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3.1 UNCERTAINTY IN TRENDS. INTEGRATED MODELS OF ORDER I (d, m). 
 

  In the previous chapter it has been discussed that trends refer to the acyclical 

long-term evolution of a time series, that trends are caused mainly by changes in technology 

and changes in attitudes or in the structure of the society and that trends evolve smoothly. 

Because of this last property we could consider as a first approximation deterministic schemes 

and in particular polynomial trends of low order, usually of order one: 

 

xt = a + b t + wt.     (3.1) 

 

With polynomial trends like (3.1) the wt shocks appearing at anytime in the system affect to xt 

but not to the trend. In fact, model (3.1) implies that there is none uncertain future event 

which could affect the trend. 

 

  The absence of uncertainty in trends seems unrealistic . In fact factors causing 

trends evolve smoothly but with uncertainty and this uncertainty must also be incorporated in 

models representing trends. In chapter 2 this has been done that by considering segmented 

trends. Conditional to the fact the segmentation points are known, as it was assumed in the 

previous chapter, these segmented trends are deterministic. But if for a particular time series, 

segmentations have taken place during the past it can be assumed that with probability one 

they will also happen in the future. About those forthcoming segmentations there is high 

uncertainty because it is not known when they will occur and which will be their magnitudes. 

Therefore, segmented trends imply that trends are not deterministic but stochastic. At certain 

points, t1, t2, …, special stochastic shocks appear and the structure of the trend changes. 

Conditional to the knowledge of these data points models as (2.33) can be formulated and in 

them the segmented trend structure for the past is known without error resulting a 

deterministic trend for the past but not for the future. Because of that it was commented in 

chapter 2 the problems of forecasting with segmented trends. In particular it was seen that 

these models do not adapt themselves to new breaks which could occur after the sample 

period and if a new break happens the model will be wrong for ever unless an analyst 

intervenes and reformulates the model accordingly with the new situation. 

 

  It can be concluded that T (d
s
) models are more realistic than T (d) ones. But 

the segmented trend models which have been considered do not include a stochastic 

formulation of the occasional breaks and therefore of the trends and consequently one is 

obliged to proceed conditional to the knowledge of the time at which breaks take place. Some 

authors have tried stochastic formulations for breaks in trends in which the breaks are 

unforecastable and they conclude suggesting to work conditionally as it was done in chapter 

2. Perron (1989) discusses that the conditional analysis is justified if the break in trend are 

exogenous to the economic phenomena under study. 

 

  The way in which a particular economic agent incorporates changes in 

technology, habits, etc. could be just from time to time. But aggregating data through a big 

number of agents the resulting time series could show changes in trend much more often, 

mainly in the level factor of the trend. According with that our next step will be to consider 

stochastic trends in which the changes in the structure of trend happen at any time t. It will be 

seen that this last condition is very convenient to incorporate in the model for xt a stochastic 

component, trend, which is not observed. Proceeding in this way one ends up with models 

which could not fully anticipate changes in trend but once they happen the models adapt 

inmediately to the new situation. 



  Let us recall the T (1
s
) model: 

 

xt = a + 
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r
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jtja
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where the trend  Tt, at time t is 

 

Tt = a + 


r

j 1

aj jt 

and, therefore, it only changes at times t1, t2, …, tr. 

 

The purpose now is to replace Tt in (3.2) by a stochastic trend, say t. Since trends are not 

observed but they are included in the values for xt one could use xt-1 instead.  Then: 

 

xt = xt-1 + wt,     (3.3) 

 

where, as it has been assumed in chapter 2, the wt components are identically distributed with 

zero mean. 

 

In this equation the trend value at (t-1) is incorporated in xt-1 and the stochastic change of the 

trend at time t in wt. Therefore wt is not longer a deviation from trend but a deviation from the 

evolution path given by xt-1. This is so because a trend,  say t, is in (3.3) but is not explictly 

defined. 

