
VAR Models and Cointegration

The Granger representation theorem links cointegra-

tion to error correction models. In a series of impor-

tant papers and in a marvelous textbook, Soren Jo-

hansen firmly roots cointegration and error correction

models in a vector autoregression framework. This

section outlines Johansen’s approach to cointegration

modeling.

The Cointegrated VAR

Consider the levels VAR( ) for the ( × 1) vector Y
Y = D + 1Y 1 + · · ·+ Y +

= 1

D = deterministic terms



Remarks:

• The VAR( ) model is stable if
det(I 1 · · · ) = 0

has all roots outside the complex unit circle.

• If there are roots on the unit circle then some or
all of the variables in Y are (1) and they may

also be cointegrated.

• If is cointegrated then the VAR representation

is not the most suitable representation for anal-

ysis because the cointegrating relations are not

explicitly apparent.



The cointegrating relations become apparent if the

levels VAR is transformed to the vector error correc-

tion model (VECM)

Y = D + Y 1 + 1 Y 1

+ · · ·+ 1 Y +1 +

= 1 + · · ·+ I

=
X
= +1

= 1 1

• In the VECM, Y and its lags are (0).

• The term Y 1 is the only one which includes

potential (1) variables and for Y to be (0) it

must be the case that Y 1 is also (0). There-

fore, Y 1 must contain the cointegrating re-

lations if they exist.



If the VAR( ) process has unit roots ( = 1) then

det(I 1 · · · ) = 0

det( ) = 0

is singular

If is singular then it has reduced rank; that is

( ) = .

There are two cases to consider:

1. ( ) = 0. This implies that

= 0

Y (1) and not cointegrated

The VECM reduces to a VAR( 1) in first di erences

Y = D + 1 Y 1 + · · ·+ 1 Y +1+



2. 0 ( ) = . This implies that Y

is (1) with linearly independent cointegrating vec-

tors and common stochastic trends (unit roots).

Since has rank it can be written as the product

( × )
=
( × )( × )

0

where and are ( × ) matrices with ( ) =

( ) = . The rows of 0 form a basis for the

cointegrating vectors and the elements of distribute

the impact of the cointegrating vectors to the evolu-

tion of Y . The VECM becomes

Y = D + 0Y 1 + 1 Y 1

+ · · ·+ 1 Y +1 +

where 0Y 1 (0) since 0 is a matrix of cointe-
grating vectors.



Non-uniqueness

It is important to recognize that the factorization =
0 is not unique since for any × nonsingular

matrix H we have

0 = HH 1 0= (aH)( H 10)0= a 0

a = aH = H 10

Hence the factorization = 0 only identifies the
space spanned by the cointegrating relations. To ob-

tain unique values of and 0 requires further restric-
tions on the model.



Example: Consider the bivariate VAR(1) model for

Y = ( 1 2 )
0

Y = 1Y 1 + ²

The VECM is

Y = Y 1 +

= 1 I2

AssumingY is cointegrated there exists a 2×1 vector
= ( 1 2)

0 such that
0Y = 1 1 + 2 2 (0)

Using the normalization 1 = 1 and 2 = the

cointegrating relation becomes

0Y = 1 2

This normalization suggests the stochastic long-run

equilibrium relation

1 = 2 +



Since Y is cointegrated with one cointegrating vec-

tor, ( ) = 1 so that

= 0 =
Ã

1

2

!³
1

´
=

Ã
1 1

2 2

!
The elements in the vector are interpreted as speed

of adjustment coe cients. The cointegrated VECM

for Y may be rewritten as

Y = 0Y 1 +

Writing the VECM equation by equation gives

1 = 1( 1 1 2 1) + 1

2 = 2( 1 1 2 1) + 2

The stability conditions for the bivariate VECM are re-

lated to the stability conditions for the disequilibrium

error 0Y .



