
Multivariate Time Series

Consider time series variables { 1 } { }. A
multivariate time series is the ( ×1) vector time series
{Y } where the row of {Y } is { }. That is, for
any time , Y = ( 1 )0.

Multivariate time series analysis is used when one

wants to model and explain the interactions and co-

movements among a group of time series variables:

• Consumption and income

• Stock prices and dividends

• Forward and spot exchange rates

• interest rates, money growth, income, inflation



Stock and Watson state that macroeconometricians

do four things with multivariate time series

1. Describe and summarize macroeconomic data

2. Make macroeconomic forecasts

3. Quantify what we do or do not know about the

true structure of the macroeconomy

4. Advise macroeconomic policymakers



Stationary and Ergodic Multivariate Time Series

A multivariate time series Y is covariance stationary

and ergodic if all of its component time series are

stationary and ergodic.

[Y ] = = ( 1 )0

var(Y ) = 0 = [(Y )(Y )0]

=

var( 1 ) cov( 1 2 ) · · · cov( 1 )
cov( 2 1 ) var( 2 ) · · · cov( 2 )

... ... . . . ...
cov( 1 ) cov( 2 ) · · · var( )

The correlation matrix of Y is the ( × ) matrix

corr(Y ) = R0 = D
1
0D

1

where D is an ( × ) diagonal matrix with diag-

onal element ( 0 )1 2 =var( )1 2.



The parameters , 0 andR0 are estimated from data

(Y1 Y ) using the sample moments

Ȳ =
1 X
=1

Y [Y ] =

ˆ
0 =

1 X
=1

(Y Ȳ)(Y Ȳ)0 var(Y ) = 0

R̂0 = D̂ 1ˆ
0D̂

1 corr(Y ) = R0

where D̂ is the ( × ) diagonal matrix with the sample

standard deviations of along the diagonal. The

Ergodic Theorem justifies convergence of the sample

moments to their population counterparts.



Cross Covariance and Correlation Matrices

With a multivariate time series Y each component

has autocovariances and autocorrelations but there

are also cross lead-lag covariances and correlations be-

tween all possible pairs of components. The autoco-

variances and autocorrelations of for = 1

are defined as

= cov( )

= corr( ) = 0

and these are symmetric in : = , = .



The cross lag covariances and cross lag correlations

between and are defined as

= cov( )

= corr( ) = q
0 0

and they are not necessarily symmetric in . In gen-

eral,

= cov( ) 6= cov( + )

= cov( ) =

Defn:

• If 6= 0 for some 0 then is said to lead

.

• If 6= 0 for some 0 then is said to lead

.



• It is possible that leads and vice-versa. In

this case, there is said to be feedback between

the two series.



All of the lag cross covariances and correlations are

summarized in the ( × ) lag cross covariance and

lag cross correlation matrices

= [(Y )(Y )0] =
cov( 1 1 ) cov( 1 2 ) · · · cov( 1 )
cov( 2 1 ) cov( 2 2 ) · · · cov( 2 )

... ... . . . ...
cov( 1 ) cov( 2 ) · · · cov( )

R = D 1 D 1

The matrices and R are not symmetric in but

it is easy to show that = 0 and R = R0 .

The matrices and R are estimated from data

(Y1 Y ) using

ˆ =
1 X
= +1

(Y Ȳ)(Y Ȳ)0

R̂ = D̂ 1ˆ D̂ 1



Multivariate Wold Representation

Any ( × 1) covariance stationary multivariate time
series Y has a Wold or linear process representation
of the form

Y = + + 1 1 + 2 2 + · · ·
= +

X
=0

0 = I

WN(0 )

is an ( × ) matrix with ( )th element . In
lag operator notation, the Wold form is

Y = + ( )

( ) =
X
=0

elements of ( ) are 1-summable

The moments of Y are given by

[Y ] = var(Y ) =
X
=0

0



Long Run Variance

Let Y be an ( ×1) stationary and ergodic multivari-
ate time series with [Y ] = . Anderson’s central

limit theorem for stationary and ergodic process states

(Ȳ ) 0
X
=

or

Ȳ
1 X

=

Hence, the long-run variance of Y is times the

asymptotic variance of Ȳ:

LRV(Y ) = · avar(Ȳ) = X
=



Since = 0 , LRV(Y ) may be alternatively ex-

pressed as

LRV(Y ) = 0 +
X
=1

( + 0 )

Using the Wold representation of Y it can be shown

that

LRV(Y ) = (1) (1)0

where (1) =
P

=0 .



Non-parametric Estimate of the Long-Run Variance

A consistent estimate of LRV(Y ) may be computed

using non-parametric methods. A popular estimator

is the Newey-West weighted autocovariance estimator

dLRVNW(Y ) = ˆ
0 +

X
=1

·
³
ˆ + ˆ0

´
where are weights which sum to unity and

is a truncation lag parameter that satisfies =

( 1 3). Usually, the Bartlett weights are used

= 1
+ 1



Vector Autoregression Models

The vector autoregression (VAR) model is one of the

most successful, flexible, and easy to use models for

the analysis of multivariate time series.

• Made fameous in Chris Sims’s paper “Macroeco-
nomics and Reality,” ECTA 1980.

• It is a natural extension of the univariate autore-
gressive model to dynamic multivariate time se-

ries.

• Has proven to be especially useful for describing
the dynamic behavior of economic and financial

time series and for forecasting.

• It often provides superior forecasts to those from
univariate time series models and elaborate theory-

based simultaneous equations models.



• Used for structural inference and policy analysis.
In structural analysis, certain assumptions about

the causal structure of the data under investiga-

tion are imposed, and the resulting causal impacts

of unexpected shocks or innovations to specified

variables on the variables in the model are summa-

rized. These causal impacts are usually summa-

rized with impulse response functions and forecast

error variance



The Stationary Vector Autoregression Model

Let Y = ( 1 2 )0 denote an ( × 1) vec-
tor of time series variables. The basic -lag vector

autoregressive (VAR( )) model has the form

Y = c+ 1Y 1 + 2Y 2 + · · ·+ Y +

WN (0 )

Example: Bivariate VAR(2)Ã
1

2

!
=

Ã
1

2

!
+

Ã
1
11

1
12

1
21

1
22

!Ã
1 1

2 1

!

+

Ã
2
11

2
12

2
21

2
22

!Ã
1 2

2 2

!
+

Ã
1

2

!
or

1 = 1 +
1
11 1 1 +

1
12 2 1

+ 2
11 1 2 +

2
12 2 2 + 1

2 = 2 +
1
21 1 1 +

1
22 2 1

+ 2
21 1 1 +

2
22 2 1 + 2

where cov( 1 2 ) = 12 for = ; 0 otherwise.



Remarks:

• Each equation has the same regressors — lagged
values of 1 and 2 .

• Endogeneity is avoided by using lagged values of
1 and 2 .

• The VAR( ) model is just a seemingly unrelated
regression (SUR) model with lagged variables and

deterministic terms as common regressors.



In lag operator notation, the VAR( ) is written as

( )Y = c+

( ) = I 1

The VAR( ) is stable if the roots of

det (I 1 · · · ) = 0

lie outside the complex unit circle (have modulus greater

than one), or, equivalently, if the eigenvalues of the

companion matrix

F =

1 2 · · ·
I 0 · · · 0
0 . . . 0 ...
0 0 I 0

have modulus less than one. A stable VAR( ) process

is stationary and ergodic with time invariant means,

variances, and autocovariances.



Example: Stability of bivariate VAR(1) model

Y = Y 1 +Ã
1

2

!
=

Ã
11 12

21 22

!Ã
1 1

2 1

!
+

Ã
1

2

!

Then det (I ) = 0 becomes

(1 11 )(1 22 ) 12 21
2 = 0

• Stability condition involves cross terms 12 and

21

• If 12 = 21 = 0 (diagonal VAR) then bivariate

stability condition reduces to univariate stability

conditions for each equation.



If Y is covariance stationary, then the unconditional

mean is given by

= (I 1 · · · ) 1c

The mean-adjusted form of the VAR( ) is then

Y = 1(Y 1 ) + 2(Y 2 ) + · · ·
+ (Y ) +

The basic VAR( ) model may be too restrictive to

represent su ciently the main characteristics of the

data. The general form of the VAR( ) model with

deterministic terms and exogenous variables is given

by

Y = 1Y 1 + 2Y 2 + · · ·+ Y

+ D +GX +

D = deterministic terms

X = exogenous variables ( [X ] = 0)



Wold Representation

Consider the stationary VAR(p) model

( )Y = c+

( ) = I 1

Since Y is stationary, ( ) 1 exists so that

Y = ( ) 1c+ ( ) 1

= +
X
=0

0 = I

lim = 0

Note that

( ) 1 = ( ) =
X
=0



The Wold coe cients may be determined from

the VAR coe cients by solving

( ) ( ) = I

which implies

1 = 1

2 = 1 1 + 2
...

= 1 1 + · · ·+
Since ( ) 1 = ( ) the long-run variance for Y

has the form

LRVVAR(Y ) = (1) (1)0

= (1) 1 (1) 10

= (I 1 ) 1 (I 1 ) 10

Gianluca
s > p

Gianluca

Gianluca



Estimation

Assume that the VAR( ) model is covariance station-

ary, and there are no restrictions on the parameters

of the model. In SUR notation, each equation in the

VAR( ) may be written as

y = Z + e = 1

• y is a ( × 1) vector of observations on the
equation

• Z is a ( × ) matrix with row given by Z0 =
(1 Y0 1 Y0 )

• = + 1

• is a ( × 1) vector of parameters and e is a

( × 1) error with covariance matrix 2I



Since the VAR( ) is in the form of a SUR model
where each equation has the same explanatory vari-
ables, each equation may be estimated separately by
ordinary least squares without losing e ciency relative
to generalized least squares. Let

ˆ = [ˆ1 ˆ ]

denote the ( × ) matrix of least squares coe cients
for the equations.Let

vec(ˆ ) =
ˆ1
...
ˆ

Under standard assumptions regarding the behavior
of stationary and ergodic VAR models (see Hamilton
(1994) vec(ˆ ) is consistent and asymptotically nor-
mally distributed with asymptotic covariance matrix

davar(vec(ˆ )) = ˆ (Z
0
Z) 1

where

ˆ =
1 X

=1

ˆ ˆ0

ˆ = Y ˆ 0Z



Lag Length Selection

The lag length for the VAR( ) model may be de-

termined using model selection criteria. The gen-

eral approach is to fit VAR( ) models with orders

= 0 and choose the value of which min-

imizes some model selection criteria

MSC( ) = ln |˜( )|+ · ( )

˜ ( ) = 1
X
=1

ˆ ˆ0

= function of sample size

( ) = penalty function

The three most common information criteria are the

Akaike (AIC), Schwarz-Bayesian (BIC) and Hannan-

Quinn (HQ):

AIC( ) = ln |˜ ( )|+ 2 2

BIC( ) = ln |˜ ( )|+ ln 2

HQ( ) = ln |˜ ( )|+ 2 ln ln 2



Remarks:

• AIC criterion asymptotically overestimates the or-
der with positive probability,

• BIC and HQ criteria estimate the order consis-

tently under fairly general conditions if the true

order is less than or equal to .



Granger Causality

One of the main uses of VAR models is forecasting.

The following intuitive notion of a variable’s forecast-

ing ability is due to Granger (1969).

• If a variable, or group of variables, 1 is found to

be helpful for predicting another variable, or group

of variables, 2 then 1 is said to Granger-cause

2; otherwise it is said to fail to Granger-cause

2.

