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ABSTRACT 
In time-series analysis, a model is rarely pre-specified but rather is typically 
formulated in an iterative, interactive way using the given time-series data. 
Unfortunately the properties of the fitted model, and the forecasts from it, 
are generally calculated as if the model were known in thefirst place. This is 
theoretically incorrect, as least squares theory, for example, does not apply 
when the same data are used to  formulates and fit a model. Ignoring prior 
model selection leads to biases, not only in estimates of model parameters 
but also in the subsequent construction of prediction intervals. The latter are 
typically too narrow, partly because they d o  not allow for model uncer- 
tainty. Empirical results also suggest that more complicated models tend to 
give a better fit but poorer ex-ante forecasts. The reasons behind these 
phenomena are reviewed. When comparing different forecasting models, the 
BIC is  preferred t o  the AIC for identifying a model on the basis of within- 
sample fit, but out-of-sample forecasting accuracy provides the real test. 
Alternative approaches to forecasting, which avoid conditioning on a single 
model, include Bayesian model averaging and using a forecasting method 
which is not model-based but which is designed to be adaptable and robust. 

KEY WORDS AIC; Bayesian model averaging; BIC; forecasting; model 
selection; model uncertainty; neural networks; prediction 
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PRELUDE 

Consider the following forecasting problem, which might be regarded as ‘typical’ of the genre. A 
statistician is given monthly sales data for the past five years for a particular product and asked 
to make forecasts for up t o  12 months ahead. How would he or she go about this? There is no 
simple answer in that all decisions depend, for example, on the context, on the skill of the analyst, 
and on the computer software available. The analyst will likely entertain a family of possible 
models, such as ARIMA o r  structural state-space models, look at a time plot of the data and at a 
variety of diagnostic tools such as the autocorrelation function, and then try plausible models 
within the chosen family. A ‘best’ model is chosen, and the analyst will then make inferences and 
forecasts conditional on the selected modei being ‘true’, even though the model has actually 
been selected f rom the same data which are now being (re-)used to make predictions. Most (all?) 
time-series analysts do this sort of thing, but should we? 
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The standard analysis does not take account of the fact that (1) the model has been selected 
from the same data used to  make inferences and predictions and (2) the model may not be correct 
anyway. Thus the standard analysis ignores the effect of model uncertainty which is arguably the 
most important source of uncertainty. Prediction intervals attempt to allow for the residual 
variation (though the latter may be underestimated) and may also allow for uncertainty in the 
estimates of model parameters, but they do not customarily take account of the possibility that 
the wrong model may have been fitted or that the model may change in the future. This seems 
unwise and statisticians and forecasters need to address the question as to how model uncertainty 
will affect forecast accuracy. That is the theme of this paper. 

INTRODUCTION 

Traditional statistical inference is primarily concerned with the interesting, but rather narrow, 
problem of estimating, and/or testing hypotheses about, the parameters of a pre-speciJied family 
of parameter-indexed probability models. Most analysts would agree that their work covers a 
wider ambit than this, and modern statistical inference is also concerned with model selection, 
model criticism and prediction. Chatfield (1995a) has argued that statistical inference should be 
expanded to  include the whole model-building process. Setting our sights even wider, it should be 
understood that model building is itself just part of statistical problem-solving (e.g. Chatfield, 
1995b) where contextual considerations, including objectives, are critical. Problem solving, like 
model building, is generally an iterative process. 

Consider model building as applied to time-series data. Fitting a time-series model is usually 
straightforward nowadays, thanks to a wide range of computer software. Packages also typically 
carry out a range of routine diagnostic checks such as calculating the autocorrelation function of 
the residuals, and the Box-Ljung ‘portmanteau’ lack-of-fit statistic. In contrast, formulating a 
sensible time-series model can still be difficult, and yet this aspect of model building has received 
surprisingly little attention. A time-series model may be specified partly on external subject- 
matter grounds, or on background theory (e.g. economic theory) or on a model fitted to time 
series of a similar type. However, these are exceptions rather than the rule, and most time-series 
models are determined from the given data by an iterative cycle of (1) model formulation, 
(or model specification), (2) model fitting (or model estimation), (3) model checking (or model 
validation). This is exemplified by the iterative Box-Jenkins model-building procedure applied 
to ARIMA models (Box et al., 1994, Section 1.3.2), but nowadays used more generally for most 
other classes of time-series model. The analyst typically searches over a range of models and 
selects the model which is ‘best’ according to some yardstick such as minimizing Akaike’s 
Information Criterion (AIC). Having done this, the analyst proceeds to estimate the parameters 
of this ‘best’ model using the same techniques as would be used in traditional statistical inference 
where the model is assumed known n priori. Unfortunately this is ‘logically unsound and 
practically misleading’ (Zhang, 1992). In particular, least squares theory is known not to apply 
when the model has, in fact, been selected from the same data used for estimation purposes, as 
happens routinely in time-series analysis, Statisticians have typically ignored this type of 
problem, partly because it is not clear what else could/should be done. Little theory is available 
for guidance, and the biases which result when a model is formulated and fitted to the same 
data are not well understood. Such biases are called model-selec/ion biases (Chatfield. 1995a). 