It is straightforward to show that 0Y follows an

AR(1) process

0Y = (1+ 0 ) 0Y 1 +
0

or

= 1 + = 0Y
= 1 + 0 = 1 + ( 1 2)

= 0 = 1 2

The AR(1) model for is stable as long as

| | = |1 + ( 1 2)| 1

For example, suppose = 1. Then the stability con-

dition is

| | = |1 + ( 1 2)| 1

which is satisfied if

1 2 0 and 1 2 2



Johansen’s Methodology for Modeling Cointegra-

tion

The basic steps in Johansen’s methodology are:

1. Specify and estimate a VAR( ) model for Y

2. Construct likelihood ratio tests for the rank of

to determine the number of cointegrating vectors.

3. If necessary, impose normalization and identifying

restrictions on the cointegrating vectors.

4. Given the normalized cointegrating vectors esti-

mate the resulting cointegrated VECM by maximum

likelihood.



Likelihood Ratio Tests for the Number of Cointe-

grating Vectors

The unrestricted cointegrated VECM is denoted ( ).

The (1) model ( ) can be formulated as the con-

dition that the rank of is less than or equal to .

This creates a nested set of models

(0) · · · ( ) · · · ( )

(0) = non-cointegrated VAR

( ) = stationary VAR(p)

This nested formulation is convenient for developing

a sequential procedure to test for the number of

cointegrating relationships.



Remarks:

• Since the rank of the long-run impact matrix
gives the number of cointegrating relationships

in Y , Johansen formulates likelihood ratio (LR)

statistics for the number of cointegrating relation-

ships as LR statistics for determining the rank of

• These LR tests are based on the estimated eigen-
values ˆ1 ˆ

2 · · · ˆ of the matrix .

These eigenvalues also happen to equal the squared

canonical correlations between Y and Y 1

corrected for lagged Y and D and so lie be-

tween 0 and 1.

• Recall, the rank of is equal to the number of

non-zero eigenvalues of .



Johansen’s Trace Statistic

Johansen’s LR statistic tests the nested hypotheses

0( ) : = 0 vs. 1( 0) : 0

The LR statistic, called the trace statistic, is given by

( 0) =
X
= 0+1

ln(1 ˆ )

• If ( ) = 0 then ˆ 0+1
ˆ should all

be close to zero and ( 0) should be small

since ln(1 ˆ ) 0 for 0.

• In contrast, if ( ) 0 then some of ˆ 0+1
ˆ

will be nonzero (but less than 1) and ( 0)

should be large since ln(1 ˆ ) 0 for some

0.



Result: The asymptotic null distribution of ( 0)

is not chi-square but instead is a multivariate version

of the Dickey-Fuller unit root distribution which de-

pends on the dimension 0 and the specification of

the deterministic terms. Critical values for this distri-

bution are tabulated in Osterwald-Lenum (1992) for

0 = 1 10.



Sequential Procedure for Determining the Number

of Cointegrating Vectors

1. First test 0( 0 = 0) against 1( 0 0). If

this null is not rejected then it is concluded that

there are no cointegrating vectors among the

variables in Y .

2. If 0( 0 = 0) is rejected then it is concluded

that there is at least one cointegrating vector and

proceed to test 0( 0 = 1) against 1( 0 1).

If this null is not rejected then it is concluded that

there is only one cointegrating vector.

3. If the 0( 0 = 1) is rejected then it is concluded

that there is at least two cointegrating vectors.

4. The sequential procedure is continued until the

null is not rejected.



Johansen’s Maximum Eigenvalue Statistic

Johansen also derives a LR statistic for the hypotheses

0( 0) : = 0 vs. 1( 0) : 0 = 0 + 1

The LR statistic, called the maximum eigenvalue statis-

tic, is given by

max( 0) = ln(1 ˆ
0+1)

As with the trace statistic, the asymptotic null dis-

tribution of max( 0) is not chi-square but instead

is a complicated function of Brownian motion, which

depends on

• the dimension 0

• the specification of the deterministic terms.

