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1 Practice 1

1. Show that A ⊥ B ⇒ Ac ⊥ Bc.

Sol
If two events are independent, then

P (A ∩B) = P (A)P (B)

According to De Morgan’s Laws, (A ∪B)c = (Ac ∩Bc).
Hence

P (Ac ∩Bc) = 1− P (A ∪B)

= 1− P (A)− P (B) + P (A ∩B)

= 1− P (A)− P (B) + P (A)P (B)

= [1− P (A)] [1− P (B)] = P (Ac)P (Bc)

2. Throw a die two times. Which is the probability to get at least one six?

Sol
Taking into account the throw of the dice and its output to characterize the event A = 1(x = 6). A1 and A2 are independent,
and the range of the possible outputs is 36.

P (A1 +A2 ≥ 1) = P (A1 = 1) + P (A2 = 1)− P (A1 = 1 ∩A2 = 1)] =
6 + 6− 1

36
=

11

36

Another possible solution is to describe the problem as a binomial distribution of parameters n = 2 and p = 1
6 . Define



Xi, i = 1, 2, as the random variable taking value 1 if the outcome is 6 and 0 otherwise, and let S =
∑
iXi. Then

P (S ≥ 1) =

2∑
k=1

(
2

k

)
pk(1− p)2−k

=

(
2

1

)
p(1− p) +

(
2

2

)
p2

=
10

36
+

1

36
=

11

36

3. Define the events A = ill, B = smoker and define the probabilities P (B) = 0.4, P (A | B) = 0.25, P (A | Bc) = 0.07. What
is the probability of being ill? What is the probability of being a smoker given that you are ill?

Sol
Since the probability of not being a smoker is 0.6, the probability of being ill is

P (A) = P (Bc)P (A | Bc) + P (B)P (A | B)

= 0.6 · 0.07 + 0.4 · 0.25 = 0.142

and the probability of being a smoker since you are ill is

P (B | A) =
P (B)P (A | B)

P (A)

=
0.4 · 0.25

0.142
≈ 0.7

4. Given a package with three balls, let X be the number of broken balls in the package and p = 0.2 the probability for a ball
to be broken. (We are assuming that the fact that a ball is broken is independent on the state of the other balls.) Which
is the probability that the number of broken balls is at most one?

Sol

P (X = 0) + P (X = 1) =

(
3

0

)
× 0.83 +

(
3

1

)
× 0.2× 0.82 = 0.896

5. Calculate expectation for the geometric distribution.

Sol

E(X) =

∞∑
x=1

pxqx−1 = p

∞∑
x=1

xqx−1 = p

∞∑
x=1

dqx

dq

=
p

(1− q)2
=

1

p
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6. Calculate expectation, second moment and variance for the Poisson distribution.

Sol
X ∼ Poisson(λ), then P (X = x) = λx

x! e
−λ.

Expectation:

E(X) =

∞∑
x=0

x
λx

x!
e−λ

=

∞∑
x=1

x
λx

x!
e−λ

= λe−λ
∞∑
x=1

λx−1

(x− 1)!

= λ

Second moment and variance:

E(X2) =

∞∑
x=0

x2
λx

x!
e−λ =

∞∑
x=1

x2
λx

x!
e−λ

= λ

∞∑
x=1

x
λx−1

(x− 1)!
e−λ

= λ

∞∑
k=0

(k + 1)
λk

(k)!
e−λ = λ

∞∑
k=0

k
λk

(k)!
e−λ + λ

∞∑
k=0

λk

(k)!
e−λ

= λ2 + λ

=⇒ Var(X) = E(X2)− E(X)2 = λ2 + λ− λ2 = λ

7. Suppose that a monkey is allowed to randomly hit the keys on a typewriter keyboard for an infinite amount of time.
Suppose further that the keyboard has 50 keys. What is the probability that the monkey succeeds in typing the word
‘banana’?

Sol
The chance of the first six letters forming the word ‘banana’ is 1

506 . Define Xn as the event not typing ‘banana’ in any of
the first n blocks of 6 letters. It follows that:

P (Xn) =
(

1− 1

506

)n
from which:

lim
n→∞

P (Xn) = lim
n→∞

(
1− 1

506

)n
= 0

=⇒ lim
n→∞

P (Xc
n) = lim

n→∞
1− P (Xn) = 1

Hence, the monkey will type ‘banana’ almost surely. As a matter of fact, the monkey will type any finite text almost surely,
if given an infinite amount of time. This is known as the infinite monkey theorem.
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2 Practice 2

1. Calculate second moment and variance for the geometric distribution.

Sol
Recall some facts: X ∼ Geometric(p)⇔ P (X = x) = p(1− p)x−1 = pqx−1;

if q ∈ (−1, 1), then
∑∞
k=0 q

k = 1
1−q , and this implies that

∑∞
k=0

dqk

dq =
∑∞
k=0 kq

k−1 = 1
(1−q)2 .

In order to solve the question, compute E(X):

E(X) =

∞∑
x=1

pxqx−1 = p

∞∑
x=0

xqx−1 = p

∞∑
x=0

dqx

dq

=
p

(1− q)2
=

1

p

Same steps to recover E(X2):

E(X2) =

∞∑
x=0

px2qx−1

= p

∞∑
x=0

(x2 − x+ x)qx−1

= pq

∞∑
x=0

(x2 − x)qx−2 + p

∞∑
x=0

xqx−1

= pq

∞∑
x=0

(x2 − x)qx−2 +
1

p

= pq

∞∑
x=0

x(x− 1)qx−2 +
1

p

= pq

∞∑
x=0

d2qx

dq2
+

1

p
= pq

2

(1− q)3
+

1

p

= q
2

(1− q)2
+

1

p
=

2q

p2
+

1

p

=
2− p
p2

Using the previous results, we have:

Var(X) = E(X2)− E(X)2

=
2− p
p2
− 1

p2
=

1− p
p2

2. 28 people booked a flight. The probability that each passenger is coming at the check-in is 0.7. Which is the probability
that more than 25 passengers come at the check-in? (We are assuming that each passenger is independent from the others).
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Sol
Since a passenger can only either come at the check-in or not, then the distribution is S ∼ Binomial(28, 0.7). Then

P (S > 25) =

28∑
x=26

(
28

x

)
0.7x0.328−x

=

(
28

26

)
0.7260.32 +

(
28

27

)
0.7270.31 +

(
28

28

)
0.7280.30

=
28 · 27

2
0.7260.32 + 28 · 0.7270.3 + 0.728 ≈ 0.0157

3. Consider a random variable U with a density given by:

fU (x) = 2
log x

x
1[1,c](x)

with c > 1. Compute c, E(U2) and P (0 < U < 1).

