
What is Statistical Learning?
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Shown are Sales vs TV, Radio and Newspaper, with a blue
linear-regression line fit separately to each.
Can we predict Sales using these three?
Perhaps we can do better using a model

Sales ≈ f(TV, Radio, Newspaper)
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Notation

Here Sales is a response or target that we wish to predict. We
generically refer to the response as Y .
TV is a feature, or input, or predictor; we name it X1.
Likewise name Radio as X2, and so on.
We can refer to the input vector collectively as

X =

X1

X2

X3


Now we write our model as

Y = f(X) + ε

where ε captures measurement errors and other discrepancies.
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What is f(X) good for?

• With a good f we can make predictions of Y at new points
X = x.

• We can understand which components of
X = (X1, X2, . . . , Xp) are important in explaining Y , and
which are irrelevant. e.g. Seniority and Years of

Education have a big impact on Income, but Marital
Status typically does not.

• Depending on the complexity of f , we may be able to
understand how each component Xj of X affects Y .
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Is there an ideal f(X)? In particular, what is a good value for
f(X) at any selected value of X, say X = 4? There can be
many Y values at X = 4. A good value is

f(4) = E(Y |X = 4)

E(Y |X = 4) means expected value (average) of Y given X = 4.

This ideal f(x) = E(Y |X = x) is called the regression function.
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The regression function f(x)

• Is also defined for vector X; e.g.
f(x) = f(x1, x2, x3) = E(Y |X1 = x1, X2 = x2, X3 = x3)

• Is the ideal or optimal predictor of Y with regard to
mean-squared prediction error: f(x) = E(Y |X = x) is the
function that minimizes E[(Y − g(X))2|X = x] over all
functions g at all points X = x.

• ε = Y − f(x) is the irreducible error — i.e. even if we knew
f(x), we would still make errors in prediction, since at each
X = x there is typically a distribution of possible Y values.

• For any estimate f̂(x) of f(x), we have

E[(Y − f̂(X))2|X = x] = [f(x)− f̂(x)]2︸ ︷︷ ︸
Reducible

+ Var(ε)︸ ︷︷ ︸
Irreducible
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Parametric and structured models

The linear model is an important example of a parametric
model:

fL(X) = β0 + β1X1 + β2X2 + . . . βpXp.

• A linear model is specified in terms of p+ 1 parameters
β0, β1, . . . , βp.

• We estimate the parameters by fitting the model to
training data.

• Although it is almost never correct, a linear model often
serves as a good and interpretable approximation to the
unknown true function f(X).
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Assessing Model Accuracy

Suppose we fit a model f̂(x) to some training data
Tr = {xi, yi}N1 , and we wish to see how well it performs.

• We could compute the average squared prediction error
over Tr:

MSETr = Avei∈Tr[yi − f̂(xi)]
2

This may be biased toward more overfit models.

• Instead we should, if possible, compute it using fresh test
data Te = {xi, yi}M1 :

MSETe = Avei∈Te[yi − f̂(xi)]
2
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Bias-Variance Trade-off

Suppose we have fit a model f̂(x) to some training data Tr, and
let (x0, y0) be a test observation drawn from the population. If
the true model is Y = f(X) + ε (with f(x) = E(Y |X = x)),
then

E
(
y0 − f̂(x0)

)2
= Var(f̂(x0)) + [Bias(f̂(x0))]

2 + Var(ε).

The expectation averages over the variability of y0 as well as
the variability in Tr. Note that Bias(f̂(x0))] = E[f̂(x0)]− f(x0).

Typically as the flexibility of f̂ increases, its variance increases,
and its bias decreases. So choosing the flexibility based on
average test error amounts to a bias-variance trade-off.
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The Supervised Learning Problem

Starting point:

• Outcome measurement Y (also called dependent variable,
response, target).

• Vector of p predictor measurements X (also called inputs,
regressors, covariates, features, independent variables).

• In the regression problem, Y is quantitative (e.g price,
blood pressure).

• In the classification problem, Y takes values in a finite,
unordered set (survived/died, digit 0-9, cancer class of
tissue sample).

• We have training data (x1, y1), . . . , (xN , yN ). These are
observations (examples, instances) of these measurements.
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Objectives

On the basis of the training data we would like to:

• Accurately predict unseen test cases.

• Understand which inputs affect the outcome, and how.

