputs. In particular, the list of regressors
no longer include information about students’ expectations on their future education and
career; their relationships with parents and peers; their time management, behaviour and
self-perception; their parents’ expectations, level of support, involvement and behaviour.
Despite this limited set of independent variables, the out-of-sample performances of the
algorithm do not change substantially. As discussed in section Pivotal variables, LASSO
mostly selects variables available from academic transcripts or other administrative data.
Even if these additional behavioural and psychological variables were powerful predictors,
it seems that they can be substituted with information contained in other available data, thus
not impacting the performances of the algorithm. It is also worth noting that schools often
have more detailed information regarding their teacher body than the HSLS:09, thus they
might actually reach even higher performances by including these teacher characteristics
in their algorithms.

Coding outcome variable
As discussed in section Outcome variable, the dependent variable has been set equal to one
if the student, school or parent had reported at least one known dropout episode in one of
the interviews (re-takers are not counted as dropouts). By definition, if such information
was not available, e.g. if the student did not reply in the last follow-up, the student was not
counted as dropout. Excluding non-respondents and students whose status was unknown
actually improves the recall rate (even if it reduces the sample size to around 16,400
observations). As shown in Model 10 in Table A2, estimating the same Logit Post-LASSO
algorithm as Model 4 in Table 3 for this alternative outcome variable leads to a recall rate
of 35.7%. For comparison, the recall rate of a Logit model as the one in Table 1 for the
same alternative outcome variable reaches a recall rate of 28.2%.

Heterogeneity across regions
As already discussed, one of the differences between this analysis and previous studies is
the use of a recent U.S. nationally representative data set. As a result, it is possible to argue
that ML techniques would lead to substantial improvements in identifying students at risk
of dropping out across the entire nation, not only in certain localities or context. However,
there is the risk that the algorithm may correctly identify students at-risk only in certain
regions. In line with this concern, there is some variability in the recall rate across regions.
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The recall rate ranges from 19.2% in the Northeast, to 28.3% in the Midwest.10 However,
the gains from using ML algorithms are not concentrated only in one region, and even the
lowest recall rate is higher than the ones from basic models (Table 1).

Some practitioners may also be interested in examining the performances of these
algorithms when estimated within certain regions. Indeed, these techniques may be initially
implemented only in certain school districts. While there are no methodological differences
and the same algorithms can be easily re-estimated using only data from certain U.S. sub-
regions or states, the sample size is considerably reduced. This may not be an issue when
using large administrative data, but it limits the ability of the algorithms to disentangle
noise from signal in this specific exercise given the finite dimension of the HSLS:09.

Model 11 in Table A2 replicates the Logit Post-LASSO model reported in Table 3
(Model 4) using observations from U.S. states in the South. This region has been chosen
since it has some of the states with the lowest high school graduation rates – such as
Georgia and Louisiana – and because it has a relatively large sample size. The recall rate
is still higher than a simple Logit model as the one reported in Table 1 estimated on the
same sub-sample (17.4% vs. 13.3% respectively). Nevertheless, such recall rate remains
rather low and relatively far from the ones reported obtained from the full sample (Table 3).
Therefore, this result confirms that the gains from using ML are considerably larger when
these techniques are applied to very large datasets.

Including equity in school objective functions
Recently, there have been some concerns about the hidden biases within ML algorithms
and the ethical consequences of their diffusion (Sweeney, 2013). However, this issue is
limited in this context since the goal of this paper is only to provide schools with better
information about their students. The algorithms are not aimed at selecting which courses
should each student take. More generally, it is worth emphasizing that algorithms can have
biases, but these can often be easily detected and eliminated, while the same cannot be said
about the widespread biases in human evaluations and decisions.

With these caveats in mind, it might still be interesting to discuss whether it might
be socially desirable to exclude certain variables such as race or gender – or another set
of variables collinear with them – from the list of inputs in order to avoid biases in the
algorithms. For instance, one might be worried that a ML algorithm might identify too
many (or too few) black students as at risk of dropping out because of stereotypes and past
discriminations reflected in the training sample. Alternatively, due to the higher dropout
rate among Hispanics and African-American students, schools may prefer to target these
groups.