Sol
In order for fU to be a density, its mass must sum to 1, then (using the change of variable x = ey ⇒ dx = eydy)∫ +∞

−∞
fU (x)dx = 2

∫ c

1

log x

x
dx

= 2

∫ log(c)

0

ydy = 2

[
log(y)2

2

]c
0

= log(c)2 = 1⇒ log(c) = ±1⇒ c = e

The second moment is:

E(U2) = 2

∫ e

1

x2 log x

x
dx = 2

∫ e

1

x log(x)dx

= 2

[
x2 log(x)

2

]e
1

− 2

∫ e

1

x

2
dx

= e2 − e2 − 1

2
=
e2 + 1

2

where we used integration by parts.

Finally, P (0 < U < 1) = P (0 ≤ U ≤ 1) =
∫ 1

0
fU (x)dx = 0, since fU (x) = 0 for x ∈ [0, 1].

4.

Re(eiπ) = eiπ

Sol
True. Rewriting the exponential in the trigonometric form, we obtain:

eiπ = cos(π) + i sin(π) = −1 + i · 0 = −1

Re(eiπ) = Re(−1) = −1
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5.

1

3− 4i
= . . .

Sol

1

3− 4i
=

1

3− 4i

3 + 4i

3 + 4i
=

3 + 4i

25

6. Prove that Re
(
1
i

)
and e−iπ + 1 = 0.

Sol

1

i
=

1

i

i

i
=

i

−1
= −i

Re

(
1

i

)
= Re(−i) = 0

and

e−iπ + 1 =
[
eiπ
]−1

+ 1 = −1−1 + 1 = −1 + 1 = 0

7. If X ∼ Poisson(λ), then E(X) = log
(

1
P (X=0)

)
.

Sol
Since E(X) = λ and P (X = 0) = λ0

0! e
−λ, then

log
( 1

P (X = 0)

)
= log

(
eλ
)

= λ = E(X) (1)

3 Practice 3

1. V ∼ Poisson(2). Order the following three numbers from the smallest to the biggest.

2

9
2FV (0) P (|V − E(V )| ≥ 3)

Sol
Since FV (0) = 20

0! e
−2 = e−2, thus, because e < 3→ 1

e >
1
3 →

2
e2 >

2
9 .

Also E(V ) = 2, then P (|V − E(V )| ≥ 3) = P (|V − E(V )| ≥ 3), and by Chebyshev’s inequality

P (|V − E(V )| ≥ 3) ≤
E
[
|V − E(V )|2

]
32

=
Var(V )

9
=

2

9

To conclude, the order is

P (|V − E(V )| ≥ 3) ≤ 2

9
< 2FV (0)
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2. Prove directly that, given X ⊥ Y with X ∼ Poisson(λ) and Y ∼ Poisson(µ), then

X + Y ∼ Poisson(λ+ µ)

Sol
Recalling that by the Binomial Theorem (a+ b)m =

∑m
j=0

(
m
j

)
ajbm−j for m ≥ 0, the probability function of X + Y is

P (X + Y = m) = P
(
∪mj=0(X = j) ∩ (Y = m− j)

)
=

m∑
j=0

P ((X = j) ∩ (Y = m− j))

=

m∑
j=0

P (X = j)P (Y = m− j)

=

m∑
j=0

λj

j!
e−λ

µm−j

(m− j)!
e−µ

=
e−λ−µ

m!

m∑
j=0

λjµm−j
m!

j!(m− j)!

=
e−λ−µ

m!

m∑
j=0

(
m

j

)
λjµm−j

=
e−λ−µ

m!
(λ+ µ)m

=⇒ X + Y ∼ Poisson(λ+ µ)

3. Characteristic function of the Gaussian: general case.

Sol

ψX(t) = E
(
eitX

)
=

1√
2πσ2

∫ +∞

−∞
eitxe−

(x−µ)2

2σ2 dx

Only take into account the exponent and try to recover a square, for instance

−(x− µ− iσ2t)2 = −x2 − µ2 − i2σ4t2 + 2µx+ 2iσ2tx− 2iµσ2t

and the exponent has

−x2 − µ2 + 2µx+ 2iσ2tx

To complete the square i2σ4t2 and 2iµσ2t are needed (notice they do not depend on x), then

ψX(t) = E
(
eitX

)
= e

i2σ4t2+2iµσ2t

2σ2
1√

2πσ2

∫ +∞

−∞
e−

(x−µ−iσ2t)2

2σ2 dx

Since the right side is just the density of a Gaussian with mean µ+ iσ2t and i2 ≡ −1, then

ψX(t) = E
(
eitX

)
= e−

σ2

2 t
2+iµt
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4. Prove that N (µ, 1
n )→ µ in law as n→ +∞.

Sol
As n→ +∞ 1

n → 0, then P (X 6= µ)→ 0 and P (X = µ)→ 1.

5. Using the characteristic function prove that the sum of independent Gaussian r.v. is Gaussian (not true without indepen-
dence).

Sol
Recall that if X ⊥ Y ⇒ ψX+Y (t) = ψX(t)ψY (t) and X ∼ Y ⇔ ψX(t) = ψY (t).

Define Z ∼ N (0, 1), then describe X = σZ + µ and Y = σ̃Z + µ̃, also ψZ(t) = e−
t2

2 .
Since Z ⊥ µ, then

ψX(t) = ψσZ(t)ψµ(t)

=⇒ E
(
eitX

)
= eitµE

(
eitσZ

)
= eitµ−

σ2

2 t
2

By the same reasoning ψY (t) = eitµ̃−
σ̃2

2 t
2

. Then

ψX+Y (t) = ψX(t)ψY (t) = eit(µ+µ̃)−
(σ2+σ̃2)

2 t2

Since all the distributions with “similar” characteristic functions belong to the same distribution family, then X + Y ∼
N (µ+ µ̃, σ + σ̃).

4 Practice 4

Determine whether the following claims are TRUE or FALSE.

