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Interdependence

We wish to model the dynamic relationships between elements of a bivari-

ate stochastic process vt ≡ (yt, xt)0

Definition: Let the process vt admit the following Vector Auto-Regressive

representation of order p (VAR(p) henceforth)

A(L)vt = m+ εt

where A(L) = I2 −
pP

j=1
AjL

j, m is a 2−vector of constants, and εt ≡
(ε1t, ε2t)

0 are i.i.d. N2(0,Σ) innovations w.r.t. Ωt−1 = {vt−i, i = 1, 2, ..., } .



The conditional moments are

E(vt|Ωt−1) = E(vt|Vt−1) =m+
p∑

j=1

Ajvt−j,

Var(vt|Ωt−1) = Var(vt|Vt−1) = Σ,

where Vt−1 =
{
vt−j, j = 1, 2, ..., p

}
.

When the roots of det(A(z)) are outside the unite circle, the process vt is

weakly stationary. The unconditional expected value and the autocorrela-

tion function are then obtained as follows

E(vt) = µ = A(1)−1m

Cov(vt, vt−k) = Γ(k) =
p∑

j=1

AjΓ(k − j) + E(εtv
′
t−k),

where E(εtv
′
t−k) = 0 if k > 0 and Σ if k = 0.



Alternative representations of a stationary VAR(p):

• Infinite-order Vector Moving Average (VMA)
vt − µ = A(L)−1εt ≡ C(L)εt,

where C(L) = I2 +
∞P
j=1

CjL
j.

• The final equations
det(A(L))(vt − µ) = adj(A(L))εt,

from which it follows that both yt and xt admits an univariate ARMA

representation of order, at most, (2p, p).



The joint density of the bivariate VAR(p): The conditional joint density

of (yt, xt)
0 is given by

P(yt, xt|Ωt−1; θ) = P(yt, xt|Yt−1, Xt−1; θ),

where Yt−1 =
n
yt−j, j = 1, 2, ...

o
, Xt−1 =

n
xt−j, j = 1, 2, ...

o
, and θ ∈

Θ ⊆ R(4p+5).

The conditional joint density can always be factorized as

P(yt, xt|Yt−1,Xt−1; θ)
= P(yt|Yt−1,Xt; θ1)P(xt|Yt−1,Xt−1; θ2),

where (θ01, θ02)0 is a one-to-one function of θ.



Weak Exogeneity

Intuition: No information loss on the parameters of interest when using a

single-equation model with respect to a VAR(p) model.

Definition: The variable x is weakly exogenous for the parameters of in-

terest, say λ, if the following conditions hold:

1. λ = f(θ1) alone;

2. θ1 and θ2 are variation free, i.e. there are no-cross restrictions linking θ1
and θ2.
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If weak exogeneity for λ holds, ML inference on λ is obtained by solving

bθ1 = argmax
(

TQ
t=1

P(yt, |Yt−1,Xt; θ1)

)
,

and taking bλ = f(bθ1) ⇒ a single-equation framework is enough.

Definition: Under weak exogeneity for parameters θ1, we obtain the fol-

lowing Autoregressive Distributed Lag model of orders (m,n) (ADL(m,n)

henceforth)

φ(L)yt = δ + β(L)xt + �t,

where φ(L) = 1− mP
j=1

φjL
j, β(L) =

nP
i=0

βiL
i, sup {m,n} ≤ p, �t are i.i.d.

N(0, σ2�) innovations w.r.t. (Ωt−1, xt), and δ is a constant.
Notice that θ1 = (δ, φ1, ...φm, β0, ..., βn, σ

2
�)



Example 1 Consider the following (restricted) VAR(1) model

yt = �11yt�1 + �12xt�1 + "1t;
xt = �22xt�1 + "2t;

where ("1t; "2t)
0 are i.i.d. N2(0;�) innovations w.r.t. (Yt�1; Xt�1).