 

In (3.3) there is a trend -a  acyclical component which perpetuates into the future- because xt-1 

enters with coefficient one, forcing the incorporation of the past in a persistent way. In fact, 

and because this unit coefficient xt incorporates xt-1, and through it xt-2 and so on. Therefore xt 

in (3.3) can be formulated as 

 

xt = x0 + wt + wt-1 + … + w2 + w1, 

 

showing that xt equals to the value of x at some initial time, x0, plus all the stochastic 

elements, wj, which have appeared since then. Therefore, in (3.3) any wj component persists 

in future xt values, generating a trend in them. On the other hand, if xt-1 would enter in (3.3) 

with coefficient less than one in absolute value, say 0.5, one had that 

 

xt = x0 + wt + 0.5 wt-1 + 0.5
2
 wt-2 + … + 0.5

t-1
 w1. 

 

In this case very far distant wj components have a neglegible effect on xt, they do not persist, 

and no trend is generated in xt. Finally coefficient values greater than one in absolute terms 

will generate an explosive behaviour for future values, which generally is not found in real 

data. Therefore, coefficients for xt-1 in (3.3) greater than one in absolute value are excluded in 

time series analysis. 

 

  Model (3.3) is sometimes called a reduced form model because it results from 

an unspecified model for the trend and a deviation from this trend. Some authors, as Harvey 

(1989), have been interested in formulating two-equation model for xt, one for the trend, say 

t, and another for xt as a trend plus an stationary deviation, t, from it. In this case: 

 



xt = t + t     (3.4a) 

t =  t-1 +  t.     (3.4b) 

 

In equation (3.4b) we have that trend at time t -t- is given by the trend at time (t-1) plus a 

random shock, t, which take place at time t. These random shocks are the ones which cause 

the changes in trend. 

 

  Substituting t in (3.4a) by its value in (3.4b) we have 

 

xt = t-1 + t + t     (3.5) 

 

and adding and substructing t-1 in (3.5) and noting that t-1 + t-1 is xt-1 one can write 

 

xt = xt-1 + (t +  t -  t-1)    (3.6) 

 

and denoting 

 

wt = t +  t -  t-1     (3.7) 

 

we end up with model (3.3). 

 

A possible way to arrive to model (3.3) is by the two equation model (3.4), but this is 

not the unique way. In fact from (3.4) we arrive to a model (3.3) in which wt is restricted by 

its definition in (3.7). Consequently the reduced form resulting from model (3.4) is called a 

“restricted reduced form”, meanwhile (3.3) is an (unrestricted) reduced form with no 

restrictions on wt but the general ones of being stationary and invertible, concept which will 

be properly defined later. Since (3.4) includes a definition of the structure of the trend, 

sometimes model (3.4) is denoted as structural model. But structural models are defined by 

unobserved components, like the trend t in (3.4a), and by given an specific definition of 

them (3.4b). Since the only data available is for the time series [xt] the precise properties of 

the unknown trend can not be properly tested and at the same time the structural model is not 

neutral in deriving a model (reduced form model) for the data [xt], because it has been seen in 

the previous example that the structural model (3.4) imposes the restriction (3.7) to the 

reduced form (3.3). Therefore mistakes in the structural formulation of the trend will end up 

with a wrong reduced form model for xt. Because of that many analysts prefer to work with 

reduced form models, it means models for the observed data without an explicit formulation 

for trend which could induce restrictions in the model for [xt] which could not be justified by 

data. Nevertheless for the purposes of this book one could work with structural models or 

with reduced form models. For the reasons mentioned we restrict ourselves to reduced form 

models. 

 

  The above discussion helps to understand that in (3.3) wt is not the deviation 

from trend at time t or (t-1). The trend at (t-1) is included in xt-1 and at time t the trend 

changes by a random magnitud t, which is included in wt. 

 

  It is clear now that the LOL segmented trend in (3.2) is given by [a + 

jtj

r

j
a  1

] and that (3.3) includes an stochastic trend but without a definition for it. 

 



  As it has been mentioned in previous chapters we are interested in models 

which incorporate all the main factors which determines the generation of the time series 

under consideration, but without been particulary interested in estimating separately these 

factors. In fact, in models like (3.3) this can only been done using restrictions which could be 

questionable. Therefore since xt-1 is stochastic and enters with unit coefficient in (3.3), one 

has a model for xt with stochastic trend.  