Critical values for this distribution are tabulated in

Osterwald-Lenum (1992) for 0 = 1 10.



Specification of Deterministic Terms

Following Johansen (1995), the deterministic terms in

are restricted to the form

D = = 0 + 1

If the deterministic terms are unrestricted then the

time series in Y may exhibit quadratic trends and

there may be a linear trend term in the cointegrating

relationships. Restricted versions of the trend param-

eters 0 and 1 limit the trending nature of the series

in Y . The trend behavior of Y can be classified into

five cases:



1. Model 2( ): = 0 (no constant):

Y = 0Y 1

+ 1 Y 1 + · · ·+ 1 Y +1 +

and all the series in Y are (1) without drift and

the cointegrating relations 0Y have mean zero.

2. Model 1( ): = 0 = 0 (restricted con-

stant):

Y = ( 0Y 1 + 0)

+ 1 Y 1 + · · ·+ 1 Y +1 +

the series in Y are (1) without drift and the

cointegrating relations 0Y have non-zero means

0.



3. Model 1( ): = 0 (unrestricted constant):

Y = 0 +
0Y 1

+ 1 Y 1 + · · ·+ 1 Y +1 +

the series in Y are (1) with drift vector 0 and

the cointegrating relations 0Y may have a non-

zero mean.

4. Model ( ): = 0+ 1 (restricted trend).

The restricted VECM is

Y = 0 + ( 0Y 1 + 1 )

+ 1 Y 1 + · · ·+ 1 Y +1 +

the series in Y are (1) with drift vector 0

and the cointegrating relations 0Y have a linear

trend term 1 .



5. Model ( ): = 0 + 1 (unrestricted con-

stant and trend). The unrestricted VECM is

Y = 0 + 1 +
0Y 1

+ 1 Y 1 + · · ·+ 1 Y +1 +

the series inY are (1) with a linear trend (quadratic

trend in levels) and the cointegrating relations
0Y have a linear trend.



Maximum Likelihood Estimation of the Cointegrated
VECM

If it is found that ( ) = , 0 , then the

cointegrated VECM

Y = D + 0Y 1 + 1 Y 1

+ · · ·+ 1 Y +1 +

becomes a reduced rank multivariate regression. Jo-

hansen derived the maximum likelihood estimation

of the parametes under the reduced rank restriction

( ) = (see Hamilton for details). He shows

that

• ˆ = (v̂1 v̂ ) where v̂ are the eigenvec-

tors associated with the eigenvalues ˆ ,

• The MLEs of the remaining parameters are ob-
tained by least squares estimation of

Y = D + ˆ0 Y 1 + 1 Y 1

+ · · ·+ 1 Y +1 +



Normalized Estimates of and

• The factorization
ˆ = ˆ ˆ0

is not unique

• The columns of ˆ may be interpreted as lin-

ear combinations of the underlying cointegrating

relations.

• For interpretations, it is often convenient to nor-
malize or identify the cointegrating vectors by

choosing a specific coordinate system in which

to express the variables.



Johansen’s normalized MLE

• An arbitrary normalization, suggested by Johansen,
is to solve for the triangular representation of the

cointegrated system (default method in Eviews).

The resulting normalized cointegrating vector is

denoted ˆ . The normalization of the MLE

for to ˆ will a ect the MLE of but not

the MLEs of the other parameters in the VECM.

• Let ˆ denote the MLE of the normalized

cointegrating matrix . Johansen (1995) showed

that

(vec(ˆ ) vec( ))

is asymptotically (mixed) normally distributed

• ˆ is super consistent



Testing Linear Restrictions on

The Johansen MLE procedure only produces an esti-

mate of the basis for the space of cointegrating vec-

tors. It is often of interest to test if some hypothesized

cointegrating vector lies in the space spanned by the

estimated basis:

0 :
( × )

0 =
Ã 0

00
!