Hence, (ytjYt�1; Xt; �) has a normal distribution with parameters

E(ytjYt�1; Xt; �1) = �11yt�1 + �12xt�1 +
�12

�22
"2t;

Var(ytjYt�1; Xt; �1) = �11 �
�212
�22

:

This leads to the ADL(1,1) model

yt = �yt�1 + �0xt + �1xt�1 + �t; (1)

where � = �11, �0 =
�12
�22
, �1 = �12 �

�12
�22
�22, Var(�t) = �11 �

�212
�22
,

and �2 = (�22; �22)
0 are variation free. Since Cov(�t; "2t) = 0 ) x is

weakly exogenous for the parameters of model (1).



Granger Causality

Intuition: x causes y if the past of x has some additional predictive power

for y w.r.t. the past of y itself.

Definition: x (Granger-)causes y (x
G→ y) if

MSE(yt|Yt−1,Xt−1) < MSE(yt|Yt−1)

Implication: Given the following VAR(p) model for (yt, xt)
0:"

α11(L) α12(L)
α21(L) α22(L)

# "
yt
xt

#
=

"
ε1t
ε2t

#
,

where α12(0) = α21(0) = 0, then x
G→ y if α12(L) 6= 0.



Testing for Granger-causality: Identify and estimate the model

α11(L)yt = −α12(L)xt + ε1t

Then perform a LR ratio test for the null hypothesis that x does not

Granger-cause y (x
G9 y), i.e.

H0 : α12(L) = 0

Example 1 (cont’d): Consider again the following bivariate model

yt = α11yt−1 + α12xt−1 + ε1t,

xt = α22xt−1 + ε2t.

Then x
G→ y and y

G9 x.



Strong Exogeneity

Intuition: No information loss when predicting by means of a single-

equation model with respect to a multivariate model. For Gaussian r.v.’s

this is equivalent to require that x is weakly exogenous for the parameters

of the conditional model, and y
G9 x.

Definition: The variable x is strongly exogenous for the parameters θ1 if

the following conditions hold:

1. θ1 and θ2 are variation free;

2. P(xt|Yt−1,Xt−1; θ2) = P(xt|Xt−1; θ2).



Interpreting the ADL model

Given the ADL(m,n)

φ(L)yt = δ + β(L)xt + ǫt,

if the roots of φ(L) are outside the unite circle, we can write

yt = φ
−1(L)[δ + β(L)xt + ǫt] ≡ ϕ+ π(L)xt + φ

−1(L)ǫt,

where ϕ = φ−1(1)δ, π(L) =
∞P

j=0
πjL

j, and

∞X

j=0

���πj
��� <∞,

which implies lim
j→∞

πj = 0.



Dynamic impact of xt on yt+h:

∂yt+h
∂xt

= πh

Cumulative dynamic impact of xt on yt+h:

hX
j=0

∂yt+j

∂xt
=

hX
j=0

πj

Long run impact of xt on yt+h:

lim
h→∞

hX
j=0

∂yt+j

∂xt
= π(1) =

β(1)

φ(1)



Definition: The static long run equation is computed by putting xt = x∗
and �t = 0 for all t. The “equilibrium” relationship is then obtained as

y∗ = ϕ+ π(1)x∗,

or equivalently

y∗ = δ

φ(1)
+
β(1)

φ(1)
x∗

Definition: if both variables y and x are in logs, then π(1) is the long run

elasticity. It is often of interest to test if it’s equal to one.

Empirical example: US Core inflation on 3-month Treasury bill, the sample

is 1959.1-1999.12 (from Heij et al., 2004).



ARDL example US inflation, Interest rates

US Core inflation (SA), 3-month T-bill, 59.1-99.12
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ARDL(6,4) example ’reduced form’ PcGive 10

EQ(11) Modelling UScoreinfSA by OLS

The estimation sample is: 62 (1) to 99 (12)

Coefficient Std.Error t-value t-prob

UScoreinfSA_1 0.233366 0.04750 4.91 0.000

...