( I )  
(2) 

There are typically three main sources of uncertainty in any problem: 

Uncertainty about the structure of the model 
Uncertainty about estimates of the model parameters, assuming the model structure is known 
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(3) Uncertainty about the data even when the model structure and the values of the model 
parameters are known. This will include unexplained random variation in the observed 
variables, as well as measurement and recording errors. 

The statistical literature has much to say about (2) and (3) but rather little about (1)- 
see Chatfield (1995a) for a review. Publications relevant to time-series analysts include the 
collection of papers in Dijkstra (1988), various studies on subset selection in multiple regression 
(e.g. Miller, 1990; Faraway, 1992; Potscher and Novak, 1994), Draper’s (1995) review of the 
Bayesian model-averaging approach and the work of Hjorth (1982,1987,1989,1990,1994) which 
includes a number of interesting time-series examples. The sparseness of the literature is surprising 
given that errors arising from model uncertainty are likely to be far worse than those arising from 
other sources. For example, when fitting an autoregressive model, theory tells us about the errors 
resulting from having estimates of autoregression coefficients rather than their true values, but 
these errors are likely to be smaller than errors resulting from misspecification, such as omitting a 
lagged variable by mistake, or failing to include appropriate trend and seasonal terms. Even after 
the most diligent model-selection process, the analyst cannot be sure that the true model has been 
found (if there is one-see below) and should bear in mind that a fitted model is, at best, a useful 
approximation. In view of the seriousness of specification error, it can be argued that it is often 
inadequate to try to describe uncertainty in the usual way by means of standard errors conditional 
on the model. Instead we need to find ways of getting more realistic estimates of prediction error, 
perhaps based on resampling methods, on mixing several models, on empirical experience, or on 
some sort of sensitivity analysis, whereby small changes are made to the model assumptions to see 
how stable the deductions (including forecasts) from the model are. 

This paper discusses various aspects of model uncertainty in regard to time-series analysis and 
forecasting. Data-dependent model specification searches can lead to non-trivial biases, both in 
estimates of model parameters and in the ensuing forecasts. Methods for tackling the problem 
are discussed but unfortunately there is no simple general solution. The main message of this 
paper is that, when a time-series model is formulated and fitted to the same data, inferences and 
forecasts made from it will be biased and (seriously) over-optimistic when they ignore the prior 
model-selection process. 

EXAMPLES 

Given the difficulties of proving general theoretical results about the effects of model selection on 
subsequent inferences, the use of specific examples, perhaps employing simulation, can be 
particularly enlightening to demonstrate undesirable effects. Examples on regression modelling 
are given by Miller (1990) and Chatfield (1995a, Examples 2.2 and 2.3), while examples particu- 
larly relevant to time-series-analysis and forecasting are given by Hjorth (1987, Examples 5 and 7, 
1994, Example 2.2) and Chatfield (1995a, Examples 2.4 and 2.5). This section illustrates the 
difficulties with theory with some additional comments on Chatfield’s (1995a) Example 2.4, and 
then demonstrates empirical difficulties in practice with an example fitting neural network models. 

Example 1. Fitting an AR(1) model, Consider the first-order autoregressive (AR( 1)) time-series 
model, namely: 

X, = CtXr-1 + Ey 

where I a I < 1 for stationary and ( E r }  are i.i.d. N(0, 02). Given a sample of data, it is straight- 
forward to fit an AR(1) model and estimate 01. However, in practice with real data, the analyst is 
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unlikely to know a priori that the AR(1) model really is appropriate. A simple (perhaps 
oversimplified) identification procedure consists of calculating the first-order autocorrelation 
coefficient, rl , and fitting the AR( 1) model if, and only if, rl is significantly different from zero. 
What this procedure does is to eliminate the possibility of getting ‘small’ values of 2 which 
correspond to ‘small’ values of rl . Thus the resulting (conditional) estimate of a turns out to be 
biased. Large values of & are more likely to occur as can readily be demonstrated theoretically or 
by simulation. 

This example emphasizes that, in assessing bias, the analyst must be clear exactly what the 
inference is conditioned on. Theory tells us about the unconditional expectation of G where an 
AR(1) model is always fitted. However, if the model selection is taken into account, then the 
appropriate expectation is E(& I rl is significant). There is also another estimator which is 
arguably of interest, namely 

6 rl is significant 
0 otherwise MPT = 

This estimator can be recognized as a simple example of what econometricians call a pre-test 
estimator (e.g. Judge and Bock, 1978). It arises by recognizing that, when rl is not significant and 
an AR( 1) model is not fitted, this could be regarded as fitting an AR( 1) model with a = 0. It is 
immediately apparent that the three quantities IT(&), E(& I rl is significant) and E(&JT) will 
generally not be equal. Moreover, it is clear that the three estimators will have different sampling 
distributions and hence different variances. Given that estimators of model parameters are 
biased, it is not surprising to find that the estimated residual standard deviation is also likely to 
be biased (see further comments on this point in the next section). 

