Giulia Pavan Linear Algebra Practice October, 29th

\hookrightarrow Topics

Partial derivatives. Eigenvalues and eigenvectors. Cholesky decomposition.

Exercise 1

Consider the function

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

and show that $f_{x,y}(0,0) \neq f_{y,x}(0,0)$.

What can you deduce for the mixed derivatives of second order?

Solution

If $(x, y) \neq (0, 0)$

$$f_x(x,y) = \frac{\partial}{\partial x} \left[(x,y) \frac{x^2 - y^2}{x^2 + y^2} \right] = y \frac{x^2 - y^2}{x^2 + y^2} + (xy) \frac{\partial}{\partial x} \left[\frac{x^2 - y^2}{x^2 + y^2} \right]$$

Therefore, $f_x(0, y) = -y$ if $y \neq 0$. When $(x, y) \neq (0, 0)$ we have

$$f_y(x,y) = \frac{\partial}{\partial y} \left[(x,y) \frac{x^2 - y^2}{x^2 + y^2} \right] = x \frac{x^2 - y^2}{x^2 + y^2} + (xy) \frac{\partial}{\partial y} \left[\frac{x^2 - y^2}{x^2 + y^2} \right]$$

Therefore, $f_y(x,0) = x$ if $x \neq 0$.

$$f_x(0,0) = \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{f(h,0)}{h} = \lim_{h \to 0} \frac{0}{h} = 0$$

$$f_y(0,0) = \lim_{h \to 0} \frac{f(0,0+h) - f(0,0)}{h} = \lim_{h \to 0} \frac{f(0,h)}{h} = \lim_{h \to 0} \frac{0}{h} = 0$$

$$f_{xy}(0,0) = \lim_{h \to 0} \frac{f_y(0+h,0) - f_y(0,0)}{h} = \lim_{h \to 0} \frac{f(h,0)}{h} = \lim_{h \to 0} \frac{h}{h} = 1$$

$$f_{yx} = \lim_{h \to 0} \frac{f_x(0,0+h) - f_x(0,0)}{h} = \lim_{h \to 0} \frac{f(0,h)}{h} = \lim_{h \to 0} \frac{-h}{h} = -1$$

Therefore, we showed that $f_{xy}(0,0) = 1 \neq -1 = f_{yx}(0,0)$. This implies that the mixed derivatives are not continuous in the point (0,0). Otherwise, by Schwartz Theorem we should have $f_{xy}(0,0) = f_{yx}(0,0)$.

Exercise 2

Compute the eigenvalues and the associated eigenvectors of the following matrices:

$$A = \begin{pmatrix} 5 & 4 \\ 1 & 2 \end{pmatrix}; B = \begin{pmatrix} 3 & 6 \\ 9 & 18 \end{pmatrix}$$

Solution

Eigenvalues of A: $\lambda = 1$ with eigenspace V_1 = vectors of the form: $(\alpha, -\alpha)$; $\lambda = 6$ with eigenspace V_6 = vectors of the form: $(4\beta, \beta)$.

Eigenvalues of B: $\lambda = 0$ with eigenspace V_0 = vectors of the form: $(-2\alpha, \alpha)$; $\lambda = 21$ with eigenspace V_{21} = vectors of the form: $(3\beta, \beta)$.

Exercise 3

Fix the parameter h so that the matrix

$$C = \begin{pmatrix} h & 1 & 0\\ 1 - h & 0 & 2\\ 1 & 1 & h \end{pmatrix}$$

has the eigenvalue 1. Solution

We want $det(C - \lambda I) = 0$. Therefore,

$$C = \begin{vmatrix} h - \lambda & 1 & 0\\ 1 - h & 0 - \lambda & 2\\ 1 & 1 & h - \lambda \end{vmatrix} = 0$$

If $\lambda=1$

$$(h-1)\begin{vmatrix} -1 & 2\\ 1 & h-1 \end{vmatrix} + 1(-1)\begin{vmatrix} 1-h & 2\\ 1 & h-1 \end{vmatrix} = (h-1)[(1-h)-2)] - [(1-h)(h-1)-2] = 0 \\ -(h-1)^2 - 2(h-1) - (h-1)^2 + 2 = 0 \\ 2(h-1) = 2 \\ h = 2 \end{cases}$$

.

Exercise 4

Decompose the following matrix according to the Cholesky decomposition.

$$C = \begin{pmatrix} 6 & -2 & 2 \\ -2 & 5 & 0 \\ 2 & 0 & 7 \end{pmatrix}$$

We want to find two triangular matrix, such that their product is equal to C.