 

  The coefficient one of xt-1 in (3.3) is a root in the equation ruling the dynamics 

of xt, as it will be seen later, and this type of stochastic trends are also denoted as unit-root 

trends. 

 

  In the model (3.3) for xt the factor level xt-1 changes at any time t, therefore 

now the trend in xt changes with every observation as it was seen with the example given in 

(3.4). Certainly a time series generated by these models shows evolutivity, but an evolutivity 

of a specific kind. In fact, in (3.3) a particular type of stochastic trend incorporated through 

the term xt-1 has been formulated. This particular structure implies that 

 

xt - xt-1 =  xt = wt    (3.8) 

 

and therefore xt in (3.3) shows evolutivity but its first differences -  xt- not, they are 

stationary. This type of evolutivity is called homogeneous evolutivity. 

 

  In (3.3) xt evolves integrating -because of the unit root- its own past and it can 

be said that the whole sequence of xt ´s, denoted as {xt}, is an integrated process, but after 

differencing once the resulting process is stationary. This is so because the model has one unit 

root but only one. In this case then it is said that {xt} is integrated of order one and denoted 

I(1). Note that in this terminology I() trends are always stochastic. With the I(1) models of 

equation (3.3) the corresponding trends have only a level factor, therefore those models can 

generate series with local oscillations in level but not with systematic growth. 

 

Figure 2.4 shows the daily yen-dollar exchange rate (X1t) which evolves in a 

way such that model (3.3) could be appropiate for these data. In figure 2.8 the daily 

increments (first differences) of X1t are represented and it could be appreciated that for  X1t 

the mean level appears as constant with zero value and that  X1t can be considered  as 

stationary when X1t is not. In practice this is a rough but useful way to detect if a time series 

can be considered as I(1). The procedure consists in plotting xt against time and observe if it 

could be said if the mean is constant or it evolves along time clearly showing different values 

for different subsamples. If this is the case, transform the original xt data in  xt, plot it and 

observe if now the mean is constant. If this is the case xt can be considered as generated by an 

I(1) process.  Appropriate tests for the hypothesis that xt is I (1) will be comment later. See 

summary 3.1A. 

 

Model (3.3) is only valid for sereis exhibiting local oscillations in level. A 

model which could represent time series with systematic growth is 

 

xt = xt-1 + b + wt.    (3.9) 

 

In fact, in (3.9) xt includes through the unit root all the past and at the same 

time incorporates an additional fix factor b which in a systematic way increases the previous 

level. In (3.9) xt has an evolutivity path with two components: an stochastic level component 



given by xt-1 and a deterministic incremental component given by coefficient b and 

consequently the model generates time series with systematic growth. The difference between 

(3.9) and the linear trend model 

 

xt = a + bt + wt  or  (3.10) 

xt = Tt-1 + b + wt,   (3.11) 



Summary 3.1.A 

 

UNCERTAINTY IN TRENDS. MODELS WITH ONE UNIT ROOT FOR DATA 

WITH LOCAL OSCILLATIONS IN LEVEL. 

 

With polynomial trends there is none uncertain future event which could affect the 

trend. This is quite unrealistic. 

 

With segmented trends future breaks are uncertain but usually those models do not 

incorporate a stochastic formulation of the breaks. 

 

UNIT ROOT TREND MODELS: they incorporate stochastic trends by including the 

inmediate past of the data (xt-1) with coefficient (root) one. 

 

The unit root perpetuates into the future everything which enters in the data at any time 

and thus generates a trend. 

 

In formulating a unit root model in terms of past data a trend is incorporated in the 

model but a direct estimation of trend is not possible without further restrictions. 

 

The model 

 

                                                 xt = xt-1+ wt                                   (3.3) 

 

is a unit-root model in which the trend has just a level factor  which changes  at any 

time t. 