1. Given A,B,C ∈ F , assume P (A ∩B ∩ C) > 0. Then P (A ∩B | C) = P (A | B ∩ C)P (B | C).

Sol
TRUE. Define the events A ∩B = D and B ∩ C = M . Then

P (D | C) =
P (D ∩ C)

P (C)

⇒ P (D ∩ C) = P (A ∩B ∩ C) = P (D | C)P (C)

⇒ P (D | C) = P (A ∩B | C) =
P (A ∩B ∩ C)

P (C)

and also

P (A ∩M) =
P (A |M)

P (M)

⇒ P (A |M) = P (A | B ∩ C) =
P (A ∩B ∩ C)

P (B ∩ C)

⇒ P (A ∩B ∩ C) = P (A | B ∩ C)P (B ∩ C)

8



Combining the two together, we obtain

P (A ∩B | C) =
P (A | B ∩ C)P (B ∩ C)

P (C)
= P (A | B ∩ C)P (B | C)

2. Let Z ∼ B(n, p). This implies that P (Z ≥ 0) > P (Z > 0).

Sol
FALSE. Recall that the support of a binomial distribution is the set of positive integers, 0 included. Then the problem
can be restated as

P (Z > 0) + P (Z = 0) > P (Z > 0)

However, P (Z = 0) = p0(1− p)n > 0 ⇐⇒ 1− p > 0.
Therefore, the claim is true if and only if p < 1. Since p ∈ [0, 1], there is one case, p = 1, where the claim does not hold.

3. Let X ∼ exp(λ). This implies that P (X ≥ 0) > P (X > 0).

Sol
FALSE. Recall that the support of an exponential distribution is R+, and that P (X ≤ k) =

∫ k
0
λe−λxdx. Then the

problem can be restated as

P (X > 0) + P (X = 0) > P (X > 0)

P (X = 0) > 0

However, since the exponential distribution is continuous, it has no mass points, and the following holds:

P (X = 0) =

∫ 0

0

λe−λxdx = 0

Hence, the claim is false.

4. Let Z ∼ Poisson(λ). Then −Z ∼ Poisson(λ).

Sol
FALSE. Recall that the support of a Poisson distribution is the set of positive integers (k ∈ N).

P (−Z = k) = P (Z = −k) = 0

5. Let X ∼ exp(λ). This implies that |X| ∼ exp(λ).

Sol
TRUE.

P (|X| ≤ k) = P (−k ≤ X ≤ k)

= P (X ≤ k)− P (X ≤ −k)

= P (X ≤ k)

9



6. For any random variable X one has that t < s implies FX(t) < FX(s).

Sol
FALSE. Although it is always true that t < s implies FX(t) ≤ FX(s), the strict inequality is not always the case. Take as
an example the following distribution, U(0, 1) and t̃ = 3 < s̃ = 1000, the cumulative distribution of U is

FU (u) =


0 u ∈ (−∞, 0)

u u ∈ [0, 1)

1 u ∈ [1,+∞)

Since
{
t̃, s̃
}
∈ [1,+∞] then FU

(
t̃
)

= FU (s̃) = 1.

7. Let f, g : R→ R be densities. Then h = 1
3f + 2

3g is a density.

Sol
TRUE. Since f and g are densities, then

∫
R fdx =

∫
R gdx = 1, also f(x), g(x) ≥ 0 ∀x ∈ R. We have∫

R
hdx =

1

3

∫
R
fdx+

2

3

∫
R
gdx

=
1

3
+

2

3
= 1

and h is a linear combination of non-negative functions, then it is non-negative as well.

8. Suppose that P (A), P (B) > 0 and P (A | B) = P (B | A). Then P (A) = P (B).

Sol
FALSE.

P (A | B) = P (B | A)⇒ P (A)P (A ∩B) = P (B)P (A ∩B)

Notice that in principle P (A ∩B) = 0, then P (A) and P (B) could be any number, also different from each other.

9. For any discrete random variable X it holds P (X = E(X)) 6= 0.

Sol
FALSE. Take as an example X ∼ B(3, 0.5) that has E(X) = 3

2 . It is also true that, since its support is N , then
P
(
X = 3

2

)
= 0.

10. Let X ∼ B(n, p). Suppose that P (X = 0) = 1. This implies that P (X = n) = 0.

Sol
TRUE.

n∑
k=0

P (X = k) =

n∑
k=1

P (X = k) + P (X = 0) = 1

⇒
n∑
k=1

P (X = k) = 0⇒ P (X = n) = 0

10



11. Let X ∼ B(n, p). Then FX(n+ 1) = ψX(0).

Sol
TRUE. By definition of characteristic function, it holds

ψX(t) = E(eitX)⇒ ψX(0) = E(1) =

n∑
k=0

P (X = k) = 1

Also, since the cumulative distribution is non-decreasing and FX ∈ [0, 1] with FX(n) =
∑n
k=0 P (X = k) = 1, then

1 = FX(n) ≤ FX(n+ 1) ≤ 1⇒ FX(n+ 1) = 1.

12. The function f : R→ R defined by f(x) = 2
5x1(x)[0,

√
5] is a density.

Sol
TRUE. In order to check if f is a density, check its sign

f(x) ≥ 0⇔ x ∈ [0,+∞]

which is fine since
[
0,
√

5
]
⊂ [0,+∞], and if it sums to 1∫ √5

0

f dx =
2

5

[
x2

2

]√5

0

=
5

5
− 0 = 1

13. Let X ∼ N (µ, σ2). Then P (X ≤ µ) = 1
2 .

Sol
TRUE. Because f(x) = 1√

2πσ
exp

(
− (x−µ)2

2σ2

)
is symmetric with respect to µ, it follows

P (X ≤ µ) + P (X ≥ µ) = P (X ≤ µ) + P (X ≤ µ) = 1

⇒ P (X ≤ µ) =
1

2

5 Practice 5

1. The function f : R→ R is defined by f(x) = c sin(x)1[0,π]

i Fix c so that f is a density

ii Let X be a random variable such that f is its density: calculate the cumulative density function FX(t)

iii Solve the equation FX(t) = 1
2

Sol

i For f to be a density it must be positive all over its domain and must sum to 1. The first condition is easily matched
for any positive c. For the second one, we have

c

∫ π

0

sin(x)dx = 1

−c [cos(x)]
π
0 = 2c =⇒ c =

1

2

11



ii To calculate the cumulative density, keep in mind that before the lower bound FX is 0 and above the upper bound is
1. Then only calculate what happens inside these bounds.