These equity concerns can be easily included in the main theoretical framework intro-
duced in section Microeconomic foundation. Define ((S) as:

((S)=−n1[(1−!)p(1, 0)+!p(1, t)],

where S is the set of students identified as at risk of dropping out and admitted to the dropout
prevention programme, i.e. S =wr1 + c1. The objective of the school is to maximize ((S)

10
Recall rates computed from the predicted probabilities across the 5 folds of the Logit Post-LASSO algorithm

reported in Model 4 Table 3.
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(subject to the budget constraint). It is possible to include preferences regarding certain
observable characteristics – e.g. gender or race – in the school optimization problem:

max ((S)+#(S)

where #(S) is monotonically increasing in the number of students in S who belongs to the
preferred category. In other words, this new school objective function includes an efficient
component (minimize the number of dropouts) and an equitable component (prioritize
certain categories). In this case, schools should still use all available information, including
gender and race, in order to obtain accurate predictions for each students (Kleinberg et al.,
2018). The above equity considerations can then be satisfied by selecting a different cutoff
for each group to admit students in the dropout prevention programme.

If, for instance, schools are interested in focusing on male black students, the algorithms
discussed in the previous sections can be easily adapted in this context by using a lower
threshold to convert predicted probabilities into predicted outcomes (graduate/dropout) for
these students, thus affecting the racial composition of the set S. In other words, instead
of using 0.5 for all observations as typically done in most algorithms, one can select one
threshold for male black students and a higher one for all the other students in order to
achieve the desired racial composition, as well as to respect the budget constraint by not
including too many students in the programmes. The key takeaway is that, even when
schools care about equity, it is optimal to incorporate any observable variable as input in
the algorithm.

Pivotal variables

One way to unpack the black box and understand how Boosting obtains the final predictions
is to compute the role that each variable has played in the algorithm. As discussed in
Friedman (2001) and Schonlau (2005), it is possible to measure the influence of a variable
in the boosted regression model estimated inTable 3 (Model 2).This depends on the number
of times a variable is chosen across all iterations (trees) and its overall contribution to the
log-likelihood function. Such values are then standardized to sum up to 100.

One can look at the variables which have been selected at least once in the 5-fold
estimations. Among the over 1,700 predictors considered, around 140 have been picked
by the algorithm to construct a tree. However, around 100 of them have been selected only
once, while 13 of them have been selected more than three times. Table 4 lists these 13
predictors along with the number of boosted regressions they have been used in, and the
5-fold average influence.11

First of all, it is reassuring to note that there are considerable overlaps between the
variables selected by Boosting and the ones used in the heuristic models. As highlighted
in the previous literature, past academic performances, attendance and school behaviour
are indeed important predictors. In particular, GPA in 9th grade is always selected and its
average influence is rather high.

11
The ranking is similar if variables are sorted based on the average influence. Table A3 in the Online Appendix

lists the 33 predictors which have been selected at least 2 times.
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TABLE 4

Variables selected by boosting

Predictors Count Influence

GPA in 9th grade 5 39.7
Born in 1993 (most students were born in 1994–95) 5 11.2
HSLS:09 Math test score 4 5.9
Whether 9th grader has ever been suspended or expelled 4 5.2
GPA for all academic 9th grade courses 4 2.5
Parent contacted by school about poor attendance more than 4 times 4 2.4
Born in 1992 4 1.9
No science courses taken in 9th grade 3 10.8
No math courses taken in 9th grade 3 4.1
9th grader very sure that he/she will graduate from high school 3 1.5
Credits earned in 9th grade 3 1.3
Number of household members 3 1.1
9th graders has changed schools 7 times since kindergarten 3 0.4

Note: This table lists the variables selected by Boosting (Table 3 Model 2) at least three times in
the 5-fold estimation. The influence measures the average overall contribution of each variable
to the log-likelihood function. Such values are standardized between 0 and 100.