 

The unit root in the above model disappears taking  first differences of data, which 

consequently are stationary. Because of that (3.3) is called an integrated model of order 

one, I (1). 



where 

  Tt-1 = a + b (t-1), 

 

is that in the latter both components in the trend are deterministic and in (3.9) the level xt-1  to 

which a deterministic increment b is added is stochastic. 

 

  Taking first differences in (3.9) we obtained 

 

 xt = b + wt     (3.12) 

 

and in (3.12) it can be observed that the mean of the increments  xt is given by the parameter 

b and if, as it is usually the case, b is positive xt will show systematic growth. Certainly a 

negative b will induce systematic declaining. 

 

With model (3.9) one also has that xt shows  evolutivity but  xt in  (3.12) not. In other 

words xt is stationary and therefore xt in (3.9) is I (1). This I (1) notation is incomplete 

because variables with very different trends, xt in (3.3) with local oscillations in level and xt in 

(3.9) with systematic growth (with deterministic increment factor), are denoted the same: I 

(1). The important difference between those models comes from the fact that the increments, 

 xt, in the first case have a zero mean as it can be seen from equation (3.8) and in the second 

one have a non-zero mean b, equation (3.12). Therefore following Espasa and Peña (1995) we 

can use the notation I (1, m) where m equals zero if the mean of  xt is zero and equals one if 

the mean of  xt is non zero. Thus in (3.3) one has an I (1,0) model and in (3.9) and I (1, 1). 

Note that this new terminology makes explicit the number h
*
 of factors in the trend. The value 

h
*
 is given by 

 

h
*
 = 1 + m. 

 

Figure 2.12 plots the data for the US real GDP denoted as time series X9t. 

Comparing these data with time series X1t corresponding to yen-dollar exchange rate (figure 

2.4) it is clear that X9t shows systematic growth and X1t just local oscillations in level. Given 

the different nature of the economic phenomena represented by these two time series, these 

differences in trend is what can be expected on theoretical grounds. The first differences of 

GDP,  X9t, are  plotted  in  figure 3.1  and it can be observed in this plot that the mean is 

non-zero and the GDP series can be taken as I (1,1). On the other hand for the yen-dollar 

exchange rate, X1t in figure 2.8 clearly shows a zero mean and X1t can be considered as 

I(1,0). In both cases, X9t and X1t, differencing one gets a transformed time series which is 

stationary and consequently has a constant mean, but in the case of X9t this mean is non-

zero inducing growth in X9t and in the case of X1t the mean is zero and no systematic 

growth appears in X1t. 

 

 In (3.9) the model is denoted as I (1, 1) and being h
*
 = 2 the model includes systematic 

growth in trend. Since the model is integrated, the trend is stochastic and this property can be 

seen in the level factor xt-1, but since m = 1 the increment factor of the trend is deterministic. 

 

 It is also interesting to have models generating systematic growth with the two 

stochastic components, level and incremental factor. A model for that purpose is the 

following: 

 

xt = xt-1 + (xt-1 - xt-2) + wt.
   

  (3.13) 



Figure 3.1 

 

US   GDP, first differences 

 

 

  



This model  incorporates  a  stochastic   level factor xt-1  and a   stochastic  incremental factor 

(xt-1 - xt-2) and this is done through a unit root in both cases. The result is a two unit root 

model. Taking first differences in (3.13) we have 

xt = (xt - xt-1) = (xt-1 - xt-2) + wt     

 

and the model for xt is not stationary, still has a stochastic unit root factor. In fact the above 

equation shows that xt is I (1, 0). Taking first differences again we get 

 


2
xt = [(xt - xt-1) - (xt-1 - xt-2)] = wt   (3.14) 

 

and in (3.14) it can be seen that the second differences of xt, 
2
xt, are stationary. Each time 

that first differences are applied a unit root is eliminated. In (3.13) one has a model with two 

unit roots and now one needs to apply twice first differences in order to obtain a 

transformation of the data, 
2
xt, which is stationary. Because of that it can be said that model 