During the last class we showed that C is p.d. and you can see that it is a symmetric matrix.

$$C = \begin{pmatrix} 6 & -2 & 2 \\ -2 & 5 & 0 \\ 2 & 0 & 7 \end{pmatrix} = \begin{pmatrix} g_1 & 0 & 0 \\ g_2 & g_3 & 0 \\ g_4 & g_5 & g_6 \end{pmatrix} \begin{pmatrix} g_1 & g_2 & g_4 \\ 0 & g_3 & g_5 \\ 0 & 0 & g_6 \end{pmatrix}$$

Therefore, we have: $g_1^2 = 6$, then $g_1 = \sqrt{6}$ $g_1g_2 = -2$, then $g_2 = -\frac{\sqrt{6}}{3}$ $g_1g_4 = 2$, then $g_4 = \frac{\sqrt{6}}{3}$ $g_2^2g_3^2 = 5$, then $g_3 = \frac{\sqrt{39}}{3}$ $g_2g_4 + g_3g_5 = 0$, then $g_5 = \frac{2}{\sqrt{39}}$ $g_4^2 + g_5^2 + g_6^2 = 7$, then $g_6 = \frac{9}{\sqrt{39}}$

Exercise 5

Suppose that P is projection.

- 1. Prove that $\tilde{P} = I P$ is a projection.
- 2. Prove that $\operatorname{Ker}(P) = \operatorname{Range}(\tilde{P})$.
- 3. Prove that $\operatorname{Range}(P) = \operatorname{Ker}(\tilde{P})$.
- 4. $P\tilde{P} = \tilde{P}P = 0.$

Solution

If we have a vector space V a projection $P: V \to V$ gives us a decomposition $V = \operatorname{Ker}(P) \oplus \operatorname{Range}(P)$, namely each vector v has a unique decomposition $v = [v - P(v)] + P(v) = \tilde{P}(v) + P(v) = v_1 + v_2$ where $v_1 \in \operatorname{Ker}(P)$, $v_2 \in \operatorname{Range}(P)$ and $v_1 \perp v_2$.

1. The transposition is a linear operator therefore

$$\tilde{P}^{t} = (I - P)^{t} = I^{t} - P^{t} = I - P = \tilde{P}.$$

$$\tilde{P}^{2} = (I - P)(I - P) = I - P - P + P^{2} = I - P = \tilde{P}$$

- 2. Ker(P)={v|P(v) = 0}, Range(P̃) = {v|v = P̃(w) for some w}. Since v = P̃(v) + P(v) we have:
 i) P(v) = 0 implies v = P̃(v). This means: v ∈Ker(P) implies v ∈Range(P̃).
 ii) v = P̃(w) implies v = w - P(w) therefore P(v) = P(w) - P²(w) = 0. This means: v ∈Range(P̃) implies v ∈Ker(P)
 From i) and ii) we get Ker(P)=Range(P̃).
- 3. Since $\tilde{\tilde{P}} = P$ and the point 2) we have $\operatorname{Ker}(\tilde{P}) = \operatorname{Range}(\tilde{\tilde{P}}) = \operatorname{Range}(P)$.
- 4. Direct consequence of $P^2 = P$.

Exercise 6

Let X be a $n \times k$ matrix. Suppose that $X^t X$ is non-singular. Define $H = H_X = X(X^t X)^{-1} X^t$.

- 1. Prove that H is an $n \times n$ matrix.
- 2. Calculate H_X for

$$X = \begin{pmatrix} 1 & 0\\ 0 & 1\\ 1 & 0 \end{pmatrix}$$

- 3. Prove that for the case 2.) H is a projection.
- 4. Prove that H is a projection in general.
- 5. Prove that if n = k then $H = I_n$.

Solution

1. X^t is a $k \times n$ matrix. Therefore $X^t X$ is a $k \times k$ matrix. This implies that $(X^t X)^{-1}$ is a $k \times k$ matrix as well. From this we get that $(X^t X)^{-1} X^t$ is $k \times n$ matrix and therefore the conclusion.

2.

$$X^{t}X = \begin{pmatrix} 2 & 0\\ 0 & 1 \end{pmatrix} \qquad (X^{t}X)^{-1} = \begin{pmatrix} \frac{1}{2} & 0\\ 0 & 1 \end{pmatrix}$$
$$H = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2}\\ 0 & 1 & 0\\ \frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix}$$

3.

4.
$$H^{t} = (X(X^{t}X)^{-1}X^{t})^{t} = X(X^{t}X)^{-1}X^{t} = H.$$

 $H^{2} = HH = X(X^{t}X)^{-1}\underbrace{X^{t}X(X^{t}X)^{-1}}_{I}X^{t} = X(X^{t}X)^{-1}X^{t} = H.$

5. If n = k then X is a squared matrix. Since we suppose $X^t X$ nonsingular we have that X is non-singular $(\det(X^t X) = \det(X)^2)$ and so we can write $H = X(X^t X)^{-1} X^t = X X^{-1} (X^t)^{-1} X^t = I_n$