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Interdependence

We wish to model the dynamic relationships between elements of a bivari-
ate stochastic process v = (y¢, ¢)’

Definition: Let the process v; admit the following Vector Auto-Regressive
representation of order p (VAR(p) henceforth)
A(L)vy = m + €¢
p :
where A(L) = I — > AjLJ, m is a 2—vector of constants, and ; =

j=1
(1¢,€2¢) arei.i.d. N(0,X) innovationsw.r.t. Q;_1 = {v;_;,2=1,2,..., }.



The conditional moments are

p
E(ve|Q:—1) = E(ve]Vi1) =m+ D Ajup_j,
j=1
Var(vt[€;—1) = Var(v|V;—1) = X,

where V;_1 = {fut_j,j =1, 2, ...,p}.

When the roots of det(A(z)) are outside the unite circle, the process vy is
weakly stationary. The unconditional expected value and the autocorrela-
tion function are then obtained as follows

E(ve) = p=A(1)"'m
p
Cov(vt, vp_p) = (k) = Y AjT(k — 5) + E(erv]_p),
j=1

where E(e;v! ) =0if k>0and X if k=0.
t—k



Alternative representations of a stationary VAR(p):

e Infinite-order Vector Moving Average (VMA)
Vvt — U= A(L)_lst = C(L)ey,
o0 .
where C(L) = I + > C;L7.

j=1

e The final equations

det(A(L))(vt — p) = adj(A(L))et,

from which it follows that both y; and x; admits an univariate ARMA
representation of order, at most, (2p, p).



The joint density of the bivariate VAR(p): The conditional joint density
of (y¢, x¢)" is given by

P(yt, v¢|2—1; 0) = P(yt, z¢|Yi—1, Xt 1, 0),

where Y;_1 = {yt_j,j = 1,2,...}, X, 1 = {xt_j,j —1,2, } and 0 €
O C R(4p+5)

The conditional joint density can always be factorized as

P(yt, v¢|Yi—1, X¢—1:0)
= P(yt|Yi—1, X4; 01)P (2| Yi—1, X¢—1; 02),

where (07,05)" is a one-to-one function of 6.



Weak Exogeneity

Intuition: No information loss on the parameters of interest when using a
single-equation model with respect to a VAR(p) model.

Definition: The variable x is weakly exogenous for the parameters of in-

terest, say A, if the following conditions hold:

1. A= f(01) alone;

2. 01 and 05 are variation free, i.e. there are no-cross restrictions linking 64
and (92.
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If weak exogeneity for A holds, ML inference on X is obtained by solving
~ T
01 = arg max tﬂl P(yt, [Yi—1, Xt 01) ¢,

and taking \ = f(@l) = a single-equation framework is enough.

Definition: Under weak exogeneity for parameters 61, we obtain the fol-
lowing Autoregressive Distributed Lag model of orders (m,n) (ADL(m,n)
henceforth)

P(L)ys = 6 + B(L)xt + €,

where ¢(L) =1 — g (bij, B(L) = f: B,LY, sup {m,n} < p, € arei.i.d.
J=1 :

1=0
N(0, 02) innovations w.r.t. (Q¢_1,x¢), and § is a constant.

Notice that 61 = (9, ¢1, ..-®,,, Bos -+ B Ug)



Example 1 Consider the following (restricted) VAR(1) model

Yt = 011Yt—1 T O12T¢—1 + €1¢,
Tt = O2Tt—1 1 €2¢;

where (g14,€2;)" are i.i.d. No(0,X) innovations w.r.t. (Y;_1, X;—_1).
Hence, (y¢|Y;_1, X¢; 0) has a normal distribution with parameters

012
E(y¢|Yi—1, Xt 601) = 11yp—1 + aqoxp—1 + 0—228215,
‘7%2
Var(ys|Yi—1, Xt 01) = o011 — —=.
022

This leads to the ADL(1,1) model

Yt = QYi—1 + Boxt + B1xi—1 + €, (1)

2

(o) (o) o)
where ¢ = ay1, Bo = 722, 1 = a12 — 2ag, Var(et) = 011 — 22,
and 0> = (a3, 0925)" are’variation free. Since Cov(et,e9() =0 = x Is

weakly exogenous for the parameters of model (1).



Granger Causality

Intuition: x causes y if the past of x has some additional predictive power

for y w.r.t. the past of y itself.

Definition: = (Granger-)causes y (x G y) if

MSE(y:|Yr—1, X¢—1) < MSE(y¢|Y—1)

Implication: Given the following VAR(p) model for (y¢, z¢)":

a11(L) on2(L) ] Yt ] _ [5115 ]
az1(L) axp(L) | | = et |’

where a12(0) = ap1(0) = 0, then x G y if aqo(L) # 0.




Testing for Granger-causality: ldentify and estimate the model

a11(L)yt = —aa(L)zt + €14

Then perform a LR ratio test for the null hypothesis that = does not

Granger-cause y (x G y), i.e.

Ho : a12(L) =0

Example 1 (cont’d): Consider again the following bivariate model

Yt = Q11Yt—1 T Q12T¢—1 1+ €1¢,
Tt = Q2Tt_1 + €2¢.

Thenxgyandygx.



Strong Exogeneity

Intuition: No information loss when predicting by means of a single-
equation model with respect to a multivariate model. For Gaussian r.v.’s
this is equivalent to require that x is weakly exogenous for the parameters

of the conditional model, and y Si x.