(3.13) is I (2) and since the stationary transformation 
2
xt in (3.14) has a zero mean it can be 

said more precisely that model (3.9) is I (2,0). Since (3.13) is an integrated model –

contemporaneus values depend on past values with a unit root- its trend is stochastic. In this 

case the trend has two factors, h* = 2, and none of them is deterministic (m=0), therefore this 

trend is fully stochastic. This is quite clear in (3.13) where the level is included in xt-1 and the 

incremental factor in (xt-1 - xt-2) and both are stochastic with unit roots. Since after 

differencing, in this case twice, one gets a transformation of data which is stationary it can be 

said that the evolutivity in (3.9) is also homogeneous. The level and incremental factors of the 

trend at time (t-1) are in xt-1 and (xt-1 - xt-2) but since these magnitudes  are affected by wt-1 

and wt-2 both elements include something else than trend. Therefore (3.9) is a model with 

systematic growth trend but as in the I (1) case one can not derived directly from it a full 

specification for the trend, and as mentioned before in general we do not care about it. 

 

 In chapter 2 the Core CPI for US, which excludes food and energy prices from total 

consumer price index, was presented. An annual time series of this variable, denoted Z7t, is 

plotted in figure 3.2, panel A. Since in these data the proportionality property is present, it is 

convenient to work with the logarithmic transformation, as it was done in figure 3.2. This 

figure shows that in Core CPI there is systematic growth. Panel B in the same figure shows 

the plot of 

log Z7t - log Z7t-1 = t  

 

which as discussed in the previous chapter is a good approximation of Core inflation. In this 

plot it can be observed that the Core inflation does not oscillates around a fix mean and 

therefore it cannot be considered as stationary. In fact Core inflation shows local oscillations 

in level, a type of behaviour similar to the one we discussed for the yen-dollar exchange rate. 

It can be concluded that Core inflation is I (1). Figure 3.3 gives the plot of 

 


2
 log Z7t =  t = [Z7t - Z7t-1] - [Z7t-1 - Z7t-2], 

 

which is the plot of the second differences of log Core CPI or the first differences of Core 

inflation. In this figure it can be observed that  t oscillates around a constant mean and 

therefore  t is stationary or I (0) and then t is I (1) or more precisely I (1,0) because  t 

has a zero mean. Finally log Z7t is I (2,0). 

 

  The properties of models I (1,0) I (1,1) and I (2,0) are summarized in table 3.1. 



Figure 3.2 

 

Log US CORE CPI 

 

US CORE INFLATION (t = log CPIt – log CPIt-1) 

 

 



Figure 3.2. 

 

STATIONARY TRANSFORMATION OF US CORE CPI. 

 

 

 



Table 3.1. Integrated trends. 

 

MODEL PROPERTIES 

(3.3) I (1.0) xt = xt-1 + wt 

 

 

 

 

 

 

 

 

 

 

 

(3.9) I (1,1) xt = xt-1 + b + wt 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) It has a trend with a level factor. 

(b) The trend is not defined, but its value at (t-1) is included in xt-1. At time t its value change due to 

an stochastic shock which in (3.3) is included in wt. Therefore the trend is fully stochastic. 

(c) Model (3.3) has a trend because it is incorporated through the unit coeffcient (root) of xt-1. Then  

(3.3) represents an integrated process of order one: I (1). 

(d) Applying first differences -  xt = wt - the unit root is eliminated and the resulting transformed 

data is stationary with zero mean. In more precise terms it can be said that (3.3) represents an 

integrated process of order I (1,0). The sum of the arguments in I (, ) is one pointing out that the 

trend in (3.3) only has one factor and can only generate time series with local oscillations in level. 

(e) Since xt is I (1, 0),  xt is I (0,0) or stationary with zero mean. 

(f) Example: the daily yen-dollar exchange rate can be considered as I (1,0). See figures 2.4 and 2.8. 

 

(a) It has a two-factor trend: level and increment. 

(b) The trend is not fully defined. The increment factor is deterministic and given by parameter b, but 

the level factor is not defined. Its value at time (t-1) is included in xt-1 and at time t its value 

changes due to an stochastic shock, which in (3.9) is  included in wt. Therefore the trend is 

stochastic but with deterministic increment factor. 