• Assess the quality of our predictions and inferences.
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Training Error versus Test error

• Recall the distinction between the test error and the
training error:

• The test error is the average error that results from using a
statistical learning method to predict the response on a new
observation, one that was not used in training the method.

• In contrast, the training error can be easily calculated by
applying the statistical learning method to the observations
used in its training.

• But the training error rate often is quite different from the
test error rate, and in particular the former can
dramatically underestimate the latter.
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Training- versus Test-Set Performance
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More on prediction-error estimates

• Best solution: a large designated test set. Often not
available

• Some methods make a mathematical adjustment to the
training error rate in order to estimate the test error rate.
These include the Cp statistic, AIC and BIC. They are
discussed elsewhere in this course

• Here we instead consider a class of methods that estimate
the test error by holding out a subset of the training
observations from the fitting process, and then applying the
statistical learning method to those held out observations
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Validation-set approach

• Here we randomly divide the available set of samples into
two parts: a training set and a validation or hold-out set.

• The model is fit on the training set, and the fitted model is
used to predict the responses for the observations in the
validation set.

• The resulting validation-set error provides an estimate of
the test error. This is typically assessed using MSE in the
case of a quantitative response and misclassification rate in
the case of a qualitative (discrete) response.
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The Validation process

 !"!#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$!

%!!""!! #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!& !

A random splitting into two halves: left part is training set,
right part is validation set
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Example: automobile data

• Want to compare linear vs higher-order polynomial terms
in a linear regression

• We randomly split the 392 observations into two sets, a
training set containing 196 of the data points, and a
validation set containing the remaining 196 observations.
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Drawbacks of validation set approach

• the validation estimate of the test error can be highly
variable, depending on precisely which observations are
included in the training set and which observations are
included in the validation set.

• In the validation approach, only a subset of the
observations — those that are included in the training set
rather than in the validation set — are used to fit the
model.

• This suggests that the validation set error may tend to
overestimate the test error for the model fit on the entire
data set.

Why?
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K-fold Cross-validation

• Widely used approach for estimating test error.

• Estimates can be used to select best model, and to give an
idea of the test error of the final chosen model.

• Idea is to randomly divide the data into K equal-sized
parts. We leave out part k, fit the model to the other
K − 1 parts (combined), and then obtain predictions for
the left-out kth part.

• This is done in turn for each part k = 1, 2, . . .K, and then
the results are combined.
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K-fold Cross-validation in detail

Divide data into K roughly equal-sized parts (K = 5 here)

1

TrainTrainValidation Train Train

5432
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The details

• Let the K parts be C1, C2, . . . CK , where Ck denotes the
indices of the observations in part k. There are nk
observations in part k: if N is a multiple of K, then
nk = n/K.

• Compute

CV(K) =

K∑
k=1

nk
n

MSEk

where MSEk =
∑

i∈Ck
(yi − ŷi)2/nk, and ŷi is the fit for

observation i, obtained from the data with part k removed.

• Setting K = n yields n-fold or leave-one out
cross-validation (LOOCV).
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A nice special case!

• With least-squares linear or polynomial regression, an
amazing shortcut makes the cost of LOOCV the same as
that of a single model fit! The following formula holds:

CV(n) =
1

n

n∑
i=1

(
yi − ŷi
1− hi

)2

,

where ŷi is the ith fitted value from the original least
squares fit, and hi is the leverage (diagonal of the “hat”
matrix; see book for details.) This is like the ordinary
MSE, except the ith residual is divided by 1− hi.

• LOOCV sometimes useful, but typically doesn’t shake up
the data enough. The estimates from each fold are highly
correlated and hence their average can have high variance.

• a better choice is K = 5 or 10.
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Auto data revisited
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True and estimated test MSE for the simulated data
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Other issues with Cross-validation

• Since each training set is only (K − 1)/K as big as the
original training set, the estimates of prediction error will
typically be biased upward.

Why?

• This bias is minimized when K = n (LOOCV), but this
estimate has high variance, as noted earlier.

• K = 5 or 10 provides a good compromise for this
bias-variance tradeoff.
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The validation set approach for time series data

When using time series data, we cannot select the training set and the 
validation set in a random fashion.

A splitting of the data in (e.g.) the first ¾ and in the remaining ¼. The first 
part is the training set and second one is the validation set:



Cross-validation for time series data

Suppose we have a total of (e.g.) 478 observations, and we use at least (e.g.) 
36 observations for training and (e.g.) 12 observations for evaluation. The 
cross-validation procedure would go as follows:


