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1 Univariate time series analysis: Basic concepts

We consider a univariate time series, yt, t = 1, . . . , T .

The information set is the series itself and its position in time.

We now review some basic concepts in time series analysis, along with
simple and essential tools for descriptive analysis.

The main descriptive tool is the plot of the series, by which we represent
the pair of values (t, yt) on a Cartesian plane.

The graph can immediately reveal the presence of important features, such
as trend and seasonality, structural breaks and outliers, and so forth.

The series may be a transformation of the original measurements: loga-
rithms; changes, log-differences, etc.
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Figure 1: Plots of various time series



2 Stationary stochastic processes

Stochastic process: a collection of random variables {yt(ω), ω ∈ Ω, t ∈ Z}
defined on a probability space (Ω, F, P ), where the integer number t is a
time-index, Ω is the sample space, F is a sigma algebra defined on Ω and
P is a probability measure on Ω. A time series is a realization of the
stochastic process for a given ω ∈ Ω and t = 0, 1, 2, ..., T .

Stationarity: yt is weakly stationary if ∀t, k ∈ Z:

E(yt) = µ, |µ| <∞
E(yt − µ)2 = γ(0) <∞

E(yt − µ)(yt−k − µ) = γ(k)

yt is strictly stationary if ∀t, k, h ∈ Z:

(yt, yt+1, ...yt+h)
d
= (yt+k, yt+1+k, ...yt+h+k)



Strict stationarity implies weak stationarity whereas the viceversa is in gen-
eral not true. The exception are Gaussian processes, i.e., if the distribution
of (yt, yt+1, ...yt+h) is a multivariate Gaussian for ∀t, h ∈ Z.

Autocovariance function, γ(k), is symmetric: γ(k) = γ(−k).
The partial autocovariance function at lag k is the covariance between yt
and yt−k having removed the effects of wt = (yt−1, · · · , yt−k+1), i.e.

g(k) = E
{
[yt − E(yt|wt)][yt−k − E(yt−k|wt)]

}
Autocorrelation function (ACF):

ρ(k) = γ(k)/γ(0)

i) ρ(0) = 1; ii) |ρ(k)| < 1; iii) ρ(k) = ρ(−k).
The partial autocorrelation function (PACF):

r(k) = g(k)/
{

E[yt − E(yt|wt)]2E[yt−k − E(yt−k|wt)]2
}1/2



White noise (WN): εt ∼WN(σ2),

E(εt) = 0, ∀t,
E(ε2

t ) = σ2 <∞ ∀t,
E(εtεt−k) = 0, ∀t, ∀k 6= 0.

Lag operator: Lkyt = yt−k, L is an algebraic operator.

Wold theorem: (almost) any weakly stationary stochastic process can be
represented as a linear process, i.e.

yt = µ+ εt + ψ1εt−1 + ψ2εt−2 + · · · = µ+ ψ(L)εt,

where ψ(L) =
∑∞
j=0ψjL

j, with ψ0 = 1 and
∑∞
j=0ψ

2
j < ∞ (square sum-

mability).
For a stationary linear process we have:

E(yt) = µ, γ(0) = σ2∑∞
j=0ψ

2
j <∞, γ(k) = σ2∑∞

j=0ψjψj+k.



2.1 Estimation

• sample mean µ̂ = ȳ = T−1
T∑
t=1

yt

• sample variance: γ̂(0) = T−1∑T
t=1(yt − ȳ)2

• sample autocovariance: γ̂(k) = T−1∑T
t=k+1(yt − ȳ)(yt−k − ȳ)

• The ACF is estimated by ρ̂(k) = γ̂(k)/γ̂(0); the barplot (k, ρ̂(k)) is

the correlogram. If yt ∼WN(σ2), then T 1/2ρ̂(k)
d→ N(0, 1).



2.2 Ergodicity

Ergodicity: A stationary stochastic process is ergodic for the first and

second moments when the sample mean and autocovariance function are

mean-square consistent. Notice that stationarity itself does not imply er-

godicity.

A sufficient condition for ergodicity for the first two moments of a linear

process is that ∑∞
j=0|ψj| <∞

(absolute summability). This implies square summability.

The above condition is equivalent to require that the autocovariance func-

tion is absolutely summable:∑∞
k=0|γ(k)| <∞



3 Genesis and Properties of Autoregressive -

Moving Average (ARMA) processes

A problem arises with linear stationary process: an infinite number of

coefficients
{
ψj, j > 0

}
need to be estimated.

Since
∑∞
j=0|ψj| < ∞ implies that lim

j→∞
ψj = 0, we could approximate

ψ(L) by its ”truncated” version ψ̃(L) such that

ψ̃j =

{
ψj, j ≤ m
0, j > m

where m→∞ and m/T → 0 as T →∞.



However, the ”best” approximation of a ∞−order polynomial is obtained
by a rational polynomial, i.e.

ψ(L) ' θ(L)

φ(L)
,

where

φ(L) = 1−∑p
j=1φjL

j, p <∞
θ(L) = 1 +

∑q
j=1θjL

j, q <∞

Autoregressive-Moving average (ARMA) processes: A linear stationary
process such that ψ(L) = θ(L)/φ(L), which can be rewritten as

φ(L)yt = θ(L)εt,

yt =
∑p
j=1φjyt−j + εt +

∑q
j=1θjεt−j

It is denoted as yt ∼ARMA(p, q), where p is the AR order and q is the MA
order.



Inversion of a first-order polynomial: Consider φ(L) = (1−φL) such that

|φ| < 1. From the relation

1− (φL)n+1 = (1− φL)[1 + φL+ (φL)2 + · · ·+ (φL)n],

we obtain that

1

1− φL
= lim
n→∞

[1 + φL+ (φL)2 + · · ·+ (φL)n]

1− (φL)n+1
=
∞∑
j=0

(φL)j

Assume now that θ(L) = 1 and φ(L) = (1 − φL) with |φ| < 1. Hence,

we have

yt = εt + φεt−1 + φ2εt−2 + · · · =
εt

1− φL
= εt + φyt−1.



3.1 Autoregressive (AR) processes

AR(1) process: The autoregressive process of order 1, AR(1), is generated

by the equation

yt = m+ φyt−1 + εt

The process is stationary if |φ| < 1. Indeed, by recursive substitution we

obtain the Wold representation:

yt = m/(1− φ) + εt + φεt−1 + · · ·+ φnεt−n + · · ·

Hence, the condition
∑∞
j=0|ψj| =

∑∞
j=0|φj| <∞ is satisfied iff |φ| < 1 or,

equivalently, iff the root of 1− φL, is greater then 1 in modulus.



The expected value can be easily computed from either the AR or the Wold

representation:

E(yt) = µ = m/(1− φ)

The demeaned AR(1) process: In view of the above equation, we see that

any stationary AR(1) process can be rewritten as a zero-mean AR(1)

process:

(yt − µ) = φ(yt−1 − µ) + εt



From the demeaned AR(1) process we easily get

Var(yt) = γ(0) = E[(yt − µ)yt] = E[φ(yt−1 − µ)yt + εtyt]
= φγ(1) + σ2

since E[(yt − µ)εt] = E[(εt + φεt−1 + φ2εt−2 + · · · )εt] = σ2.

γ(1) = E[(yt − µ)yt−1] = E[φ(yt−1 − µ)yt−1 + εtyt−1]
= φγ(0)

since E[(yt−1 − µ)εt] = E[(εt−1 + φεt−2 + φ2εt−3 + · · · )εt] = 0.

Replacing γ(1) in the expression for γ(0), we obtain:

γ(0) =
σ2

1− φ2

Moreover, γ(k) = φγ(k − 1) for k ≥ 1, so that γ(k) = φkγ(0).



• The autocorrelation function (ACF) is thus

ρ(k) = φk

• The partial autocorrelation function (PACF) is easily obtained as

r(k) =

{
ρ(k), k ≤ 1

0, k > 1

since yt − E[yt|(yt−1, · · · , yt−k+1)] = εt for k > 1.





Random Walk (RW): the RW is generated by the equation

yt = m+ yt−1 + εt

or equivalently

∆yt = m+ εt (1)

It is a non-stationary AR(1) process since φ = 1. By recursive substitutions

we get

yt = y0 +mt+
∑t−1
j=0εt−j

The above result can also be obtained by applying the cumulating operator

S(L) = (1 + L+ L2 + · · ·+ Lt−1)

on both sides of (1) and noticing

S(L)(1− L) = 1− Lt



Treating the initial condition y0 as fixed, it’s easy to compute the moments:

E(yt) = y0 +mt

Var(yt) = tσ2

Cov(yt, yt−k) = (t− k)σ2 0 ≤ k < t

which vary over time.

The term m is called the drift of the RW.

















AR(2) processes: The AR(2) process is generated by the equation

yt = m+ φ1yt−1 + φ2yt−2 + εt

It can be shown that yt is stationary if the roots of 1− φ1L− φ2L
2 are

greater than 1 in modulus (lie outside the unit circle).

The above condition is equivalent to: i) |φ2| < 1 and ii) |φ1| < 1− φ2.

The stationarity region of the AR(2) parameters lies inside the triangle

with vertices (-2,-1),(2,-1),(0,1). A pair of complex conjugate roots arises

for φ2
1 + 4φ2 < 0.



Figure 2: The complex unit circle



Figure 3: Stationarity region of an AR(2) process



Under stationarity, we can easily compute the first two moments of the
AR(2) process:

• Expected value: E(yt) = µ = m/(1− φ1 − φ2).

• The demeaned AR(2) process:

(yt − µ) = φ1(yt−1 − µ) + φ2(yt−2 − µ) + εt

• Autocovariance function: it is given recursively by

γ(k) = φ1γ(k − 1) + φ2γ(k − 2), k = 2, 3, . . .

with starting values

γ(0) =
(1− φ2)σ2

(1 + φ2)[(1− φ2)2 − φ2
1]
, γ(1) = φ1γ(0)/(1− φ2).



The expression for γ(k) can be derived from the demeaned AR(2)

equation as follows:

γ(0) = E[φ1(yt−1 − µ)yt + φ2(yt−2 − µ)yt + εtyt]
= φ1γ(1) + φ2γ(2) + σ2

γ(1) = E[φ1(yt−1 − µ)yt−1 + φ2(yt−2 − µ)yt−1 + εtyt−1]
= φ1γ(0) + φ2γ(1)

γ(k) = E[φ1(yt−1 − µ)yt−k + φ2(yt−2 − µ)yt−k + εtyt−k]
= φ1γ(k − 1) + φ2γ(k − 2), k = 2, 3, . . .

Compute γ(1) from the second equation, and substitute in the equa-

tion for γ(2), then replace for γ(1) and γ(2) in the first expression to

get γ(0).



• ACF:

ρ(k) = φ1ρ(k − 1) + φ2ρ(k − 2), k = 2, 3, . . .

with starting values

ρ(0) = 1, ρ(1) = φ1/(1− φ2)

It is such that ρ(k)→ 0 as k →∞. If the roots of the AR polynomial

are complex the ACF describes a damped cosine wave.

• PACF: It has a cut-off (i.e. it’s equal to zero) after k = 2 since

yt − E[yt|(yt−1, · · · , yt−k+1)] = εt, k > 2.





AR(p) processes: The AR(p) process is generated by the equation

yt = m+ φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt, εt ∼WN(σ2)

φ(L)yt = m+ εt, φ(L) = 1− φ1L− · · · − φpLp.

• yt is stationary if the p roots of φ(L) are outside the unit circle.

• E(yt) = µ = m/φ(1), where φ(1) = 1− φ1 − · · · − φp.

• The demeaned process is φ(L)(yt − µ) = εt



• The Autocovariance Function is

γ(k) = φ1γ(k − 1) + · · ·+ φpγ(k − p), for k > 0
γ(k) = φ1γ(k − 1) + · · ·+ φpγ(k − p) + σ2, for k = 0

• ACF is given by the Yule-Walker system of equations:

ρ(k) = φ1ρ(k− 1) + φ2ρ(k− 2) + · · ·+ φpρ(k− p), k = 1, 2, . . . , p

• PACF: It has a cut-off after k = p since

yt − E[yt|(yt−1, · · · , yt−k+1)] = εt, k > p.



3.2 Moving Average (MA) processes

In the Wold representation set ψj = θj, j ≤ q and ψj = 0, j > q. This

gives the MA(q) process

yt = µ+ εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q

where εt ∼WN(σ2).

Stationarity: Since the condition
∑
j |ψj| < ∞ holds, the MA(q) process

is always stationary and ergodic.



MA(1) processes: The MA(1) process is generated by the equation

yt = µ+ εt + θεt−1 = µ+ (1 + θL)εt

The moments are obtained as follows

E(yt) = µ+ E(εt) + θE(εt−1) = µ

γ(0) = E(yt − µ)2 = E(εt + θεt−1)2

= E(ε2
t ) + 2θE(εtεt−1) + θ2E(ε2

t−1) = σ2(1 + θ2)

γ(1) = E[(yt − µ)(yt−1 − µ)]
= E[(εt + θεt−1)(εt−1 + θεt−2)] = θσ2

γ(k) = E[(yt − µ)(yt−k − µ)]
= E[(εt + θεt−1)(εt−k + θεt−k−1)] = 0, k > 1



• ACF has a cutoff at k = 1:

ρ(0) = 1

ρ(1) = θ
1+θ2

ρ(k) = 0, k > 1

Invertibility: yt ∼MA(1) is invertible if |θ| < 1. Consider the process

ỹt = µ+ εt + θ̃εt−1

with θ̃ = 1/θ and εt ∼WN(σ̃2).

The process ỹt has the same moments µ, γ(0) and γ(1), as

yt = µ+ εt + θεt−1

with σ2 = θ̃2σ̃2. Hence, ρ(1) = θ−1/(1+θ−2) = θ/(1+θ2) in both cases.



The two processes have identical properties and cannot be discriminated

from the first two moments. This problem is known as non-identifiability

and is remedied upon by constraining θ in the interval (-1,+1).

The term invertibility stems from the possibility of rewriting the process as

an infinite autoregression, AR(∞), with coefficients πj that are convergent:

yt + π1yt−1 + π2yt−2 + · · ·+ πkyt−k + · · · = m+ εt,
∞∑
j=1

|πj| <∞

The sequence of weights πj = (−θ)j converges if and only if |θ| < 1.

• PACF: Since an invertible MA(1) process can be rewritten as AR(∞),

its PACF has no cutoff but it decays exponentially.





MA(q) processes: The MA(q) process is generated by the equation

yt = µ+ εt + θ1εt−1 + · · ·+ θqεt−q

is invertible if the roots of θ(L) = 0 are outside the unit circle.

The moments are obtained as follows

E(yt) = µ

γ(0) = E(yt − µ)2 = E(εt + θ1εt−1 + · · ·+ θqεt−q)2

= σ2(1 + θ2
1 + · · ·+ θ2

q)

γ(k) = E[(εt + θ1εt−1 + · · ·+ θqεt−q)(εt−k + θ1εt−k−1 + · · ·+ θqεt−k−q)]

= σ2(θk + θk+1θ1 + · · ·+ θq−kθq)
γ(k) = 0, k > q

• ACF has a cutoff at k = q.

• PACF has no cutoff, it is similar as the ACF of an AR(q) process.



3.3 ARMA processes

ARMA(p, q) processes: The ARMA(p, q) process is generated by the equa-

tion

φ(L)yt = m+ θ(L)εt

where

φ(L) = 1− φ1L− · · · − φpLp,
θ(L) = 1 + θ1L+ · · ·+ θqL

q

Remark: the polynomials φ(L) and θ(L) should have no common roots,

otherwise a reduction of the orders p, q would occur after cancelling the

common roots.



Stationarity: yt is stationary if the roots of the AR polynomial φ(L) lie

outside the unit circle.

Stationarity implies that yt can be written as an MA(∞) process with

declining coefficients:

yt = φ(1)−1m+ φ(L)−1θ(L)εt = µ+ ψ(L)εt

Invertibility: yt is invertible if the roots of the MA polynomial θ(L) lie

outside the unit circle.

Invertibility implies that yt can be written as an AR(∞) process with declin-

ing coefficients:

θ(L)−1φ(L)(yt − µ) = π(L)(yt − µ) = εt



ARMA(1, 1) processes: The ARMA(1, 1) process is generated by the equa-

tion

yt = m+ φyt−1 + εt + θεt−1

• The expected value is:

E(yt) = m+ φE(yt−1) = m+ φµ = m/(1− φ)

• The demeaned process is:

(yt − µ) = φ(yt−1 − µ) + εt + θεt−1



• The autocovariance function is obtained as follows

γ(0) = E[(yt − µ)yt] = E[φ(yt−1 − µ)yt + εtyt + θεt−1yt]
= φγ(1) + σ2 + E {θεt−1[φ(yt−1 − µ) + εt + θεt−1]}
= φγ(1) + σ2(1 + θφ+ θ2)

γ(1) = E[(yt − µ)yt−1] = E[φ(yt−1 − µ)yt−1 + εtyt−1 + θεt−1yt−1]
= φγ(0) + θσ2

γ(k) = E[yt(yt−k − µ)] = φγ(k − 1), k > 1

• Both ACF and PACF have no cutoff!



Figure 7: ACF and PACF of an ARMA(1,1) process.



3.4 Outliers in ARMA models

• Many economic and financial time series display outlying observations,
which are due to specific events (errors in the data, strikes, changes
in regulations, natural disasters, etc.).

• The presence of these outliers may induce misspecification of the
ARMA model as well as biases in parameter estimation.

• Outliers can be modelled as additional deterministic components to
the basic ARMA set-up. Their treatment leads to ARMA models with
exogenous variables (ARMAX) that are impulse dummies:

It(τ) =

{
1 if τ = t
0 if τ 6= t

where τ is the time in which the event generating the outlier occurs.



• Additive Outlier (AO):

yt = µ+
θ(L)

φ(L)
εt + ωIt(τ), ω ∈ R

An AO shows up at time τ only with magnitude ω, subsequent obser-

vations are unaffected.

• Innovational Outlier (IO):

yt = µ+
θ(L)

φ(L)
[ωIt(τ) + εt],

An IO is characterized by having an impact of magnitude ψhω at time

τ + h for h = 0, 1, 2, ...



• Transient Change (TC):

yt = µ+
θ(L)

φ(L)
εt +

ω

1− δL
It(τ), |δ| < 1

A TC is characterized by having an impact of magnitude δhω at time

τ + h. Asymptotically, E(yτ+h) returns to µ.

• Level Shift (LS):

yt = µ+
θ(L)

φ(L)
εt +

ω

1− L
It(τ),

A LS implies that E(yτ+h) move permanently to (µ+ω). In contrast

to a TC, a LS affects all the subsequent observations forever.





3.5 Forecasting from ARMA Models

Let yt ∼ARMA(p, q) and It = {yt, yt−1, · · · }. The best linear unbiased

predictor of yt+h is given by:

yt(h) = E(yt+h|It), h = 1, 2, ...,

where E(yt+h|It) is the expected value of yt+h conditional to It, which is

the called the natural filtration of the process yt.

From the expression

yt+h = m+φ1yt+h−1+· · ·+φpyt+h−p+εt+h+θ1εt+h−1+· · ·+θqεt+h−q
we get

yt(h) = m+ φ1E(yt+h−1|It) + · · ·+ φpE(yt+h−p|It)
+ E(εt+h|It) + θ1E(εt+h−1|It) + · · ·+ θqE(εt+h−q|It)



It is then possible to recursively compute the optimal h−step ahead pre-

dictor yt(h) given that

E(yt+h−i|It) =

{
yt+h−i, i ≥ h
yt(h− i), i < h

E(εt+h−i|It) =

{
εt+h−i, i ≥ h

0, i < h

Example: Let assume that yt ∼ARMA(1, 1), we get

yt(h) = m+ φE(yt+h−1|It) + E(εt+h|It) + θE(εt+h−1|It),

which implies

yt(1) = m+ φyt + θεt
yt(h) = m+ φyt(h− 1) = m(1 + φ+ · · ·+ φh−2) + φh−1yt(1)

= m(1 + φ+ · · ·+ φh−1) + φhyt + φh−1θεt, h > 1



Since any ARMA(p, q) admits the Wold representation yt = µ + ψ(L)εt,

where ψ(L) = θ(L)/φ(L), we can rewrite h−step ahead predictor as

yt(h)− µ = E(
∑h−1
j=0ψjεt+h−j +

∑∞
j=hψjεt+h−j|It) =

∑∞
j=hψjεt+h−j

Hence, the h−step ahead prediction error is

εt(h) = yt+h − yt(h) =
∑h−1
j=0ψjεt+h−j

Since εt(h) ∼MA(h− 1), we have that

E[εt(h)] = 0,

σ2(h) ≡ Var[εt(h)] = σ2∑h−1
j=0ψ

2
j ,

We note that σ2(h) is a non-decreasing function of h such that

lim
h→∞

σ2(h) = γ(0)



When εt is a Gaussian white-noise, it follows that

εt(h)/σ(h) ∼ N(0, 1)

since εt(h) is a linear combination of i.i.d. N(0, σ2) random variables.

Hence, the 100(1− α)% confidence interval for yt+h is

yt(h)− zα/2σ(h) < yt+h < yt(h) + zα/2σ(h)

Remark: When the model parameters are estimated, the above formula

underestimates the true sample variability.



3.6 Forecasting the random walk

In order to compute the h−step ahead prediction of the RW (with drift),

it is convenient to rely on the expression:

yt+h = mh+ yt + εt+h + εt+h−1 + · · ·+ εt+1,

which is easily obtained by recursive substitutions.

From the above equation we get:

yt(h) = mh+ yt

εt(h) = εt+h + εt+h−1 + · · ·+ εt+1

σ2(h) = hσ2

Remark: lim
h→∞

σ2(h) =∞ ⇒ it is less and less likely to find yt+h close to

yt(h) as the forecasting horizion h increases.



4 Nonstationary processes

Integrated processes: An ARMA process is integrated of order d, denoted
as yt ∼ I(d) or yt ∼ ARIMA(p, d, q), if

φ(L)∆dyt = m+ θ(L)εt,

where ∆ = 1 − L, and the roots of both φ(L) and θ(L) lie outside the
unit circle.
The simplest I(1) process is the RW, i.e the ARIMA(0, 1, 0):

∆yt = m+ εt

The simplest I(2) process is the Integrated Random Walk, i.e the ARIMA(0, 2, 0):

∆2yt = (1− 2L+ L2)yt = εt,

which can be rewritten by recursive substitutions as:

yt = y0 + ∆y0t+
∑t−1
i=0

∑t−1
j=iεt−j



4.1 The Beveridge-Nelson decomposition

Beveridge and Nelson (1981) proved that any ARIMA(p, 1, q) process can
be decomposed as the sum of a RW (with drift) and an I(0) process.
Indeed, by expanding the polynomial ψ(L) on 1 we get

ψ(L) = ψ(1) + (1− L)ψ∗(L)

where ψ∗(L) =
∞∑
j=0

ψ∗jL
J is such that ψ∗j = −

∞∑
i>j

ψi and lim
j→∞

|ψ∗j | = 0.

Hence, we can rewrite the Wold representation as

∆yt = µ+ ψ(1)εt + (1− L)ψ∗(L)εt, (2)

Applying S(L) to both sides of (2) and assuming εt = 0 for t ≤ 0 we get

yt = y0 + µt+
t−1∑
j=0

ψ(1)εt−j︸ ︷︷ ︸
RW with drift = ”stochastic trend”

+ ψ∗(L)εt︸ ︷︷ ︸
I(0) = ”cycle”



4.2 Seasonality

Seasonal Differences:

∆s = 1− Ls = (1− L)(1 + L+ · · ·+ Ls−1)

where s denotes the number of seasons in an year. Usually, s = 4 or 12.

Seasonal Integration (s = 4):

∆4 = (1− L)(1 + L+ L2 + L3) = (1− L)(1 + L)(1 + L2),

(1 + L2) = (1− iL)(1 + iL),

where i = (−1)1/2. Hence, ∆4 has 4 roots on the unit circle. A similar

result applies to the monthly case (s = 12) as well.



Let us write fω(t) = a cos(tω) + b sin(tω), a function with period P =

2π/ω, where ω ∈ [0, π]. Then we have

(1− L)f0(t) = (1− L)[a cos(t0)] = 0
(1 + L)fπ(t) = (1 + L)[a cos(tπ)] = 0

(1 + L2)fπ/2(t) = (1 + L2)[a cos(tπ/2) + b sin(tπ/2)] = 0

Hence, we define

yt ∼ Iπ(1) iff (1 + L)yt ∼ I(0)

yt ∼ Iπ/2(1) iff (1 + L2)yt ∼ I(0)

yt ∼ I0(1) iff (1− L)yt ∼ I(0)

A process yt such that

(1− L4)yt ∼ I(0),

is then I(1) at both 0 and seasonal frequencies π, π/2. It is denoted

yt ∼ SI(1). A similar definition applies to the monthly case as well.



Seasonal Processes: The most popular seasonal generalization of ARIMA

models leads to the following ARIMA(p, d, q)× (P,D,Q)s model:

φ(L)Φ(Ls)∆d∆D
s yt = µ+ θ(L)Θ(Ls)εt,

where Φ(Ls) = 1 − Φ1L
s − Φ2L

2s − · · · − ΦPL
Ps is the seasonal AR

polynomial in Ls with order P , and Θ(Ls) = 1 + Θ1L
s + Θ2L

2s + · · ·+
ΘQL

Qs is the seasonal MA polynomial with order Q.

An important special case is the Airline model ARIMA(0, 1, 1)× (0, 1, 1)s:

(1− L)(1− Ls)yt = (1 + θL)(1 + ΘLs)εt,

with |θ| < 1, |Θ| < 1.



The autocovariance function of the Airline model is

γ(0) = (1 + θ2)(1 + Θ2)σ2

γ(1) = θ(1 + Θ2)σ2

γ(k) = 0 for k = 2, . . . , s− 2
γ(s− 1) = θΘσ2

γ(s) = Θ(1 + θ2)σ2

γ(s+ 1) = θΘσ2

γ(k) = 0 for k > s+ 1



4.3 The Box-Jenkins Approach

1. Identification of the orders p, d, q (and P,D,Q for seasonal models).

• The integration order d (and D for seasonal models) is determined

first. In the past, this was basically done by graphical methods.

Nowadays, we rely on unit roots tests, which we will see later.

• In the past, The MA and AR orders p, q (and P,Q for seasonal

models) were determined from the analysis of the correlogram.

Nowadays, we rely on information criteria, which we will see soon.



2. Estimation of the parameters

• Conditional maximum likelihood (CML). Given a sample of T ob-

servations, the initial values (y1, ...yp) and (ε1, ...εq) are treated as

fixed ⇒ they do not enter in the likelihood function.

• Unconditional ML (UML). The initial values are treated as real-

izations of the stochastic process ⇒ they enter in the likelihood

function.

• In large samples, CML and UML are equivalent.

• For pure AR processes, CML is the same as OLS.



3. Diagnostic checking

• Significance tests for the parameters. t tests, F tests.

• Normality tests on residuals et =
φ̂(L)

θ̂(L)
yt. Jarque—Bera test; under

H0 : εt ∼ i.i.d.N(0, σ2), the test statistic (based on the sample

3rd and 4th moments of the residuals) converges to a χ2(2).

• Autocorrelation tests on residuals. Ljung-Box test; under H0 : εt ∼
WN , the test statistic

Q(m) = T (T + 2)
m∑
k=1

(T − k)−1ρ̂2
e(k)

converges to a χ2(m− p− q).

• Goodness of fit. Coefficient of determination.



Information criteria (IC): composed by (i) an inverse measure of fit; (ii) an

increasing function of the number of parameters. Given a set of candidate

models, the preferred model is the one with the minimum IC ⇒ best

compromise between fit and parsimony.

In practice, estimate all the ARMA models whose orders are at maximum

pmax,qmax, then choose the ARMA(p∗, q∗) such that one of the following

is satisfied:

(p∗, q∗) = arg min
{
AIC(p, q) = ln σ̂2 + 2

p+ q

T

}
,

(p∗, q∗) = arg min
{
HQIC(p, q) = ln σ̂2 + 2 ln [ln (T )]

p+ q

T

}
,

(p∗, q∗) = arg min
{
BIC(p, q) = ln σ̂2 + ln (T )

p+ q

T

}
.

where AIC (HIC) [BIC] stands for Akaike (Hannan-Quinn) [Bayes] IC.



Remarks:

• For T > 15, the penalty term of AIC (BIC) is the smallest (largest)
one ⇒ for the sample sizes typically used in economics and finance,
AIC tends to choose less parsimonious models than BIC, HQIC is a
middle way.

• BIC and HQIC asymptotically choose the true orders with probability
one, whereas AIC has a non-null probability of choosing an overpara-
meterized model even in the limit.

• Notwithstanding the above, AIC is often preferred in empirical appli-
cations because the cost of underparameterization, i.e. lack of consis-
tency, is statistically larger than the one of overparameterization i.e.
lack of efficiency.



5 Unit-root tests

A stylized fact: Many (possibly log-transformed) economic and financial

time series display a tendency to grow approximately linearly over time.

Nelson and Plosser (1982) contrast 2 candidate data generating processes:

Difference-stationary (DS) processes: yt ∼ I(1) + drift.

Trend-stationary (TS) processes: yt ∼ I(0) + linear deterministic trend

Both are nested into the unobserved components (UC) process:

yt = α+ βt+ ut,

φ(L)ut = εt.

If φ(L) = (1− L)φ∗(L) and all the (p− 1) roots of φ∗(L) lie outside the

unit circle ⇒ yt is DS. Notice that in this case we have φ(1) = 0.

If all the roots of φ(L) lie outside the unit circle ⇒ yt is TS.



Dickey-Fuller (DF) test: assume that ut is an AR(1) process. By premul-

tiplying both sides of the first UC equation with φ(L) we get:

yt = [φβ + φ(1)α] + φ(1)βt+ φyt−1 + εt, φ(1) = 1− φ,

which we may reparametrize as

∆yt = (φβ − ρα)︸ ︷︷ ︸
α∗

+ (−ρβ)︸ ︷︷ ︸
β∗

t+ ρyt−1 + εt, ρ = (φ− 1),

and perform a t−test for H0 : ρ = 0, i.e. φ = 1, vs. H1 : ρ ∈ (−2, 0), i.e.

|φ| < 1.

Remark 1: Under H0, we have ∆yt = β + εt ⇒ the slope β∗ annihilates.

Remark 2: The limit distribution of the t−test statistic under H0 is no

longer a N(0, 1) since the CLT does not apply to I(1) processes.



DF test with no trend: assume that the data do not display a trending

behavior. Hence, β = 0 in the UC process. The DF regression becomes

∆yt = −ρα+ ρyt−1 + εt, ρ = (φ− 1),

and we still perform a t−test for H0 : ρ = 0 vs. H1 : ρ ∈ (−2, 0). Notice

that under H0 we have: ∆yt = εt ⇒ the drift is null.

DF test with no constant: assume that any deterministic term is present in

the data. With α = β = 0 in the UC process, the DF regression becomes

∆yt = ρyt−1 + εt, ρ = (φ− 1),

and we again perform a t−test for H0 : ρ = 0 vs. H1 : ρ ∈ (−2, 0).

Remark: The distribution of the test statistic is not invariant to the deter-

ministic kernel. Each of the three tests has its own critical values. They

were tabulated by Fuller (1977).



Augmented Dickey-Fuller (ADF) test: assume that ut is an AR(p) process.

Rewriting the AR polynomial as

φ(L) = φ(1)L+ ∆φ†(L),

with

φ†(L) = 1− φ†1L− . . .− φ
†
p−1L

p−1, φ
†
j = −

p∑
i=j+1

φi

and premultiplying both sides of the first UC equation with φ(L) we get:

∆yt = (ρβ + φ†(1)β − ρα)︸ ︷︷ ︸
α∗

+ (−ρβ)︸ ︷︷ ︸
β∗

t+ρyt−1+
p−1∑
j=1

φ
†
j∆yt−j+εt, ρ = −φ(1).

Finally, we perform a t−test for H0 : ρ = 0 vs. H1 : ρ < 0. Notice that

under H0 we have: φ†(L)∆yt = φ†(1)β + εt ⇒ the slope β∗ annihilates.

The limit distribution of the test statistic is the same as the DF one.







6 Impulse response function and persistence mea-

sures

The impulse response function (IRF) is a standard tool in illustrating the

dynamic behavior of a time series model, e.g. yt ∼ARIMA(p, 1, q).

The IRF measures the effect of an innovation occurring at time t, yt −
E[yt|It−1], on yt+h, h = 1, . . . ,∞.

IRF(h) =
∂yt+h
∂εt

, h = 0, 1, . . .

In a linear time series model the IRF is time invariant and a function of h

alone.



If yt ∼ I(1),

∆yt = µ+ ψ(L)εt,

the IRF is given by the deterministic first order difference equation:

IRF(h) = IRF(h− 1) + ψh

with starting value IRF(0) = 1; thus,

IRF(h) = 1 + ψ1 + · · ·+ ψh

(cumulation of psi-weights)



Measures of persistence: Let yt ∼ I(1), ∆yt = µ+ ψ(L)εt.

• Campbell and Mankiw (1987) measure

lim
h→∞

IRF(h) = ψ(1) = θ(1)/φ(1)

Equivalently, we can interpret ψ(1) as the revision in the long run
prediction of yt due to the occurrence of a unit shock at t (εt = 1):

lim
h→∞

[E(yt+h|It)− E(yt+h|It−1)] = ψ(1)εt,

• Cochrane (1988) normalized variance ratio

V = [ψ(1)σ]2/γ0

It normalizes the variance of the innovations of the stochastic trend
with the unconditional variance of ∆yt.