0
0 = × matrix of hypothesized cv’s
0 = ( )× matrix of remaining unspecified cv’s

Result: Johansen (1995) showed that a likelihood ra-

tio statistic can be computed, which is asymptotically

distributed as a 2 with ( ) degrees of freedom.



Cointegration and the BN Decomposition

• The Granger Representation Theorem (GRT) pro-
vides an explicit link between the VECM form of

a cointegrated VAR and the Wold or moving av-

erage representation.

• The GRT also provides insight into the Beveridge-
Nelson decomposition of a cointegrated time se-

ries.

Let be cointegrated with cointegrating vectors

captured in the × matrix 0 so that 0y is (0)

Suppose y has the Wold representation

= + ( )

( ) =
X
=0

and 0 =



Using ( ) = (1) + (1 )˜ ( ) The BN decom-

position of is given by

= 0 + + (1)
X
=1

+ ˜ ˜0

= ˜( )

Multiply both sides by 0 to give

0 = 0 + 0 (1)
X
=1

+ 0( 0 + ˜ ˜0)

Since 0 is (0) we must have that

0 (1) = 0
(1) is singular and has rank

The singularity of (1) implies that the long-run co-

variance of

(1) (1)0

is singular and has rank .

Cubadda



Now suppose that has the VECM representation

( ) = + 1 +

= 0

where the × matrices and both have rank

The Granger Representation Theorem (GRT) gives an

explicit mapping from the BN decomposition to the

parameters of the VECM. Define the × ( ) full

rank matrices and such that

• 0 = 0 0 = 0

• ( ) = ( ) =

• ( 0 (1) ) 1 exists where (1) =
P 1
=1

• ( 0 (1) ) 1 0 + 0( 0 (1) ) 1 0 =



Theorem (GRT). If det( ( )) = 0 implies that | |
1 or = 1 and ( ) = then there exist

× matrices and of rank such that

= 0

A necessary and su cient for 0 to be (0) is that

0 (1)

has full rank. Then the BN decomposition of has

the representation

= + (1)
X
=1

+ 0 + ˜ ˜0

where

(1) = ( 0 ) 1 0

is a cointegrated process with cointegrating vectors

given by the rows of 0



The main part of the GRT is the explicit representa-

tion for (1) :

(1) = ( 0 (1) ) 1 0

Notice that

0 (1) = 0 ( 0 (1) ) 1 0 = 0
(1) = ( 0 (1) ) 1 0 = 0

The common trends in are extracted using

= (1)
X
=1

= ( 0 (1) ) 1 0 X
=1

= 0 X
=1

where = ( 0 (1) ) 1 Hence the common

trends are the linear combinations

0 X
=1



The GRT in a Cointegrated Bivariate VAR(1) Model

To illustrate the GRT, consider the simple cointe-

grated bivariate VECM

= 0
1 +

where = ( 0 1 0 1)0 and = (1 1)0 Here there
is one cointegrating vector and one common trend. It

may be easily deduced that

(1) = 2

= (1 1)0

= (1 1)0
0 (1) = 2

The common trend is then given by

= 0 X
=1

= (1 1)

Ã P
=1 1P
=1 2

!
=
X
=1

1 +
X
=1

2

and the loadings on the common trend are

= ( 0 (1) ) 1 =

Ã
1
2
1
2

!



Now suppose that = ( 0 1 0)0 so that 2 is weakly

and strongly exogenous. The VECM has

the simplified form

1 = 0 1 · 0
1 + 1

2 = 2

Then

(1) = 2

= (0 1)0

= (1 1)0
0 (1) = 1

Interestingly, the common trend is simply 2 :

= 0 X
=1

= (0 1)

Ã P
=1 1P
=1 2

!
=
X
=1

2 = 2

The loadings on the common trend are

= ( 0 (1) ) 1 =

Ã
1
1

!