FX(t) =
1

2

∫ t

0

sin(x)dx =
1− cos(t)

2

Then

FX(t) =


0 t ≤ 0
1−cos(t)

2 t ∈ (0, π)

1 t ≥ π

iii

FX(t) =
1− cos(t)

2
=

1

2
→ cos(t) = 0→ t =

π

2

12



2. Suppose that you flip a fair coin which has 0 and 1 on its faces and that you roll, independently, a fair die. Let us denote
by X the result of the coin and by Y the result of the die. Let Z = XY .

i Which is the distribution of Z?

ii Calculate E(Z)

iii Calculate Var(Z)

Sol

i Z has a distribution which combines the features of a die and those of a coin. Hence, when the coin is 1, the die results
do not change, while they degenerate to 0 when the coin is 0. Since the events are independent (and to get 0, the only
requirement is that the coin be 0) then, for k ∈ {1, 2, 3, 4, 5, 6}, the distribution is

P (Z = 0) = P (X = 0) =
1

2

P (Z = k) = P (X = 1)P (Y = k) =
1

2

1

6
=

1

12

ii To calculate E(Z)

E(Z) = 0 · P (Z = 0) +

6∑
k=1

k · P (Z = k)

=
1

12

6∑
k=1

k =
7

4

Alternatively, since the two events are independent, E[XY ] = E[X]E[Y ] = 21
6 ·

1
2 = 7

4 .

iii To calculate Var(Z)

E(Z2) = 02P (Z = 0) +

6∑
k=1

k2P (Z = k)

=
1

12

6∑
k=1

k2 =
1

12
[1 + 4 + 9 + 16 + 25 + 36] =

91

12

Thus, the variance is

Var(Z) =
91

12
− 49

16
=

364− 147

48
=

217

48

3. Calculate ∫
A

(x
2
− xy

)
dxdy

where A =
{

(x, y) ∈ R2 | y > x2 − 4, y < −x2 + 4
}

.
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Sol
The extremes of integration of y are defined in the set A and depend on x, whose extremes are to be found. Check for
which values of x the conditions in A are respected, by imposing the inequality

−x2 + 4 > x2 − 4→ −x2 + 4 > 0→ x ∈ (−2, 2)

Now, the integral can be solved by firstly integrating with respect to y∫ 2

x=−2

[∫ −x2+4

y=x2−4

x

2
− xy dy

]
dx

Notice that the function xy is odd in y, while x
2 is even in y. Moreover, the extremes of integration are opposite. Under

such condition, the integral of an odd function is 0, while that of an even function is twice the integral from 0 to the top
extreme. Hence, we obtain ∫ −x2+4

y=x2−4

x

2
− xy dy =

∫ −x2+4

y=0

x dy = x(−x2 + 4) = −x3 + 4x

Once again, x3 and x are odd functions of x and the extremes are opposite, then∫ 2

x=−2
−x3 + 4x dx = 0

4. The domain of the function

g(x, y) =
√

1− x2 − y2 +
√
−(y + x2 + 2)

contains the point (0, 1). True or false?

Sol
FALSE. Just plug the coordinates in the function

g(0, 1) =
√

1− 02 − 12 +
√
−(1 + 02 + 2)

=
√

0 +
√
−3 =

√
−3

6 Practice 6

1. X ∼ Poisson(λ), Y ∼ Poisson(µ) and X ⊥ Y implies E(X | X+Y ) = λ
λ+µ (X+Y ). Check the law of iterated expectation.

Sol

E [E (X | X + Y )] = E

[
λ

λ+ µ
(X + Y )

]
=

λ

λ+ µ
(λ+ µ) = λ = E(X)

14



2. X1,X2,...,Xn i.i.d.r.v. and Sn = X1+X2+...+Xn. Prove that E(X1 | Sn) = Sn
n , and check the law of iterated expectation.

Sol
Since {Xi}ni=0 are i.i.d., E[Xj |Sn] is the same for all j. Hence

E[Xj |Sn] =
1

n

n∑
i

E[Xi|Sn]

=
1

n
E[

n∑
i

Xi|Sn]

=
1

n
E[Sn|Sn]

=
1

n
Sn

Finally, we check the law of iterated expectation

E [E (Xj | Sn)] = E

[
Sn
n

]
=
nµ

n
= µ = E(Xj) ∀j

3. Calculate ∫
B

√
x

y
dxdy

where B =
{

(x, y) ∈ R2 | 1 ≤ y ≤ e2x, x ∈ [1, 5]
}

.

Sol

∫ 5

x=1

[∫ e2x

y=1

√
x

y
dy

]
dx =

∫ 5

x=1

√
x
[
ln(e2x)− ln(1)

]
dx

=

∫ 5

x=1

2x
3
2 dx

=
4

5
[5

5
2 − 1]

=
4

5
[25
√

5− 1]

4. Calculate ∫
C

xy dxdy

where C =
{

(x, y) ∈ R2 | x2 + y2 < 2x
}

.

Sol
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To find the extremes, rewrite the set C as y2 < 2x− x2. Since y2 is always positive, the condition 2x− x2 > 0 must hold,
which is satisfied for x ∈ (0, 2). Applying the square root to y2, we get −

√
2x− x2 < y <

√
2x− x2. Then

∫ 2

x=0

x

[∫ √2x−x2

y=−
√
2x−x2

y dy

]
dx =

∫ 2

x=0

x

[
y2

2

]√2x−x2

−
√
2x−x2

dx = 0

since f(y) = y is an odd function integrated over opposite extremes.