(c) Model (3.9) has a trend because it is incorporated in the model with a unit root. Then (3.9) 

represents an integrated process of order 1: I (1). 

(d) Applying first differences - xt = b + wt- the unit root is eliminated and the resulting transformed 

data is stationary with non-zero mean. In more precise terms it can be said that (3.9) represents an  

integrated process of order I (1,1) The sum of the arguments of I (, ) is two, pointing out that the 

trend in (3.9) has two factors. The second argument is non-zero and it indicates that the second 

factor, the increment, is deterministic. Therefore (3.9) can generate time series with systematic 

growth in which the growth has a constant mean. 

(e) Since xt is I (1, 1),  xt is I (0, 1) or stationary with non-zero mean. 

 

(f) Example: the quarterly US GDP in real terms can be considered as I (1,1). See figures 2.12 and 

3.1. 



 

Table 3.1, Continuation 

 

MODEL PROPERTIES 

(3.13) I (2,0) xt = xt-1 + (xt-1 - xt-2) + wt (a) It has a trend with two factors: level and increment. 

(b) The trend factors are not defined but their values at (t-1) are included in xt-1 and (xt-1 - xt-2). At 

time t the values of these factors change due to two stochastic shocks, which in (3-13) are  

included in wt. Therefore both factors are stochastic. 

(c) These factors really generate a trend because  they are incorporated in the model with a unit root 

each one, resulting in a two-unit root trend. Model (3.13) represents an integrated process of order 

2: I (2). 

(d) Applying first differences one unit root is eliminated. Therefore twice first differences are 

required to transform xt as stationary 

        
2
 xt = wt. 

      Since the mean of 
2
 xt is zero,it can be said in more precise terms  that xt is I (2,0). The sum of 

the arguments in I(, ) is two, pointing out that the trend in (3.13) has two factors and since the 

second argument is zero both factors are stochastic. Therefore (3.13) can generate time series with 

systematic growth in which the growth is also non-stationary. 

(e) Since xt is I (2,0),  xt is I (1,0). 

(f) Example Core CPI is I (2,0) and Core Inflation I (1,0). See  3.2 and 3.3. 

 



In the discussion of model (3.3) it became clear that the trend in this model change with every 

observation due to an stochastic shock, say t, which is included in wt. Then through the unit 

root this shock is maintained in the future. In model (3.9) the deterministic increment factor of 

the trend certainly does not change with time, but the level factor changes at each time t in a 

similar way than in model (3.3) by the incorporation of a stochastic shock and in this case also 

by the incorporation of a deterministic increment. In model (3.13) the trend has two stochastic 

factors and the corresponding structural model, which is not going to be described here,  now 

has three equations. One defining xt as the sum of a trend plus a stationary factor and the other 

two defining the two stochastic components of trend. Both components change each time due 

to two different stochastic shocks, which in the reduced equation (3.13) are included in wt.  

 

In all these three models, (3.3), (3.9) and (3.13), the stochastic shocks entering in the 

trend at time t are unpredictable. Therefore if at time t
*
 the trend suffers a big stochastic shock 

this shock certainly is not incorporated in xt*-1 and with information till (t
*
 - 1) the above 

models will make a bad forecast for xt*. The situation will be similar to the forecast with a 

segmented trend model with information till time (t
*
 -1) if at time t

*
 a new break in the trend 

takes place. However, with the integrated model the big shock occured at time t
*
 will be 

incorporated into the trend and into the model through the unit root and it will be included in 

all forecasts done with information at least till time t
*
. It can be seen then that before a big 

shock the integrated models will produce a bad forecast but once the shock has taken place 

the models adapt themselves and produce forecasts according to the new situation. This is a 

big difference with segmented trend models which after a new break they remain wrong for 

ever. For this reason even when an economic phenomenon could be generated by a segmented 

trend model one could try to approximate it by using a corresponding integrated model. This 

model will induce small changes in trend at each time t which, in general, could not be much 

distorting since they are due to minor random shocks, which by nature will tend to have 

positive sign half of the times and negative sign another half. On the other hand when a 

greater shock arrives, the integrated model will incorporate it inmediately for future forecasts. 