Despite these commonalities, the list includes some additional variables which may be
useful to improve predictions. ML has indeed been able to detect some indicators which
have high predictive power but are often overlooked by practitioners. For instance, not
taking any math or science courses in 9th grade plays an important role in the algorithms.
This is consistent with the finding in higher education that GPA in math courses is a strong
predictor of student retention (Aulck et al., 2016). In line with the previous literature
(Bedard and Do, 2005; Schwerdt andWest, 2013), transferring school also predicts dropout.
Contrary to the wide-spread belief that the ABC (Attendance, Behaviour, Course grades)
system is able to capture the impact of family characteristics (Rumberger et al., 2017),
number of household members is often selected, highlighting the additional predictive
power of household background information. Finally, subjective expectations matter: the
list includes how much the 9th grade is sure of graduating from high school. To summarize,
schools correctly use few academic indicators as early warning indicators, but this section
has emphasized the importance of combining such variables with additional – carefully
selected – predictors and to use advanced techniques to optimally combine them. It is
necessary to remember that there are several factors which can lead a student to drop
out. Therefore, as proved by the results in Table 3, using few indicators cannot match the
performances obtained with a larger set of variables

A similar exercise can be conducted with LASSO. In particular, one can look at the
top predictors (around 20–26 in each fold) selected by LASSO to generate the two-way
interaction terms inTable 3 Model 6.Among these selected inputs,Table 5 reports the list of
variables picked in at least three of the five folds. Several variables appear in both Tables 4
(Boosting) and 5 (LASSO): GPA, year of birth, math test score, no math or science course
taken in 9th grade, school transfers, attendance, behaviour, and expectations about school
attainments. It is remarkable that both algorithms select these variables. This supports the
conclusion of their high predictive power. In addition, LASSO frequently selected a few
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TABLE 5

Variables selected by LASSO

Predictors Count

Born in 1993 (most students were born in 1994–95) 5
Born in 1995 5
HSLS:09 Math test score 5
No math courses taken in 9th grade 5
No science courses taken in 9th grade 5
GPA in 9th grade 5
9th grader very sure that he/she will graduate from high school 5
Public School 5
Private School 5
Whether 9th grader has ever been suspended or expelled 5
Does not plan to enroll in college after high school 4
Principal reporting student drop out not a problem 4
9th graders has never changed schools since kindergarten 4
Parent reporting no difficulty by 9th grader with behaviour problems 4
Parent never contacted by school about poor attendance 4
Parent contacted by school about poor attendance more than 4 times 4
Parent participated in school fundraiser 4
Parent thinks 9th grader will at most attain high school 4
GPA for all academic 9th grade courses 3
9th grader thinks he/she will at most attain high school 3
9th grader did not repeat 2nd grade 3
9th grader spend <1 hour/day on extracurricular activities 3
9th grader was in 9th grade in the previous academic year 3

Note: This table lists the variables selected by LASSO to generate the two-way
interaction terms includes in Model 6 Table 3. Only variables selected in at least 3
of the 5 folds have been included.

school characteristics, as well as some indicators for parental involvement and parental
expectations for student future educational achievements, thus providing policy-makers
with additional early-warning indicators with high predictive power.

It may be important to emphasize again that these variables are identified by ML
algorithms as important predictors. This does not imply that changing these variables
would lead to a reduction of school dropout rates. The aim of this analysis is to provide
precise predictions, not causal inference.This does not reduce the contribution of the paper:
both causality and prediction are relevant in this context since policy-makers are interested
in identifying students at-risk, as well as understanding which variables can be affected to
reduce their risk of dropping out.