7 Practice 7

1. X ∼ B(1, p), Y ∼ B(1, p) and X ⊥ Y implies E(X | X + Y ) = 1
2 (X + Y ). Calculate

i Var(X | X + Y ) and E[Var(X | X + Y )]

ii Var(E(X | X + Y ))

iii Check the Law of the Total Variance

Sol

i Notice that if X ∼ B(1, p), then X2 ∼ B(1, p). Now, write the conditional variance as

Var(X | X + Y ) = E(X2 | X + Y )− E(X | X + Y )2

= E(X | X + Y )− E(X | X + Y )2 = E(X | X + Y )[1− E(X | X + Y )]

=
X + Y

2
· 2−X − Y

2
=

2X + 2Y −X2 − 2XY − Y 2

4

Moreover, recall that E(X2) = Var(X) + E(X)2 = p(1− p) + p2 = p. Then

E[Var(X | X + Y )] = E

[
2X + 2Y −X2 − 2XY − Y 2

4

]
=

2p+ 2p− p− 2p2 − p
4

=
p(1− p)

2

ii

Var (E(X | X + Y ) = Var

(
X + Y

2

)
=

Var (X + Y )

4
=
p(1− p)

2

iii Recall that the Law of Total Variance states that Var(X) = E[Var(X | X + Y )] + Var (E(X | X + Y )). Plugging the
corresponding elements of our exercise, we obtain

E[Var(X | X + Y )] + Var (E(X | X + Y )) = 2
p(1− p)

2
= p(1− p) = Var(X)
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2. If X is an absolutely continuous random variable with density fX , then |X| has as density

f|X|(x) =

{
fX(x) + fX(−x) x > 0

0 otherwise

Sol
True. Since X is absolutely continuous, its density is well-defined. Consider Y = |X|, then

P (Y ≤ 0) = 0→ f|X|(0) = 0 ∀x ≥ 0

Moreover, for x > 0,

P (Y < x) = P (−x < X < x) = P (X < x)− P (X < −x)

→ f|X|(x) =
dP (X < x)

dx
− dP (X < −x)

dx
= fX(x) + fX(−x) ∀x > 0

3. Compute the eigenvalues and the associated eigenvectors of the following matrices

A =

(
5 4
1 2

)
Sol

det(A− λI) = (5− λ)(2− λ)− 4

= λ2 − 7λ+ 6 = 0

⇐⇒ λ = {1, 6}

To find the eigenvector associated to each eigenvalue, solve

(
5 4
1 2

)(
x
y

)
= 6

(
x
y

)

=⇒ x = 4y

=⇒ v6 =

(
4α
α

)
and (

5 4
1 2

)(
x
y

)
= 1

(
x
y

)

=⇒ x = −y

=⇒ v1 =

(
−β
β

)
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In addition, one can find the spectral decomposition of A, by choosing an arbitrary value for α and β. For instance, let
α = β = 1. Then, A can be written as

A =

(
−1 4
1 1

)(
1 0
0 6

)(
−1 4
1 1

)−1

8 Practice 8

1. Fix the parameter h so that the matrix

D =

 h 1 0
1− h 0 2

1 1 h


has an eigenvalue equal to 1.

Sol
Since the eigenvalue must solve Z = D − λI = 0, set λ = 1, so that

Z =

h− 1 1 0
1− h −1 2

1 1 h− 1


and impose

det(Z) = −(h− 1)2 + 2 + (h− 1)2 − 2(h− 1)

= 4− 2h = 0 ⇐⇒ h = 2

2. Find the spectral decomposition of

A =

(
3 4
4 3

)
Sol

A− λI =

(
3− λ 4

4 3− λ

)

By imposing the condition det(A− λI) = 0, we obtain

det(A− λI) = (3− λ)2 − 16 = 0

=⇒ λ = {−1, 7}

The eigenvector corresponding to λ = −1 is

3x+ 4y = −x =⇒ x = −y

=⇒ v−1 =

(
α
−α

)

18



The eigenvector corresponding to λ = 7 is

3x+ 4y = 7x =⇒ x = y

=⇒ v7 =

(
β
β

)
To make the eigenvector matrix orthonormal, α and β must be such that the norm of the associated eigenvector is equal
to 1. Hence, set

α2 + (−α)2 = 1→ α =
1√
2

β2 + β2 = 1→ β =
1√
2

Finally

A =

(
1√
2

1√
2

− 1√
2

1√
2

)(
−1 0
0 7

)( 1√
2
− 1√

2
1√
2

1√
2

)

3. Find the Choleski decomposition A = LLt of

A =

1 2 3
2 8 8
3 8 19


and solve the system LX = b where

X =

xy
z

 b =

1
0
5


Sol
Define

L =

a 0 0
b c 0
d e f


Then

LLt =

a 0 0
b c 0
d e f

a b d
0 c e
0 0 f


=

a2 ab ad
ab b2 + c2 bd+ ce
ad bd+ ce d2 + e2 + f2


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Then

a2 = 1→ a = 1

ab = 2→ b = 2

ad = 3→ d = 3

b2 + c2 = 8→ c = 2

bd+ ce = 6 + 2e = 8→ e = 1

d2 + e2 + f2 = 9 + 1 + f2 = 19→ f = 3

Thus

L =

1 0 0
2 2 0
3 1 3


Finally, we can solve the system by backward substitution:

LX =

1 0 0
2 2 0
3 1 3

xy
z

 =

 x
2x+ 2y

3x+ y + 3z

 =

1
0
5



=⇒

xy
z

 =

 1
−1
1


9 Practice 9

1. Suppose that P is a projection. Prove that

i P̃ = I − P is a projection

ii Ker(P ) = Range(P̃ )

iii Range(P ) = Ker(P̃ )

iv P̃P = PP̃ = 0

Sol

i

P̃ 2 = (I − P )(I − P ) = I − 2P + P 2 = I − 2P + P = I − P = P̃

ii

Ker(P ) = {v ∈ V | P (v) = 0}

Range(P̃ ) =
{
v ∈ V | ∃w ∈ V : P̃ (w) = v

}
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Any vector v ∈ V can be rewritten in terms of P and P̃ by v = Pv + P̃ v.
If v ∈ Ker(P ), then Pv = 0, which implies v = P̃ v =⇒ v ∈ Range(P̃ ).
On the other hand, if v ∈ Range(P̃ ), then v = P̃w = w − Pw, which implies Pv = Pw − P 2w = 0 =⇒ v ∈ Ker(P ).
Therefore, Ker(P ) = Range(P̃ ).

iii

Ker(P̃ ) =
{
v ∈ V | P̃ (v) = 0

}
Range(P ) = {v ∈ V | ∃w ∈ V : P (w) = v}

If v ∈ Ker(P̃ ) =⇒ P̃ v = 0, which implies v = Pv, that is, v ∈ Range(P ).
On the other hand, if v ∈ Range(P ) =⇒ v = Pw = w− P̃w, which implies P̃ v = P̃w− P̃ 2w = 0, that is, v ∈ Ker(P̃ ).
Therefore, Ker(P ) = Range(P̃ ).