Of course, the above model-selection procedure is simpler than would normally be the case in 
time-series analysis. More typically the analyst will inspect autocorrelations and partial auto- 
correlations of a suitably differenced series, allow the removal or adjustment of outliers and 
entertain all ARIMA models up to say third order. Choosing a ‘best’ model from such a wide set 
of possibilities seems likely to make model selection biases even larger. 

While this example has focused on estimates of model parameters, the results are, of course, 
relevant to forecasting since prediction intervals are calculated conditional on the fitted model. If 
estimates of model parameters (including the ‘error’ variance-see below) are biased, then the 
resulting prediction intervals can also be expected to be biased, and this is indeed the case. 
Unfortunately there is no easy general way to quantify these biases and progress seems likely to 
be made primarily by simulation and by empirical experience. 

Example 2. Empirical results when fitting neural network models. Neural network (NN) models 
have recently been applied by several authors to time-series analysis and forecasting problems 
(e.g. de Groot and Wiirtz, 1991; Hill et al., 1994). NNs can be thought of as a type of non-linear 
regression model and an introductory account is given by Ripley (1993). This class of models 
allows the analyst to fit a large number of parameters and try many different architectures which 
means that a good (within-sample) fit can usually be obtained. However, there is a real danger of 
overfitting, and their forecasting ability is still unproven (Chatfield, 1993b) despite some media 
‘hype’. Indeed White (1994) reported a large study of economic series where the random walk 
model often outperformed neural nets in out-of-sample forecasts. Faraway and Chatfield (1995) 
applied a variety of NN models to the famous airline data (Box et al., 1994, Series G) and the 
results relating to out-of-sample forecast accuracy are further developed here. All NN models 
were of the usual feedforward type with one hidden layer of neurons. The input variables were 
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Table I. Comparison of the fit and predictions for various NN models for the airline data using the first 
132 observations as the training set 

~~ ~~ 

Fit Predictions 
Lags neurons pars. 0 AIC BIC SSMS SSlS aored 

No. of hidden No. of 

1, 12, 13 1 
1, 12, 13 2 
1, 12, 13 4 
1, 12 2 
1, 12 4 
1, 12 10 
1, 2, 12 2 
1, 2, 12 4 
1, 2, 12, 13 2 
1, 2, 12, 13 4 
1-13 2 
1-13 4 

6 0.102 
11 0.098 
21 0.093 
9 0.144 

17 0.145 
41 0.150 
11 0.141 
21 0.139 
13 0.097 
25 0.093 
31 0.091 
61 0.067 

-537.1 
-543.1 
-546.8 
-456.3 
-447.7 
-423.7 
-459.4 
-454.6 
-543.5 
-543.1 
-544.8 
-605.1 

-514.4 
-501.4 
-467.4 
-422.2 
-383.5 
-268.4 
-417.7 
-375.1 
-494.4 
-448.7 
-427.6 
-374.6 

0.334 0.504 0.20 
0.329 0.503 0.20 
0.538 0.621 0.23 
0.351 0.344 0.17 
0.376 0.443 0.19 
0.508 0.592 0.22 
0.339 0.291 0.16 
6.820 1.032 0.29 
0.374 0.519 0.21 
0.339 0.517 0.21 
1.078 0.709 0.24 
4.116 1.122 0.31 

the values of the given variable (the number of airline passengers) at selected lags so that 
attention was restricted to univariate forecasts where forecasts of A’, depend only on past values 
of the series. In order to avoid ‘silly’ models, the values at lags one and twelve were always 
included. The logistic activation function was used at the hidden layer and the identity activation 
function at the output stage. Initially the models were fitted to the first eleven years of data 
(the training set in NN jargon) and the last year’s data (the test set) was used for making genuine 
out-of-sample forecast comparisons. 

Selected results are shown in Table I, where 6 = estimated residual standard deviation for the 
training set, Akaike’s information criterion (AIC) and the Bayesian information criterion (BIC) 
are defined in the usual way, and SSMS, SSls are the sum of squares of multi-step and one-step- 
ahead (out-of-sample) forecasts made of the last year’s data. The multi-step forecasts were all 
made in month 132. The prediction error standard deviation, denoted by spred, is estimated by 

As the number of lagged variables and the number of hidden neurons are increased, the 
number of parameters in the fitted NN model increases alarmingly. Several models have in excess 
of 20 parameters even though the number of observations in the training set is only 132. Many 
(most?) analysts would guess that it would be unwise to have more than about 10 parameters 
with so few observations. Inspection of Table I bears out this view when the accuracy of the 
predictions is assessed. 