See summary 3.1B. 

 

 From the above discussion it becomes clear that the main difference between 

segmented trend models and unit-root models or models with integrated trends lie in how 

often the trend changes. It has been argued before that changes in the level of the trend could 

occured much more often than changes in the growth factor, therefore for time series with 

systematic growth models with one unit root can be seen as very useful. Then it could be a 

more open question if one is going to use an I (1, 1) model which takes the increments of the 

data as stationary with a constant mean or if one is going to employ an I (2, 0), where those 

increments are not stationary. Clearly a third alternative appears as interesting. A model 

having a unit root but with a segmented mean in the first differences. This model can be 

written as 

 

xt = xt-1 + b + 


r

j 1

bj jt + wt     (3.15)  

and taking first differences we have 

 

xt = (xt - xt-1) = b + 


r

j 1

bj jt + wt.    (3.16) 



Summary 3.1.B 

 

MODELS WITH UNIT ROOT TRENDS. 

                              xt = xt-1 + wt              and                            (3.3) 

                              xt = xt-1 + b + wt                                         (3.9) 

are both I (1), but (3.3) only integrates the past and (3.9) also incorporates a constant 

term b each time. 

TREND in (3.3) only shows local oscillations in level and trend in (3.9) systematic 

growth with a constant (deterministic) mean value b. 

Because the mean of xt in (3.3) is zero but in (3.9) is different from zero it can be said 

that (3.3) is integrated I (1,0) and (3.9) I (1,1).  

With the I (1,m) notation, m = 0, 1, the value  

 

                            h
*
 = 1 + m 

indicates the number of factors in the definition of the trend. 

A unit-root model generating systematic growth with both stochastic level and 

incremental factor is 

                             xt = xt-1 + (xt-1 - xt-2) + wt .                                (3.13) 

This model has two unit roots, one integrating the level and  another integrating the 

increments. 

Taking first differences in (3.13) 

                              xt =   xt-1 + wt                                              

the resulting model still has a unit root. To obtain an stationary transformation one 

needs to apply twice first differences. 

                                    
2
xt = wt.                                                     (3.14) 

In (3.15) 
2
xt has a zero mean. 

 

Model (3.13) is denoted as integrated of order I (2, 0). 

 

 

  

  



Model (3.15) can be denoted as I (1, 1
s
) because has one unit root and the differenced 

series has a non-zero mean which is segmented. The segmentation as in the previous 

chapter is incorporated in the notation by using the superscript s. 

 

Model I (1, 1
s
) makes much sense for many economic time series showing systematic 

growth for which one could expect that the mean of growth changes occasionally but 

not every time as it happens with model I (2, 0). But still the I (2, 0) has the advantage 

that when a big shock to the growth factor will take place the model will adapt 

automatically to the new situation and model I (1, 1
s
) not. 

 

  We can conclude this discussion by saying that for series with systematic 

growth model I (1, 1
s
) could be very useful in describing the main features of the data, 

but for everyday forecasting purposes model I (2, 0) has the advantage that it adapts 

itself to the new situation after big shocks. 

 

  The I (1, m) or I (2, m) notation can be generalized as I (d, m) as it is 

done in Espasa and Peña (1995) o better as I (d, m
s
). In this last notation "d" refers to 

the number of unit roots in the model or what is the same, the number of times which 

one needs to apply first differences before obtaining a transformation of the data which 

is stationary or contains a deterministic trend.  Therefore a varible xt generated by a 

model I (d, m
s
) is called integrated of order d.  The coefficient m takes the value zero if 

the d-times differenced data, 
d
xt, has a zero mean, the value one if it has a constant 

non-zero mean and the value m if the difference data contains a deterministic trend with 

m components. Thus if xt is such that 

 

xt = a + bt + wt    (3.17) 

 

then d = 1, m = 2 and therefore xt is I (1, 2). 

 

  If the possible constant mean or deterministic trend in 
d
xt is segmented 

then this feature is indicated by using a superscript s in m. 