iv

P̃P = (1− P )P = P − P 2 = P − P = 0

PP̃ = P (1− P ) = P − P 2 = P − P = 0

2. Prove that the only invertible projection is P = I.

Sol

P = P (PP−1) = (PP )P−1 = P 2P−1 = PP−1 = I

3. Let X be a n× k matrix. Suppose that XtX is non-singular. Define H = HX = X(XtX)−1Xt.

i Prove that H is an n× n matrix

ii Calculate HX for

X =

1 0
0 1
1 0


iii Prove that for the previous case H is a projection

iv Prove that H is a projection in general

v Prove that if n = k then H = In

Sol

i In terms of dimensions H is

(n× k)(k × k)(k × n) = n× n
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ii

XtX =

(
1 0 1
0 1 0

)1 0
0 1
1 0

 =

(
2 0
0 1

)
→ (XtX)−1 =

(
1
2 0
0 1

)

Then

X(XtX)−1Xt =

1 0
0 1
1 0

( 1
2 0
0 1

)(
1 0 1
0 1 0

)

=

 1
2 0
0 1
1
2 0

(1 0 1
0 1 0

)

=

 1
2 0 1

2
0 1 0
1
2 0 1

2

 = H

iii To prove that H is a projection matrix, evaluate H2 and check that H2 = H.

iv To prove that H is a projection in general,

H2 = X(XtX)−1XtX(XtX)−1Xt

= X(XtX)−1Xt = H

v If n = k, then X is a square matrix. Recall that if two matrices A and B are square, then (AB)−1 = B−1A−1. Thus

H = X(XtX)−1Xt

= XX−1
(
Xt
)−1

Xt = In

4. Consider the function

f(x, y) = ln

(
xy

(1 + x2)ey

)
Find

i the domain

ii the stationary points

iii the character of the stationary points (local max, min, saddle)

Sol

i Since the denominator is always strictly positive, then for the logarithm to have positive inputs it only matters that

D = {(x, y) ∈ R2 | xy > 0}
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ii Let us rewrite our function in a more convenient form, keeping all the positive terms together

f(x, y) = ln

(
xy

(1 + x2)ey

)
= ln(xy)− ln(1 + x2)− y

Now, compute the partial derivatives and set them to 0:

∂f

∂x
=

1

x
− 2x

1 + x2
= 0 ⇐⇒ x = ±1

∂f

∂y
=

1

y
− 1 = 0 ⇐⇒ y = 1

Since the solution (−1, 1) /∈ D, then the only one acceptable is (1, 1) ∈ D.

iii To characterize the nature of the unique stationary point, compute the second derivatives and evaluate them at (1, 1)

∂2f

∂x2
|x=y=1 = − 1

x2
− 2 + 2x2 − 4x

1 + 2x2 + x4
= −1

∂2f

∂y2
|x=y=1 = − 1

y2
= −1

∂2f

∂x∂y
=

∂2f

∂y∂x
= 0

Construct the Hessian matrix

H =

[
−1 0
0 −1

]
Since H is symmetric and diagonal, its diagonal elements are its eigenvalues. Because the latter are all negative, (1, 1)
is a local maximum.

10 Practice 10

1. Consider the function

f(x, y) =

{
xy x

2−y2
x2+y2 (x, y) 6= (0, 0)

0 (x, y) = (0, 0)

and show that fx,y(0, 0) 6= fy,x(0, 0). What can you deduce for the mixed derivatives of second order?

Sol
Let us first rewrite f(x, y) as f(x, y) = x3y−xy3

x2+y2 . Then the general partial derivatives are

∂f

∂x
= fx =

(3x2y − y3)(x2 + y2)− 2x(x3y − xy3)

(x2 + y2)2
=
x4y + 4x2y3 − y5

(x2 + y2)2

∂f

∂y
= fy =

(x3 − 3xy2)(x2 + y2)− 2y(x3y − xy3)

(x2 + y2)2
=
x5 − 4x3y2 − xy4

(x2 + y2)2
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In order to compute the derivatives in (0, 0), apply the definition:

lim
x→0

x3y−xy3
x2+y2 − 0

x

∣∣∣
y=0

= y
∣∣∣
y=0

= 0

lim
y→0

x3y−xy3
x2+y2 − 0

y

∣∣∣
x=0

= −x
∣∣∣
x=0

= 0

Using again the definition, the mixed derivatives are

∂2f

∂x∂y
(0, 0) =

∂fy
∂x

(0, 0) = lim
h→0

fy(0 + h, 0)− fy(0, 0)

h

= lim
h→0

fy(h, 0)

h

= lim
h→0

1

h
· h

5

h4
= 1

∂2f

∂y∂x
(0, 0) =

∂fx
∂x

(0, 0) = lim
k→0

fx(0, 0 + k)− fx(0, 0)

k

= lim
k→0

fx(0, k)

k

= lim
k→0

1

k
· −k

5

k4
= −1

The mixed derivatives are not equal in (0, 0), hence they are not continuous in (0, 0). This follows from Schwarz-Young’s
theorem. Indeed, in this case, the Hessian matrix is not symmetric in (0, 0) (although it is symmetric everywhere else in
the domain).

2. Consider the equation

λ3 + aλ2 + bλ+ c = 0

in the case where all roots are real. Prove that the roots are all

i negative iff a, b, c > 0

ii positive iff a, c < 0, b > 0

Sol
Call y = λ3 + aλ2 + bλ+ c and compute y′ = 3λ2 + 2aλ+ b.

i Since c > 0, then y(0) = c > 0. Moreover, notice that ∀λ ∈ [0,+∞), y′ > 0; this combined with the fact that
y(0) = c > 0 implies that the function is positive at 0 and strictly increasing after it, then all the roots must be
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negative.
Now assume that all roots are negative. Then, the polynomial can be written as

y = (λ− λ1)(λ− λ2)(λ− λ3)

Performing all calculations, it is easy to see that

a = −(λ1 + λ2 + λ3) > 0

b = (λ1λ2 + λ1λ3 + λ2λ3) > 0

c = −(λ1λ2λ3) > 0

ii Since c < 0, then y(0) = c < 0. Moreover, notice that ∀λ ∈ (−∞, 0], y′ > 0; this implies that, although the function is
strictly increasing before λ = 0, it is still negative. Hence, all the roots must be positive.
The remaining part of the theorem can be proved as before.

3. Let

C =

 6 −2 2
−2 5 0
2 0 7


Prove that C is positive definite and then find the Cholesky decomposition for C.