Generally, Table I demonstrates that the more parameters are fitted, the lower will be the value 
of 6,  as would be expected. The relationship with AIC, which penalizes the addition of extra 
parameters, is less clear-cut. However, the minimum value of AIC for the models tabulated is for 
a 61-parameter model. The model giving the next lowest AIC is a 21-parameter model. In 
contrast, the model giving the lowest BIC, which penalizes extra parameters more severely than 
the AIC, is for a 6-parameter model. Thus the use of AIC or BIC leads to completely different 
model choices. 

Turning from fit to predictions, Table I tells us that getting a good fit-meaning a low value 
of &--is a poor guide to getting good predictions. Indeed models with smaller numbers of 
parameters generally give better (out-of-sample) predictions even though they may give a worse 
fit than less parsimonious models. In particular the model selected as ‘best’ by BIC gives much 

J(SSlSI 12). 
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better predictions than the model selected as ‘best’ by AIC. This finding suggests that BIC is a 
better criterion thun AIC for choosing a model based on within-sample fit in order to get good 
out-of-sample predictions. 

Table I also allows us to compare fit with forecast accuracy more generally. The results might 
be described as alarming. The within-sample estimate of the error standard deviation (i.e. 6) is 
typically much less than the (out-of-sample) one-step-ahead prediction error standard deviation 
(i.e. cpred).  For the better models (with a small number of parameters and low BIC), we find 
6 2 0.1 and 6pred 2: 0.2. So the latter is about double the former. For the more dubious models 
(with low 6) and low AIC, but with higher numbers of parameters), the ratio of 6pred to 6 
becomes disturbingly large-for example, it rises to 4.6 for the 61-parameter model with the 
‘best’ AIC. 

The above results report what happens when different NN models are fitted to the airline data 
using the first 132 observations as the training set. Qualitatively similar results were found using 
the first 126 observations as the training set and also using a completely different data-set, 
namely the Chatfield-Prothero sales data (Chatfield and Faraway, 1996). Moreover when fitting 
Box-Jenkins seasonal ARIMA models to  the data, i t  was also found that epred was typically, at 
best, twice as large as 6. 

Why is 6pred so much larger than 6 in these cases, and is this a finding which generalizes to 
other data sets and models? Empirical experience (e.g. Meese and Geweke, 1984; Chatfield, 
1993a, Section 6; Fildes and Makridakis, 1995, p. 295) suggests that the answer to the second 
question is ‘Yes’. Out-of-sample forecast accuracy is generally (much) worse than would be 
expected from within-sample$t. Some theoretical results, such as the optimism principle (see the 
next section), help to explain the above. While there are other contributory factors, it seems likely 
that model uncertainty is the prime cause. Either the wrong model is identified or the true model 
is changing through time in a way which is not captured by the forecasting mechanism. Perhaps 
the most important consequence of the above is that comparisons of different forecasting modelels 
and methods should preferably be made on the basis of out-of-sample predictions. 

MODEL BUILDING IN TIME-SERIES ANALYSIS 

Constructing a plausible model is an important ingredient of time-series analysis, and hence of 
forecasting. Many years ago it may have been true that a single model was typically fitted to a 
given set of data. Nowadays the increase in computing power has completely changed the way in 
which time-series analysis is typically carried out (not necessarily for the better!). A model is 
often selected from a wide class of models by optimizing a statistic such as adjusted-R2, AIC or 
BIC, and there is a large literature on model selection in time-series analysis-see, for example, 
Gooijer et al. (1985) and Choi (1992). As well as choosing from a wide class of models, the data- 
analysis procedure may also involve strategies such as ( 1) excluding, downweighting or otherwise 
adjusting outliers; (2) transforming one or more variables, for example to achieve normality and/ 
or constant residual variance. For example, a time-series analyst might start an analysis by 
entertaining the class of ARIMA(p, d,  q )  models for say 0 < p ,  d ,  q < 2. This looks fairly 
innocent, but actually allows a total of 27 possible models even before considering outliers or 
transformations, quite apart from additional possibilities such as finding seasonality (suggesting 
a seasonal ARIMA model) or non-linearities (suggesting a completely different class of models). 
Clearly the analyst may in effect consider tens or even hundreds of models. 

In econometrics, the situation is further complicated by the common practice of pretesting 
various hypotheses, such as tests for a unit root, for autocorrelated residuals, or for the presence 
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of a change point. The desire to carry out such tests indicates awareness of model uncertainty, 
but is viewed with suspicion by some statisticians, especially when a large number of tests is 
performed. Why for example should the presence of a unit root be taken as the null hypothesis? 
We do not pursue this topic here (see Chatfield, 1995a, Example 2.5; Ormerod, 1996, especially 
Section 4), except to note that inference following model-testing is biased, and that testing 
implicitly assumes the existence of a ‘true’ model (see below). 