To reiterate the argument discussed in Mullainathan and Spiess (2017), different
algorithms and different samples may lead to different variable selections. Indeed, if some
variables are highly correlated, then they can substitute each other in predicting school
dropout. The final set of selected variables depend on the specific finite sample used to
train the algorithm. Nevertheless, the aim of this section is to identify top predictors. As
long as the algorithm provides accurate predictions, which variables are chosen is irrele-
vant in this context given the absence of any causal interpretation. For instance, gender and
ethnicity are – quite surprisingly - not used as main predictors by LASSO and Boosting, but
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this does not imply that these factors are irrelevant in this context or that they would not be
selected using a different training set. In other words, it is possible that the variables listed
in Table 4 may be substituted with other variables, but this would not affect the predictions
of the algorithms since – by construction – such variables are highly correlated among
themselves.

It is also important to note that most of the predictors in Tables 4 and 5 are available
in administrative data. Therefore, even without collecting additional variables, predictions
could be improved by fully leveraging the information contained in the academic tran-
scripts. This may be useful in particular when schools cannot connect their data sets due
to privacy issues or prohibitive costs. The latter constraint may be binding especially if
these algorithms were applied in developing countries. Even in absence of rich data and
with limited resources to expand them, this section demonstrates how ML algorithms can
be used to identify the key variables from a pilot survey which can then be collected at a
larger scale.

An additional advantage of only using administrative data is that they are less manipu-
lable. Indeed, if parents or students were aware that their answers could determine whether
or not they are included in a dropout prevention programme, they may change the infor-
mation provided. For instance, they may not truthfully report their expected educational
attainments or how many hours they spend playing video games or with friends.12

At this point, it is worth noting that the above lists include the math test score admin-
istered within the HSLSP:09 survey to all students in 9th grade. However, if the Logit
Post-LASSO model (Table 3 Model 4) is calibrated by excluding such a variable from the
list of potential predictors, the algorithm still reaches very similar performances (AUC
0.78, accuracy 89.3%, recall 23.2%). Therefore, even if such variable has – as expected –
high predictive power, it can be substituted with other predictors in the data set. Schools
are increasingly using entry tests to identify weak students at all educational levels (Shields
et al., 2016). Even if this math test score was not primarily designed to detect students at
risk of dropping out, the above results suggest that schools can efficiently predict which
students are going to drop out without having to rely on additional expensive tests, but by
analysing available individual, family and school characteristics.

IV. Clustering predicted dropouts

Identifying students at-risk is only the first step. Next, schools have to design the appropri-
ate programmes for them. However, as also emphasized in Bowers and Sprott (2012), these
students do not represent a homogeneous groups and they may need different treatments.
For instance, students who are struggling academically may benefit from tutoring or sum-
mer classes, while counselling may be more effective for students with discipline issues or
problems at home.13 In other words, this section acknowledges that high school dropout is

12
However, these data would be manipulable only if individuals were aware of how the prediction of the algorithm

would change given the different values of the predictors.
13

Income inequality may also play a role for individuals from low socio-economic background (Kearney and
Levine, 2016): greater income gaps between those at the bottom and those at the middle of the income distribution
may lead low-income students (especially boys) to drop out of high school due to a ‘despair’ effect – seeing the
middle class as unattainable - rather than an aspirational effect. The number of students per school in the HSLS:09
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TABLE 6

Clustering

Predictors No dropout Group 1 Group 2 Group 3 Group 4

Born in 1993 (most students were born
in 1994–95)

0.03 0.22 0.63 0.13 0.65

HSLS:09 Math test score 0.47 0.31 0.31 0.32 0.33
No math courses taken in 9th grade 0.04 0.26 0.19 0.40 0.10
No science courses taken in 9th grade 0.06 0.31 0.25 0.59 0.14
GPA in 9th grade 0.63 0.25 0.27 0.21 0.31
9th grader very sure that he/she will