Sol
To prove that C is positive definite compute its eigenvalues

det(C − λI) = (6− λ)(5− λ)(7− λ)− 4(5− λ)− 4(7− λ)

= (30 + λ2 − 11λ)(7− λ)− 20 + 4λ− 28 + 4λ

= 210 + 7λ2 − 77λ− 30λ− λ3 + 11λ2 − 20 + 4λ− 28 + 4λ

= −λ3 + 18λ2 − 99λ+ 162

= −
(
λ3 − 18λ2 + 99λ− 162

)
= 0

Notice that our characteristic polynomial has the functional form λ3 + aλ2 + bλ+ c = 0, with a, c < 0, b > 0 ( −1, here, is
a common factor and does not affect the nature of the solutions). Now, combining this with the fact that C is symmetric,
which implies that the characteristic polynomial has only real roots, it follows that they are all positive (from previous
exercise).Then C has only real positive eigenvalues, i.e. C is a positive definite matrix.
To find the Cholesky decomposition, rewrite C = LLt

C = LLt =

a 0 0
b c 0
d e f

a b d
0 c e
0 0 f


=

a2 ab ad
ab b2 + c2 bd+ ce
ad bd+ ce d2 + e2 + f2

 =

 6 −2 2
−2 5 0
2 0 7


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a2 = 6→ a =
√

6

ab = −2→ b = − 2√
6

ad = 2→ d =
2√
6

b2 + c2 = 5→ c =

√
13

3

bd+ ce = 0→ e =
2√
39

d2 + e2 + f2 = 9 + 1 + f2 = 7→ f =

√
81

13

4. Study the stationary points of the function

f(x, y) = x2 + y3 − xy

Sol

∂f

∂x
= 2x− y = 0

∂f

∂y
= 3y2 − x = 0

From the second equation, x = 3y2. Plugging this into the first equation, we obtain

6y2 = y ⇐⇒ y =

{
0,

1

6

}

=⇒ A = (0, 0) B =

(
1

12
,

1

6

)
Let us now compute the second derivatives

∂2f

∂x2
= 2

∂2f

∂y2
= 6y

∂2f

∂xy
=
∂2f

∂yx
= −1

Construct the Hessian matrix and evaluate it at A

H(A) =

[
2 −1
−1 0

]
The eigenvalues are

det(H(A)− λI) = (2− λ)(−λ)− 1

= λ2 − 2λ− 1 = 0 ⇐⇒ λ = {1±
√

2}
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Since the signs of the eigenvalues are opposite, then A is a saddle point. For B we have

H(B) =

[
2 −1
−1 1

]
which has eigenvalues

det(H(B)− λI) = (2− λ)(1− λ)− 1

= λ2 − 3λ+ 2− 1 = 0 ⇐⇒ λ =

{
3±
√

5

2

}
Since the signs of the eigenvalues are both positive, B is a local minimum.

11 Practice 11

1. Solve the Cauchy problem {
y′ =

√
xy x ≥ 0

y(0) = 2

Sol
Recall that y = y(x). Rewrite the problem as

y′

y
=
√
x

=⇒ d ln y

dx
=
√
x

Then ∫ x

0

d ln y

dt
dt =

∫ x

0

√
tdt

=⇒ ln y(x)− ln y(0) =
2

3
[x

3
2 − 0

3
2 ]

=⇒ ln y(x)− ln 2 =
2

3
x

3
2

=⇒ ln
y(x)

2
=

2

3
x

3
2

=⇒ y(x) = 2 exp

{
2

3
x

3
2

}
2. Find the (local) maxima and minima of the function

f(x, y) = xy − y2 + 3

subject to the constraint

g(x, y) = x+ y2 − 1 = 0

using
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i a parametric representation of the constraint

ii Lagrange multipliers

Are they global?

Sol

i In order to parametrize the constraint and make it always binding, choose y = t→ x = 1− t2. This allows us to rewrite
the maximization problem as

max
t
h(t) = f(1− t2, t) = (1− t2)t− t2 + 3

= −t3 − t2 + t+ 3

Recall that a sufficient condition for a stationary point x∗ to be a local max (min) is that f ′′(x∗) < 0 (> 0). Hence, in
order to find the stationary points, we first solve the F.O.C.

dh

dt
= −3t2 − 2t+ 1 = 0

=⇒ t∗ = {−1,
1

3
}

and evaluate the second derivative, d2h
dt2 = −6t− 2, at t∗

d2h(−1)

dt2
= 6− 2 = 4 > 0

d2h(1/3)

dt2
= −2− 2 = −4 < 0

Therefore, (x, y) = (0,−1) is a local minimum and (x, y) =
(
8
9 ,

1
3

)
is a local maximum.

ii In order to use the Lagrange multipliers method, define the Lagrangean function

L = xy − y2 + 3− λ[x+ y2 − 1]

and compute the FOC with respect to x, y and λ

∂L
∂x

= y − λ = 0→ y = λ

∂L
∂x

= x− 2y − 2λy = 0→ x = 2y + 2y2

∂L
∂λ

= x+ y2 − 1 = 0→ x = 1− y2

Equating the second and third lines, we obtain y =
{
−1, 13

}
, from which x =

{
0, 89
}

(by plugging the results into the
constraint).

Notice that dh
dt < 0 ∀ t ∈ (−∞,−1)∪( 1

3 ,+∞) and dh
dt > 0 ∀ t ∈ (−1, 13 ). Moreover, limt→+∞ h(t) = −∞ and limt→−∞ h(t) =

+∞. Hence, the stationary points are only local max and min for the constrained function.
Also the unconstrained function has no global maximum nor minimum. Indeed, consider the following restriction y = 1,
so that f(x, 1) = x+ 2, which clearly has no global maximum nor minimum.
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3. Study the function F (x, y, z) = x+ 3y − z under the constraints

x2 + y2 − z = 0

z − 2x− 4y = 0

Sol
Before proceeding, notice that the constrained domain is a closed and bounded set. Indeed, putting together the two
constraints yields the circle x2 + y2− 2x− 4y = 0, which is closed and bounded. Since the objective function is continuous
on R3, then by Weierstrass it attains a maximum and a minim value. Hence, the critical points of the Lagrangean function
must be max and min.
Writing down L and solving the F.O.C. we obtain

L = x+ 3y − z − λ[x2 + y2 − z]− µ[z − 2x− 4y]

∂L
∂x

= 1− 2λx+ 2µ = 0

∂L
∂y

= 3− 2λy + 4µ = 0

∂L
∂z

= −1 + λ− µ = 0→ µ = λ− 1

Plugging µ = λ−1 into the first two lines, we obtain x = 1− 1
2λ and y = 2− 1

2λ , and from the second constraint, z = 10− 3
λ .