Given the wide choice of models, the chance of choosing the correct one is slim, even assuming 
there really is a ‘true’ model which is in the set of models entertained (called the M-closed view by 
Bernado and Smith (1994, Section 6.1.2)). Most model builders would admit (privately a t  leasl!) 
that they do not really believe there is a true model (see Chatfield, 1995a, Section 3.1 and the 
discussion which follows that paper). Rather, a model is seen as a useful description of the given 
data which provides an adequate approximation for the task at hand. Here the context and the 
objectives are key factors in making such a judgement. 

There are various alternatives to the rigidity of assuming there is a ‘true’ model. There is, for 
example, increasing interest in local models with changing parameters (such as structural or 
state-space models) rather than global models with constant parameters (such as ARIMA 
models). As one example, the use of regression on time to model deterministic trends has fallen 
out of favour as compared with techniques which fit a local trend. Local models are often fitted 
by some sort of updating procedure, such as the Kalman$lter, which are easy to apply using a 
computer, and the use of such techniques seems likely to increase. In this regard it is interesting to 
note that simple exponential smoothing (which is a very simple type of Kalman filter) is optimal 
for two models which appear to be of a completely different type, namely the ARIMA(0, 1 , l )  
model, which has constant parameters, and the steady (state-space) model (e.g. Chatfield, 1996, 
Section 10.1, l ) ,  which allows the local mean level to drift through time. Given that a ‘true’ model 
probably does not exist, there is much to be said for choosing a forecasting method, not because 
it is optimal for a particular model but rather because it can adapt to changes and works well in 
practice. Thus empirical results suggest that the seasonal version of exponential smoothing, 
called Holt-Winters, is robust to model changes (Chen, 1994). 

A second alternative to assuming the existence of a single ‘true’ model is to allow the 
possibility that there may be more than one model which may be regarded as a sufficiently close 
approximation to the given data for the required objective (e.g. Poskitt and Tremayne, 1987). 
The notion of having more than one model is a key element of the Bayesian model-averaging 
approach and is implicit in the combination of forecasts-see the next section. 

A third alternative is to use different models to describe different parts of the data, as may seem 
appropriate, for example, when the properties of recent observations differ markedly from those 
of earlier values. 

Finally, a fourth alternative is to use different models for different lead times. It has been 
established empirically (e.g. Meese and Geweke, 1984; Gersch and Kitagawa, 1983) that the 
model which works best for, say, short-term forecasting may not be so good for longer lead 
times. The criterion for choosing a model needs to be matched to the given application rather 
than relying on theoretical results which assume the true model is known. In particular, when 
k-steps-ahead forecasts are required, it may be advisable to fit a model by minimizing prediction 
errors k-steps-ahead, rather than one step ahead (e.g. Stoica and Nehorai, 1989; Tiao and 
Xu, 1993). 

If we ignore the above alternatives and behave as if we believe the best-fitting model to be 
true, then problems inevitably arise. It is indeed illogical to admit model uncertainty by searching 
for a ‘best’ model, but then ignore this uncertainty by making inferences and predictions as if 
certain that the best-fitting model is actually true. Statistical theory has not kept pace with the 

 1099131x, 1996, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/(SIC

I)1099-131X
(199612)15:7<

495::A
ID

-FO
R

640>
3.0.C

O
;2-O

 by U
niversity O

f E
xeter, W

iley O
nline L

ibrary on [18/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



502 Journal of’ Forecasting Vol. 15, Iss. No. 7 

computer-led revolution in statistical practice and there has been little progress in understanding 
inference after model-selection, even though widespread biases arise. 

Chatfield (1995a) reviews the rather limited research on inference after model selection, both in 
regard to (1) assessing the size of model-selection biases; and (2) methods of overcoming or 
circumventing the problem. One key message is that the properties ofan estimator may depend not 
only on the selected model but also on the selection process. The use of a model-selection statistic 
essentially partitions the sample space into disjoint subsets, each of which leads to a different 
model. This vantage point enables the derivation of various inequalities regarding the expecta- 
tion of the optimized statistic and provides a theoretical justification for what Picard and Cook 
(1984) call ‘the Optimism Principle’, namely that the fitting of a model typically gives optimistic 
results in that performance on new data is, on average, worse than on the original data. As 
Hjorth (1989) says, ‘it is perhaps not surprising that selection minimizing a criterion will cause 
underestimation of this criterion’. In particular, if a time-series model is selected by minimizing 
mean square prediction error (MSPE), then the Optimism Principle explains why the within- 
sample fit of a best-fitting time-series model is typically better then out-of-sample forecasts. This 
is reminiscent of the shrinkage effect in regression (e.g. Copas, 1983), and of experience with 
discriminant analysis where discrimination on a new set of data (a test sample) is typically worse 
than for the data used to construct the discrimination rule (the training sample). 