graduate from high school
0.84 0.45 0.33 0.64 0.77

Public School 0.81 0.99 0.99 1.00 0.98
Whether 9th grader has ever been

suspended or expelled
0.07 0.20 0.49 0.92 0.49

Does not plan to enroll in college after
high school

0.44 0.79 0.96 0.87 0.59

Principal reporting student drop out not
a problem

0.28 0.04 0.04 0.05 0.08

Parent reporting no difficulty by 9th
grader with behaviour problems

0.64 0.20 0.49 0.29 0.59

Parent never contacted by school about
poor attendance

0.62 0.20 0.30 0.17 0.74

Parent participated in school fundraiser 0.39 0.11 0.10 0.14 0.39
Parent thinks 9th grader will at most

attain high school
0.05 0.15 0.59 0.34 0.04

9th grader was in 9th grade in the
previous academic year

0.04 0.23 0.33 0.43 0.39

Observations 20,340 630 110 120 100

Note: This table reports the summary statistics (mean) for each group identified by the hierarchical clustering
algorithm: students identified as at risk of dropping out have been divided into four groups. The table also
reports summary statistics for the group of students not predicted to drop out of high school. All variables
have been rescaled between 0 and 1.

a multidimensional issue: different factors may lead students to halt their education. This is
similar to the multidimensional approach advocated in poverty studies (Alkire and Foster,
2011). This section shows how students predicted to dropout can be divided into different
subgroups using unsupervised machine learning.

The starting point is the prediction obtained using the Logit Post-LASSO algorithm in
Table 3 (Model 4). In line with the results in section Pivotal variables, the same predictors
selected by this algorithm at least in 3 of the 5 folds (Table 5) have been used to divide the
students predicted to dropout into different groups by means of a hierarchical clustering
algorithm.As explained in the OnlineAppendix, the Caliński and Harabasz pseudo-F index
and the Duda-Hart Je(2)/Je(1) index with associated pseudo-T 2 can help analysts to select
the best number of groups, four in this case. Table 6 shows the summary statistics for these

is too small to compute reliable statistics of within-school inequality, but school districts could incorporate such a
measure – even a within-grade or within-class inequality index - in their algorithms.
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predicted dropouts.14 For comparison, the second column includes the summary statistics
for the students who are predicted to graduate.

There are some similarities between these four groups. All these students had very low
academic performances in terms of GPA and math test scores. Moreover, almost all of
them were attending public schools, and their principals were more likely than others to
report that student dropout was an issue in their school. Despite these similarities, there
are several striking differences among these clusters, which thus suggest that they indeed
require different kinds of support.15 Group 1 is mainly composed by individuals with
low attendance, behavioural issues, and lack of parental involvement. On the other hand,
students in Group 2 were older than ta usual 9th grader, thus indicating that they had
already repeated a grade. They were also characterized by very low expectations: both the
students and their parents were more likely to believe that they would at most graduate
from high school. Group 3 includes mainly students who had been suspended or expelled,
with frequent attendance issues, who were already repeating 9th grade, and who were not
taking any math or science course.

Finally, students in Group 4 are rather peculiar: they were quite sure that they would
have graduated from high school, and this belief was shared by their parent. They were
planning to enroll in college, they had good attendance records, and their parents were
involved in their education. Nevertheless, they had low academic performances, and many
of them were already in 9th grade in the previous academic year. This result emphasizes
the importance of not pooling together all students at risk of dropping out. Placing well-
behaved but academically weak students in a classroom side by side with students with
suspension and low attendance records may actually results in negative externalities.

V. Conclusions

This paper shows how schools can promptly identify students at risk of dropping out by
using available high-dimensional data jointly with ML techniques. It illustrates how Big
Data and ML can be fruitfully applied in education to improved school performances by
efficiently using all available information.

From a policy perspective, this contribution could lead to a substantial reduction in
dropout rates if schools used the proposed algorithm to target students at-risk and draw from
the existing literature to identify effective programmes to help them. Another advantage of
these early predictions is that counsellors and teachers may suggest vocational careers to
these vulnerable students (Goux, Gurgand and Maurin, 2017). Last but not least, following
the growing literature on the pivotal role of information constraints in education (Hoxby
and Turner, 2015), parents could be informed on whether their students are considered as
at risk of dropping out.