Combining these results with the first constraint yields the values of λ[
−1 + 4λ

2λ

]2
+

[
−1 + 2λ

2λ

]2
=

10λ− 3

λ

⇐⇒ λ = ± 1√
10

Then, plugging the points into the objective function, (x, y, z) =
(

1 +
√
10
2 , 2 +

√
10
2 , 10 + 3

√
10
)

is a (global) minimum

and (x, y, z) =
(

1−
√
10
2 , 2−

√
10
2 , 10− 3

√
10
)

is a (global) maximum.

Finally, notice that the problem could be solved by focusing on the equivalent problem:

optimize x+ 3y − 2x− 4y

s.t. x2 + y2 − 2x− 4y = 0

obtained by putting together the constraints and substituting z = 2x+ 4y into the objective function. Simply solve for x
and y and then substitute back into the equation for z.

4. Prove that if A is symmetric and positive definite then it is invertible and A−1 is symmetric.

Sol
A is positive definite iff λi > 0. Recalling that the determinant of a matrix is equal to the product of its eigenvalues, it
follows that det(A) =

∏
i λi > 0. Hence, A is invertible.
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Moreover,

A = At

=⇒ AA−1 =
(
A−1A

)t
= I

=⇒ AA−1 = At
(
A−1

)t
= A

(
A−1

)t
=⇒ A−1 =

(
A−1

)t
that is, A−1 is symmetric.

12 Practice 12

1. Calculate (also using polar coordinates) ∫
A

2y dxdy

where A =
{

(x, y) ∈ R2 | y > 0, (x− 1)2 + y2 < 1
}

.

Sol
The domain implies that (x−1)2 < 1−y2, but since the left side is positive then so must be the right side, then 1−y2 > 0→
−1 < y < 1. Combining with the second condition of the domain, y > 0, 0 < y < 1, and −

√
1− y2 + 1 < x <

√
1− y2 + 1.∫ 1

y=0

2y

∫ √1−y2+1

x=−
√

1−y2+1

dxdy =

∫ 1

y=0

4y
√

1− y2dy

Using t2 = 1− y2 → 2t dt = −2y dy, also the extremes of integration are reversed.∫ 0

t=1

−4t2dt =
4

3

If one wants to use polar coordinates then

x− 1 = ρ cos(θ)

y = ρ sin(θ)

Then y > 0 → 0 < θ < π, while (x − 1)2 + y2 < 1 → ρ2[cos(θ)2 + sin(θ)2] = ρ2 < 1 → 0 < ρ < 1. Recall that for the
trigonometric transformation the scale factor is ρ, hence∫ 1

ρ=0

∫ π

θ=0

2ρ2 sin(θ)dρdθ =
2

3
[ρ3]10[− cos(θ)]π0

=
2

3
[− cos(π) + cos(0)]π0

=
4

3

2. Find the maximizer of f(x, y) = x2 + y2, subject to the constraints 2x+ y ≤ 2, x ≥ 0, y ≥ 0 using
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i parameterizations of the segments of the boundary

ii using Lagrangian formulation

Sol

i The constraints define a triangle. Also, since

∂f

∂x
= 2x = 0

∂f

∂y
= 2y = 0

is solved for just one point (x0, y0) = (0, 0), which also lies within the boundaries. This means that the maximum must
lie on the constraints. Thus, parametrize each segment and solve for each of them.
If x = 0→ 0 ≤ t ≤ 2→ f(0, t) = t2, then the maximum is at y = 2, that is (x1, y1) = (0, 2).
If y = 0→ 0 ≤ t ≤ 1→ f(t, 0) = t2, then the maximum is at x = 1, that is (x2, y2) = (1, 0).
If x 6= 0 and y 6= 0, then set x = t and y = 2 − 2t, so that f(t, 2 − 2t) = t2 + (2 − 2t)2 = 5t2 − 8t + 4. From this, we
obtain t = 4

5 =⇒ (x3, y3) =
(
4
5 ,

2
5

)
.

Plugging in f all the results, the maximum is attained at (x1, y1) = (0, 2).

ii

L = x2 + y2 − λ[2x+ y − 2] + µx+ γy

Recall that λ, µ, γ ≥ 0.

∂L
∂x

= 2x− 2λ+ µ = 0

∂L
∂y

= 2y − λ+ γ = 0

λ[2x+ y − 2] = 0

µx = 0

γy = 0

Check case-by-case among the possible values of x and y.
If x = y = 0→ λ = µ = γ = 0, all is fine and (x0, y0) = (0, 0) is a stationary point.
If x = 0 and y 6= 0→ γ = 0→ λ 6= 0→ y = 2 and µ = 2λ ≥ 0, then (x1, y1) = (0, 2).
If y = 0 and x 6= 0→ µ = 0→ λ 6= 0→ x = 1 and γ ≥ 0, then (x2, y2) = (1, 0).
If x 6= 0 and y 6= 0, then µ = γ = 0 and x = λ 6= 0→ 2x+ y − 2 = 0 with 2y = x, which is solved by (x3, y3) =

(
4
5 ,

2
5

)
.

The maximum is attained at (x1, y1).

3. Find the spectral decomposition of the matrix

A =

 3 −1 0
−1 3 0
0 0 6


Sol

det(A− λI) = (3− λ)2(6− λ)− (6− λ) = 0

λ = {2, 4, 6}
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The eigenvector of λ = 2 solves 3x− y = 2x→ x = y. For instance, choose x = 1→ y = 1, z = 0 and V2 = (1, 1, 0)t.
The eigenvector of λ = 4 solves 3x− y = 4x→ x = −y. For instance, choose x = 1→ y = −1, z = 0 and V4 = (1,−1, 0)t.
The eigenvector of λ = 6 solves 6z = 6z → z = z and 3x− y = 6x with −x+ 3y = 6y → x = y = 0. For instance, choose
z = 1 and V6 = (0, 0, 1)t.
The spectral decomposition is then

A =

1 1 0
1 −1 0
0 0 1

2 0 0
0 4 0
0 0 6

1 1 0
1 −1 0
0 0 1

−1
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