The difficulty in making theoretical progress has led to a number of simulation studies and the 
use of a variety of computational procedures such as resampling, bootstrapping, jackkniJing, 
cross-validation, and data-splitting. The results were reviewed by Chatfield (1995, Section 4) and 
only brief notes will be given here as they relate more to parameter estimation. As one example, 
Miller (1990, p. 160) found alarmingly large biases, of the order of one to two standard errors, in 
the estimates of regression coefficients when using subset selection methods in multiple 
regression. Hjorth (1987, Example 5) simulated data from an ARMA( 1 , l )  model, but found that 
the correct ARMA model was identified in only 28 out of 500 series. The properties of the 
ARMA(1,l) parameter estimates for the 28 series differed greatly from those arising when the 
model was fitted to all 500 series. Furthermore, the average estimated MSPE was less than one- 
third of the true MSPE for the model which was actually fitted. Potscher and Novak (1994) 
simulated various MA and AR models but selected the order from the data. They found the ‘the 
distribution of post-model-selection estimators frequently differs drastically from the distribu- 
tion of LS estimates based on a model of fixed order’. It is sad that results such as these are 
largely ignored in practice. Computational methods can be used to study the effects of data- 
dependent model-selection provided the model-selection procedure is clearly defined (which it 
will not always be in practice). For example, Faraway (1992) simulated the actions taken during 
regression analysis, including the handling of outliers and transformations. In time-series 
analysis, resampling is particularly tricky because of the ordered nature of the data and because 
one has to avoid conditioning on the fitted model (which would not reflect model uncertainty). 
Nevertheless, careful bootstrapping can overcome much of the bias due to model uncertainty. 

A computational technique which is used much more widely in time-series analysis and 
forecasting is data splitting. This involves splitting the series into two parts, fitting the model to 
the first part (sometimes called the construction or training sample) and using the second part 
(sometimes called the hold-out, test or validation sample) to check inferences and predictions. One 
problem is deciding how to  split the data (e.g. see Picard and Cook, 1984), but there are no 
general guidelines on this. Moreover, fitting a model to just part of a time series will result in a 
loss of efficiency and so some compensatory effect is needed. Unfortunately Faraway (1992) 
shows that, in regression modelling, data splitting may increase the variability in estimates 
without the reward of eliminating bias. This result may well generalize to time-series modelling. 
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For statistical applications other than time-series analysis, hold-out samples are a poor substitute 
for taking a true replicate sample (Chatfield, 1995a, Section 6). However, it is usually impossible 
to replicate time-series data (except by waiting for many time periods which is hardly practic- 
able). Thus, despite its drawbacks, data splitting can be used in forecasting to provide a salutary 
check on over-optimistic forecasts. However, note that if the hold-out sample is used to help 
select the ‘best’ model (e.g. by picking the model which gives the best forecasts of the holdout 
sample, rather than the best fit to the construction sample), then it is no longer a genuine hold- 
out sample and will no longer provide an independent check. 

We have concentrated on inferential biases, but it should be noted that the literature on model 
checking is also questionable. It is theoretically desirable for a hypothesis to be validated on a 
second confirmatory sample but this is usually impossible in time-series analysis. Rather, 
diagnostic checks are carried out on the same data used to fit the model. Now diagnostic tests 
assume the model is specified a priori and calculate a P-value as Probability(more extreme result 
than the one obtained I model is true). But if the model is formulated, fitted and checked using the 
same data, then we should really calculate Probability(more extreme result than the one 
obtained I model has been selected as ‘best’ by the model-selection procedure). It is not clear in 
general how this can be calculated. However, it is clear that the good fit of a ‘best-fitting’ model 
should not be surprising, and empirical experience tells us that diagnostic checks hardly ever 
reject the best-fitting time-series model precisely because it is the best fit! 

FORECASTING AND MODEL UNCERTAINTY 

This section looks more directly at the effect of model uncertainty on the choice of forecasting 
method. Much of statistical inference is concerned with estimating unobservable quantities, such 
as population parameters, where the analyst may never know if the inferences are ‘good’ since the 
estimates cannot be compared directly with the truth. However, time-series analysis involves the 
prediction of observable quantities, which provides an excellent opportunity to check or calibrate 
a model (Geisser, 1993). It is therefore sad that empirical findings are too often ignored by 
theoreticians who continue to derive results on inference and forecasting which assume the 
existence of a true, known model (Fildes and Makridakis, 1995). 