• Formally, 1 fails to Granger-cause 2 if for all

0 the MSE of a forecast of 2 + based on

( 2 2 1 ) is the same as the MSE of a

forecast of 2 + based on ( 2 2 1 ) and

( 1 1 1 ).

• The notion of Granger causality does not imply
true causality. It only implies forecasting ability.



Example: Bivariate VAR Model

In a bivariate VAR( ) , 2 fails to Granger-cause 1 if

all of the VAR coe cient matrices 1 are

lower triangular:Ã
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Similarly, 1 fails to Granger-cause 2 if all of the coef-

ficients on lagged values of 1 are zero in the equation

for 2. Notice that if 2 fails to Granger-cause 1 and

1 fails to Granger-cause 2, then the VAR coe cient

matrices 1 are diagonal.



The linear coe cient restrictions implied by Granger

non-causality may be tested using the Wald statistic

Wald = (R·vec(ˆ ) r)0
n
R
h davar(vec(ˆ ))iR0o 1

×(R·vec(ˆ ) r)

Remark: In the bivariate model, testing 0 : 2 does

not Granger-cause 1 reduces to a testing 0 :
1
12 =

· · · = 12 = 0 from the linear regression

1 = 1 +
1
11 1 1 + · · ·+ 11 1

+ 1
12 2 1 + · · ·+ 12 2 + 1

The test statistic is a simple F-statistic.



Example: Trivariate VAR Model

In a trivariate VAR( ) , 2 and 3 fail to Granger-cause

1 if 12 = 13 = 0 for all :

1

2

3

=
1

2

3

+

1
11 0 0
1
21

1
22

1
23

1
31

1
32

1
33

1 1

2 1

3 1

+ · · ·

+
11 0 0

21 22 32

31 32 33

1

2

3

+
1

2

3

Note: One can also use a simple F-statistic from a

linear regression in this situation:

1 = 1 +
1
11 1 1 + · · ·+ 11 1

+ 1
12 2 1 + · · ·+ 12 2

+ 1
13 3 1 + · · ·+ 13 3 + 1



Example: Trivariate VAR Model

In a trivariate VAR( ) , 3 fails to Granger-cause

1 and 2 if all of the VAR coe cient matrices

1 are lower triangular:

1
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1
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Note: We cannot use a simple F-statistic in this case.

We must use the general Wald statistic.



Forecasting Algorithms

Forecasting from a VAR(p) is a straightforward exten-

sion of forecasting from an AR(p). The multivariate

Wold form is

Y = + + 1 1 + 2 2 + · · ·
Y + = + + + 1 + 1 + · · ·

+ 1 +1 + + · · ·
WN(0 )

Note that

[Y ] =

var(Y ) = [(Y )(Y )0]

=
X
=0

X
=0

0

=
X
=0

0



The minimum MSE linear forecast of Y + based on

is

Y + | = + + +1 1 + · · ·
The forecast error is

+ | = Y + Y + |
= + + 1 + 1 + · · ·+ 1 +1

The forecast error MSE is

MSE( + | ) = [ + | 0
+ | ]

= + 1
0
1 + · · ·+ 1

0
1

=
1X

=0

0



Chain-rule of Forecasting

The best linear predictor, in terms of minimum mean
squared error (MSE), ofY +1 or 1-step forecast based
on information available at time is

Y +1| = c+ 1Y + · · ·+ Y +1

Forecasts for longer horizons ( -step forecasts) may
be obtained using the chain-rule of forecasting as

Y + | = c+ 1Y + 1| + · · ·+ Y + |
Y + | = Y + for 0

Note: Chain-rule may be derived from companion-form
framework (assume c = 0)

Y
Y 1
...

Y +1

=

1 2 · · ·
I 0 ... 0
... . . . ... ...
0 · · · I 0

Y  
Y 2
...

Y

+
0
...
0

= F 1 + v



Then

+1| = F

+2| = F +1| = F2
...

+ | = F + 1| = F