UScoreinfSA_6 0.102451 0.04612 2.22 0.027

Constant 0.239006 0.3136 0.762 0.446

tbaa3m 0.867091 0.2383 3.64 0.000

tbaa3m_1 -0.646922 0.3798 -1.70 0.089

...

tbaa3m_4 -0.340460 0.2405 -1.42 0.158

sigma 2.54947 RSS 2885.89892

Rˆ2 0.542968 F(11,444) = 47.95 [0.000]**

log-likelihood -1067.72 DW 2.04

no. of observations 456 no. of parameters 12

mean(UScoreinfSA) 4.54782 var(UScoreinfSA) 13.8475

Chapter 7.5 – p. 8/29



ARDL ’structural’ estimation results
Solved static long run equation for UScoreinfSA

Coefficient Std.Error t-value t-prob

Constant 1.07147 1.445 0.742 0.459

tbaa3m 0.558555 0.2175 2.57 0.011

ECM = UScoreinfSA - 1.07147 - 0.558555*tbaa3m;

WALD test: Chiˆ2(1) = 6.59755 [0.0102] *

Roots of UScoreinfSA lag polynomial:

real imag modulus

0.92014 0.00000 0.92014

0.32600 0.61182 0.69326

...

-0.34068 -0.48614 0.59363

Roots of tbaa3m lag polynomial:

real imag modulus

0.047709 1.1703 1.1713

..

-0.30081 0.00000 0.30081

Chapter 7.5 – p. 9/29



ARDL dynamic (cumulative) impact of interest

Dynamic impact interest rate on inflation (sum=1)
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Error (Equilibrium) Correction Model [ECM]

Intuition: The ADL model is re-parameterized such that it is apparent as
changes∆yt react to lagged equilibrium errors zt−1 ≡ yt−1−ϕ−π(1)xt−1.

Definition: The ECM is expressed as

φ∗(L)∆yt = −φ(1)zt−1 + β∗(L)∆xt + �t,

which is obtained from the ADL model by expanding the lag polynomials

φ(L) and β(L) as follows

φ(L) = ∆φ∗(L) + φ(1)L,

β(L) = ∆β∗(L) + β(1)L,

Interpretation: When yt is higher than equilibrium value (positive zt), yt+1
will adjust downwards in order to get back to equilibrium.



Example 2 Consider the cointegrated VAR(1) model

�yt = �1(yt�1 � �(1)xt�1) + "1t;

�xt = �2(yt�1 � �(1)xt�1) + "2t;

The conditional distribution (ytjYt�1; Xt; �) has parameters

E(ytjYt�1; Xt; �1) = �1(yt�1 � �(1)xt�1) +
�12
�22

"2t;

Var(ytjYt�1; Xt; �1) = �11 �
�212
�22

:

This leads to the (conditional) ECM model

�yt = �0�xt + �(yt�1 � �(1)xt�1) + �t;

where �1 = (�0 =
�12
�22
; � = �1 � �12

�22
�2; �(1);Var(�t) = �11 �

�212
�22
)0

and �2 = (�2; �(1); �22)
0 are clearly not variation free. However, when

�2 = 0 ) x is weakly exogenous for �1.



Common Factors (Roots) Analysis

Intuition: The polynomials φ(L) and β(L) share some common roots, thus

leading to a regression model with AR errors.

Definition: The ADL(1,1) model

(1− φL)yt = (β0 + β1L)xt + �t (2)

has a common factor (root) if β1/β0 = −φ. In this case, model (2) can
be rewritten as a static regression model with AR(1) errors

yt = β0xt + ξt,

(1− φL)ξt = �t.



Definition (cont’d): The ADL(m,n) model

φ(L)yt = β(L)xt + �t (3)

has s (s ≤ min {m,n}) common roots if
φ(L) = α(L)φ†(L),
β(L) = α(L)β†(L),

where α(L) is a polynomial of order s. In this case, model (3) can be

rewritten as an ADL(m− s, n− s) model with AR(s) errors

φ†(L)yt = β†(L)xt + ξt,

α(L)ξt = �t.

Testing for common roots: Not easy for the general case. It can be done

by the COMFAC procedure, which is a sequence Wald tests for proper

non-linear cross restrictions on the coefficient polynomials φ(L) and β(L).