Model uncertainty is clearly crucial in forecasting since, if the analyst uses an inappropriate 
model, then forecasts will be less accurate. It is tempting to think that one can simply fit more and 
more terms to get an adequate approximation but that does not work. A more complicated 
model may reduce bias (though not if unnecessary terms are included), but may also increase 
variance, because more parameters have to be estimated (Breiman, 1992, p. 738). For example, 
Davies and Newbold (1980) show that, although an MA(1) model can be approximated 
arbitrarily closely by an AR model of high order, the effect of having to estimate additional 
parameters from finite samples is that forecast error variance gets worse for higher-order models. 
More generally, inexperienced analysts may intuitively expect more complicated models to give 
better forecasts. However, empirical evidence suggests the reverse and many examples could be 
given. Example 2 above is one such, while a second recent example (Collopy et al., 1994) shows 
that simple extrapolation outperforms a more complicated diffusion model when forecasting 
spending on information systems. The Optimism Principle introduced in the previous section 
provides one explanation as to why a more complicated model may give a better fit but worse 
predictions. This distinction between within-sample fit and out-of-sample forecasts reminds us to 
ensure that all forecasting comparisons of different models and methods are made on genuine 
ex-ante (or out-of-sample) forecasts-see Armstrong (1985, p.p. 338-9). 
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The principle of parsimony says that the smallest possible number of parameters should be 
used so as to give an adequate representation of the data and this principle should be borne in 
mind when model specification and selection is taking place. The more complicated the model, 
the more possibilities there will be for departures from model assumptions. The dangers of 
overfitting, so important when constructing multiple regression and autoregressive models, are 
well illustrated by the neural network models in Example 2. Unfortunately, these dangers are not 
always heeded. 

In assessing forecasts, i t  is also important to realize that models which are mathematically very 
different, and which give very different long-term predictions, may be virtually indistinguishable 
in terms of their fit to a set of data. For example, for some near-non-stationary sets of data, an 
AR(1) model with a parameter close to unity will give a similar fit and similar one-step-ahead 
forecasts to those from a (non-stationary) random walk model. However, the forecasts many 
steps ahead from these two models are quite different. The limiting point forecasts are respect- 
ively equal to the mean for the AR( 1) model and to the latest observation for the random walk, 
while the limiting prediction error variance is finite for the stationary model but infinite for the 
non-stationary model. Getting the ‘wrong’ form of differencing makes little difference to short- 
term point forecasts, but, for long-term forecasts, the fiction that there is no model uncertainty is 
far from innocuous. Similar remarks apply to extrapolating from any model. An instructive 
example concerns the Challenger space shuttle disaster data where it is hard to distinguish 
between several models in terms of fit, but where the long-term extrapolations are very different 
(Draper, 1995, Section 6.2). Forecasting the spread of AIDS provides another example (Draper, 
1995, reply to the discussion). 

A consequence of formulating and fitting a model to the same data is that MSPE is 
underestimated. Partly as a result, prediction intervals will generally be too narrow. Empirical 
studies have shown that nominal 95% prediction intervals will typically contain (much) less than 
95% of actual future observations for a variety of reasons (see Chatfield, 1993a, Section 6) .  
Model uncertainty is one important reason, not only for the way it leads to underestimates of 
MSPE but also because the model may be incorrectly identified or may change through time. 
There is an alarming tendency for analysts to think that narrow intervals are ‘good’ when wider 
ones may well reflect model uncertainty better. Draper (1995) presents an instructive example 
concerning forecasts of the price of oil. Ten models were entertained which gave a wide range of 
point forecasts that were nevertheless all well away from the actual values which resulted. There 
were also large differences in the prediction error variances. A model uncertainty audit suggested 
that only about 20% of the overall predictive variance could be attributed to uncertainty about 
the future of oil prices conditional on the selected model and on the assumptions (the scenario) 
made about the future. Yet the latter portion is all that would normally be taken into 
consideration. Other case studies (e.g. Wallis, 1986) which have examined the decomposition of 
forecast errors have also found that the contribution due to model specification uncertainty can 
be substantial. 

Draper (1995) went on to consider the oil price example from the point of view of Bayesian 
model averaging. This technique should appeal not only to Bayesians but also to any ‘broad- 
minded’ statistician. The key to its success lies in not having to choose a single ‘best’ model but 
rather in averaging over several plausible competing models which are entertained with 
appropriate prior probabilities. The data are then used to evaluate posterior probabilities for the 
different models. Models with ‘low’ posterior probabilities may be discarded to keep the problem 
manageable, and then a weighted sum of the predictions from the remaining competing models is 
calculated. Under certain assumptions, the combined forecast from Bayesian model averaging 
will have a lower MSPE in the long run that the forecasts from any of the individual models. 
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The idea behind Bayesian model averaging suggests that the way time-series models are 
customarily fitted should be reconsidered. For example, suppose it is desired to fit an AR model 
to a set of data. The appropriate order is usually unknown a priori, and the approach generally 
adopted at present is to assess the order by minimizing a criterion such as AIC, and then estimate 
model parameters and make predictions conditional on the selected order being correct. The 
alternative suggested by Bayesian model averaging is to recognize that it is unlikely that an AR 
model is the true model, and, even if it is, the correct order may not be chosen. This suggests 
approximating the data by a mixture of AR models of different orders, rather than relying on a 
single model of fixed order. Prior probabilities for different orders would need to be assessed and 
posterior probabilities evaluated from the data, for example by Gibbs sampling (Barnett et al., 
1993). Successful applications of Bayesian model-averaging to AR processes are reported by 
Schervish and Tsay (1988) and Le et al. (1993). 