Definition: The variable x is strongly exogenous for the parameters 67 if
the following conditions hold:

1. 61 and 6> are variation free;

2. P(x¢|Yi—1, X4—1;02) = P(x¢| Xy_1; 62).



Interpreting the ADL model

Given the ADL(m,n)

¢(L)yt = 6 + B(L)zt + e,
if the roots of ¢(L) are outside the unite circle, we can write
ye = ¢ (L) + B(L)xt + €] = ¢ + m(L)zs + ¢~ H(L)et,

where ¢ = ¢~ 1(1)5, n(L) = % 7'('ij, and
j=0

which implies lim 7; = 0.
J—00



Dynamic impact of z; on y;p:

ayt+h _
Oxy

Cumulative dynamic impact of x; on y;:

L 8yt—i—]
Z 821375 Zﬂ-]

7=0

Long run impact of x; on y;:

h—>oo .

0
=0



Definition: The static long run equation is computed by putting x; = z*
and ¢ = 0 for all . The “equilibrium” relationship is then obtained as

Y =¢+m(l)z",
or equivalently

L8 B,
YoM e

Definition: if both variables y and x are in logs, then 7(1) is the long run
elasticity. It is often of interest to test if it's equal to one.

Empirical example: US Core inflation on 3-month Treasury bill, the sample
is 1959.1-1999.12 (from Heij et al., 2004).



-ARDL example US inflation, Interest rates

US Core inflation (SA), 3-month T-bill, 59.1-99.12
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ARDL(6,4) example 'reduced form’ PcGive 10

EQ(11) Modelling UScoreinfSA by OLS
The estimation sample is: 62 (1) to 99 (12)
Coefficient Std.Error t-value t-prob

UScoreinfSA_1 0.233366 0.04750 491  0.000
UScoreinfSA_6 0.102451 0.04612 2.22  0.027
Constant 0.239006 0.3136 0.762  0.446
tbaa3m 0.867091 0.2383 3.64 0.000
tbaa3m_1 -0.646922 0.3798 -1.70  0.089
tbaa3m_4 -0.340460 0.2405 -1.42  0.158

sigma 2.54947 RSS 2885.89892
R™2 0.542968 F(11,444) =  47.95 [0.000]**
log-likelihood -1067.72 DW 2.04
no. of observations 456 no. of parameters 12

mean(UScoreinfSA) 454782 var(UScoreinfSA) 13.8475

Chapter 7.5 — p. 8/2




ARDL ’'structural’ estimation results

Solved static long run equation for UScoreinfSA

Coefficient Std.Error t-value t-prob
Constant 1.07147 1.445 0.742  0.459
tbaa3m 0.558555 0.2175 2.57 0.011
ECM = UScoreinfSA - 1.07147 - 0.558555*thaa3m,;
WALD test: Chi"2(1) = 6.59755 [0.0102] *
Roots of UScoreinfSA lag polynomial:

real imag modulus
0.92014 0.00000 0.92014
0.32600 0.61182 0.69326
-0.34068 -0.48614 0.59363
Roots of tbaa3m lag polynomial:
real imag modulus
0.047709 1.1703 1.1713

-0.30081 0.00000 0.30081

Chapter 7.5 — p. 9/2




ARDL dynamic (cumulative) impact of interest

Dynamic impact interest rate on inflation (sum=1)

2,
; Impact tbaa3m (normalized) on UScoreinfSA
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Error (Equilibrium) Correction Model [ECM]

Intuition: The ADL model is re-parameterized such that it is apparent as
changes Ay; react to lagged equilibrium errors z;_1 = y;_1—p—m(1)xs_1.

Definition: The ECM is expressed as

¢*(L)Ays = —p(1)zp—1 + B (L)Axy + €,

which is obtained from the ADL model by expanding the lag polynomials
®(L) and (L) as follows

¢(L) = A¢*(L)+ ¢(1)L,
B(L) = AB*(L)+B(Q)L,

Interpretation: When y; is higher than equilibrium value (positive z¢), y¢11
will adjust downwards in order to get back to equilibrium.



Example 2 Consider the cointegrated VAR(1) model
Ay = a1(yp—1 — m(1)xs—1) + €1,
Azy = oo(yr—1 — m(1)zt—1) + €2,
The conditional distribution (y¢|Y;_1, X¢; 0) has parameters

012

E(ye|Yi—1, Xt:01) = a1(ye—1 — m(1)xe—1) + —2252157
0%2
Var(yt|Yi—1, X¢;01) = 011 — —=
02

This leads to the (conditional) ECM model

Ay = BoAxs + o(yr—1 — m(1)xe—1) + €,

2

where 61 = (Bo = 23 O = (] — 042,7T(1) Var(et) — 011 — Z;;)’

and 0> = (ap, (1), 092) are cIearIy not variation free. However, when
as> = 0 = x is weakly exogenous for 0.



Common Factors (Roots) Analysis

Intuition: The polynomials ¢(L) and 3(L) share some common roots, thus
leading to a regression model with AR errors.

Definition: The ADL(1,1) model

(1 —oL)y: = (Bo + B1L)xt + € (2)

has a common factor (root) if 81/89 = —¢. In this case, model (2) can
be rewritten as a static regression model with AR(1) errors

Yt — Boxt—l_gt)
(1-9¢L); = e



Definition (cont’d): The ADL(m,n) model

L)yt = B(L)xt + e (3)

has s (s < min{m,n}) common roots if

s(L) = o(L)$'(L),

B(L) = a(L)B(L),
where a(L) is a polynomial of order s. In this case, model (3) can be
rewritten as an ADL(m — s,n — s) model with AR(s) errors

oI L)y = BY(L)xt + &4,
a(L); = €.

Testing for common roots: Not easy for the general case. It can be done
by the COMFAC procedure, which is a sequence Wald tests for proper
non-linear cross restrictions on the coefficient polynomials ¢(L) and 5(L).