14
For simplicity, only the key variables have been reported Table 6. Summary statistics for the whole set of

predictors are reported in the Online Appendix (Table A5)
15

It is also worth mentioning that, since the recall rate is not 100%, all these groups contains students who actually
graduated from high school even if they were predicted not to. Nevertheless, these misclassified students are not
concentrated in one cluster only. Indeed, each group contains both correctly and incorrectly predicted dropouts: 48%
of students in Group 1 did end up dropping out. The same percentage is 61% for Group 2, 66% for Group 3, and 43%
for Group 4. section A.4 in the Online Appendix argues that students misclassified as predicted dropout are actually
week students even if they graduated from high school, thus they would have still benefited from additional support.
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Although using few indicators may be attractive, this paper highlights that this ap-
proach leads to extremely unreliable predictions. Schools have additional information, and
their data sets are increasing exponentially over time thanks to new technologies. ML can
help practitioners to efficiently use them. Data analysts can easily develop a user-interface
to automatically implement ML algorithms (Aguiar et al., 2015; Knowles, 2015), thus
allowing teachers and administrators to readily identify students at-risk without having
to rely on few early warning indicators for the sake of simplicity. Future research could
also investigate whether alternative ML algorithms produce even larger gains in terms of
prediction accuracy. Even when schools have limited records - which is often the case in
developing countries - ML extract all the prediction power of the available data. More-
over, schools in these countries could use the results from the U.S. or from pilot studies to
understand which variables have a bigger role and thus are worth collecting at a national
level.

Furthermore, this study has showed not only that supervised ML can improve school
predictions, but also that unsupervised ML can identify sub-populations among students
at-risk. Therefore, schools may design the appropriate programme for each group by un-
derstanding their peculiarity and the key factors which are associated with their low per-
formances. In other words, rather than offering the same intervention to all students in all
schools, policymakers can exploit these algorithms to personalize the treatment that each
cluster of students in the school requires in order to improve their academic performances.

From an economic point of view, this paper contributes to the ML literature by con-
structing a microeconomic model to justify the criterion used in evaluating the perfor-
mances of the algorithms. This is rather important in a context in which there is no clear
benchmark and practitioners tend to (quite arbitrarily) choose among a large set of possible
performance evaluations.

Another way to justify the focus of this paper on prediction is to view it as a targeting
application. For instance, one can assume that there are two types of students - those who
are at risk of dropping out, and those who are not - and that there is an effective treatment
which can be provided by schools and which has a homogeneous impact on students at-risk.
In other words, it is assumed that there is a dropout prevention programme which is able to
equally reduce the probability of dropping out for all treated struggling students.16 High-
dosage tutoring is an example of a policy that can help these students (Fryer, 2017). The
necessary pre-condition to implement this programme is to identify the students who need
the treatment, i.e. those at risk of not graduating from high school. This is the context in
which the algorithms presented in this paper can be successfully applied. ML can efficiently
use the information available to schools in order to identify students which can be included
in the programme. Schools need to know if a student belongs to the ‘not at risk’category or to
the ‘at risk’one. ML can provide them an accurate signal of student type for each individual.

More generally, supervised ML can be used in the first stage to identify students who
are at a higher risk of dropping out among the student population, while unsupervised ML
can divide these students into subgroups, and then scarce and expensive human resources
can be invested to design the best intervention for these restricted set of students.Therefore,

16
Note that this assumption does not require homogeneous treatment for the whole population, but only for the

vulnerable students. In fact, the treatment may be completely ineffective for students who have high probability of
graduating from high school.
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even if current ML techniques are designed to provide accurate predictions, but they are
often inappropriate to optimally allocate resources (Athey, 2017), they can still provide
complementary tools for causal inference. Put differently, ML does not substitute tradi-
tional economic models and econometric estimations, but provides an additional technique
to reinforce and strengthen those analyses.

Final Manuscript Received: October 2018
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