Despite its promise, there are difficulties in applying Bayesian model averaging. The 
calculation of posterior probabilities from the prior probabilities requires the computation of 
Bayes factors which may not be easy, even in this computer age. Moreover, prior probabilities 
for the different models have to be specified and this is not easy, especially when some models are 
entertained only after looking at  the data. Finally Bayesian model averaging does not lead to a 
simple model, and although this doesn’t matter for forecasting purposes, it does matter for the 
purposes of description and interpretation. 

The general idea of mixing several models, rather than having to use a single ‘best’ model, is 
attractive and is the idea behind the use of multi-process or mixture models in Bayesian 
forecasting (West and Harrison, 1989, Chapter 12). Two other forecasting approaches, relevant 
to our discussion, also come to mind here. In long-range forecasting, scenario analysis 
(e.g. Schoemaker, 1991) is often used. Here a variety of different assumptions are made about 
the future giving a range of forecasts, rather than just one. Each forecast is linked clearly to the 
assumptions it depends on, and the spread of forecasts should clarify the extent of model 
uncertainty. The aim is to allow organizations to make contingency plans for different possible 
futures. A completely different type of strategy arises from combining forecasts (in a non- 
Bayesian way). Suppose you have produced forecasts by several different methods. Then it has 
been established empirically that a weighted linear combination of these forecasts will often be 
more accurate on average then any of the individual forecasts (e.g. Clemen, 1989). A simple 
average is often as good as anything. Unfortunately, the client does not get a simple model 
to describe the data, and the stochastic properties of the combined forecast may also be 
unclear. 

Instead of mixing several models, the final possibility mentioned here is to use a forecasting 
method which is not model-based but which is designed to readily adapt to changes in the 
underlying model. The various forms of exponential smoothing come into this category. 
Although optimal for particular models, their main justification lies in giving good empirical 
results for a variety of data sets. 

SUMMARY AND DISCUSSION 

The theory of inference regarding parameter estimation generally assumes that the true model 
for a given set of data is known and pre-specified. In practice a time-series model is usually 
formulated from the data, and many models may be entertained. A single model is usually 
selected as the ‘winner’ even when other models give nearly as good a fit. Given that the wrong 
model may be selected or that a ‘true’ model may not exist anyway, i t  follows that model 
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uncertainty is present in most real problems. It is therefore surprising that the topic has received 
so little attention from forecasters. 

When inference and prediction follow data-dependent model selection, the following general 
points can be made: 

Least-squares theory does not apply when the same data are used to formulate and fit a 
model. Yet time-series textbooks (including my own (Chatfield, 1996)!) habitually ignore 
this point. 
After model selection, estimates of model parameters and of the residual variance are likely 
to be biased. 
Models with more parameters generally give a better fit, but may give worse out-of-sample 
predictions. In comparing the fit of different models, the BIC is preferred to the AIC so as to 
penalize adequately the introduction of additional parameters. 
The analyst typically thinks the fit is better than it really is (the Optimism Principle), and 
prediction intervals are generally too narrow, partly because residual variance tends to be 
underestimated and partly because they fail to take full account of model uncertainty. 
Moreover diagnostic checks rarely reject the best-fitting model precisely because it is the 
best fit! 
The frequentist approach does not adapt naturally to cope with model uncertainty, though 
some progress can be made with resampling and other computational methods. Bayesian 
model averaging offers a promising alternative approach even to analysts who are not 
Bayesian. However, difficulties arise whichever approach is adopted, and there appears to 
be no simple general theoretical 'fix'. 

So how should the results in this paper affect the way a forecaster proceeds? Despite the 
difficulties in making general recommendations, the following advice will be given in addition to 
the well-tried counsel to clarify the objectives of the forecasting exercise, find out exactly how a 
forecast will actually be used, ascertain whether a model is required for descriptive purposes as 
well as for prediction, and ask questions to get background information as to a suitable class of 
models. 

(i) Be alert to the insidious presence of model uncertainty but be aware that there is no simple 
way of overcoming the problem. 

(ii) Realize that the computer-based revolution in time-series model-fitting means that the 
analyst typically looks at a (very) large number of models. This leads to biases when 
inference follows data-based model-selection. 

(iii) Realize that more complicated models, while generally giving a better fit, do not necessarily 
give better out-of-sample forecasts. Use the BIC, rather than the AIC, to select a model on 
the basis of within-sample fit. Realize that forecasts from a best-fitting model will generally 
not be as good as expected, that prediction intervals will generally be too narrow and that 
the real test of a forecasting model or method is its out-of-sample forecasting ability. 

(iv) Clonsider the following alternatives to the use of a single best model; (a) use a mixture of 
models; (b) use a forecasting method which is not model-based but which is adaptive and 
robust. 
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This paper is based on an invited talk given to an ESRC workshop on ‘Model  Complexity and 
Forecast Accuracy’ a t  the Lancaster  Centre  f o r  Forecasting, April 1995. 
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