 

  With this notation the T (2) model in the previous chapter is denoted now 

as I (0, 2). 

 

  In the I (d, m
s
) notation the number h

*
 of components in the trend is 

given by 

 

h
*
 = d + m. 

 

If m equals zero all trend  components are stochastic, if d equal zero all trend 

components are deterministic and if both d and m are non-zero the trend has stochastic 

and deterministic components and the component of highest order is deterministic.With 

this terminology h
*
 > 0  denotes the presence of trend except in the case I (0, 1), where 

data oscillates around a constant mean and therefore the corresponding variable is 

stationary. Thus I (d, m) is a valid notation for trend for I (d, m \ d0 or d=0 and m > 1). 

It must be observed that in the case where the model contains some segmented factor 

then the I (d, m
s
) terminology is always a valid notation for trend. 

 



  As it has been discussed previously in different ocassions the trends in 

economic time series can be considered to have up to two components, therefore the 

usual models of type I (d, m
s
) will be such that 

 

0  h
*
 = d + m  2. 

 

Therefore model (3.17) where h
*
 = 3 are very rarely appropiate  for economic time 

series. In fact the  models  which turn to be most useful for  economic  time  series  are, 

I (1, 0) for series with local oscillations in level and I (1, 1), I (1, 1
s
) or I (2, 0) for series 

with systematic growth. See summary 3.1.C 

 



 Summary 3.1.C. 

 

I (d, m
s
) NOTATION 

 

The I (d, m
s
) terminology is used to denote the type of trend in an economic time series 

xt. Thus  

                             h
*
 = d + m 

indicates the number of factors in the trend and: 

 

d: indicates the number of trend factors captured through past values of xt with a unit 

root. Those factors are then stochastic. 

Each time that we apply first differences to xt we eliminate one of the mentioned 

unit-root factors. 

 

m can take the following values: 

- zero if the mean of 
d
 xt is zero 

- one if the mean of  
d
 xt is a non-zero constant 

- m* if 
d
 xt includes a time polynomial with m* factors. 

Therefore m indicates the number of deterministic factors in the trend of xt. 

 

The subscript s indicates that the non-zero mean or polynomial trend in 
d
 xt is 

segmented. 

 

 

 



3.2. STOCHASTIC SEASONALITY. MODELS I (d, m
s
) (SS). 

 

In chapter 2 we mentioned some factors causing seasonality. Those factors do not 

change rapidly along time and as a first approximation in section 2.9 seasonality was 

considered as fixed and therefore as deterministic. But future evolution of the factors 

behind seasonality is uncertain and seasonality should , in general, be considered as 

stochastic. 

 

Simillary as it was done with model (2.29) with segmented mean -I (0,1
s
)- one could 

considered that the seasonal factors of models in section (2.9) change rarely from time 

to time. Conditional to the knowledge of the time points at which these changes have 

taken place one could formulate a model with changing seasonal factors such that inside 

the sample the  seasonal factors could be taken as deterministic but future factors are 

clearly stochastic. A seasonal model of this type has similar inconvenients to those 

pointed out for segmented trend models. Consequently, and proceeding in a similar way 

than in previous section, we can considered stochastic seasonal models in which the 

seasonal factors change, usually very smoothly, at any time t. In the formulation of 

stochastic seasonallity it makes not much sense to consider that the trend could be 

deterministic and we will introduce stochastic seasonality only upon the models 

discussed in section 3.1. 

 

 An I (1,0) model with deterministic seasonallity can be written as 

 

xt = xt-1 + 


s

j 1

 a
*
j Sjt + wt,    (3.18) 

 

where Sjt, j = 1, …, s, are the seasonal dummy variables defined in section (2.9) and the 

seasonal factors follows the restriction 

 




s

j 1

 a
*
j = 0.    (3.19) 

In (3.18) at each time t only one a
*
j parameter appears because all the others are 

multiplied by seasonal dummies with zero value. 

 

From (3.18) we can write 

 

xt = 


s

j 1

 a
*
j Sjt + wt    (3.20) 

 

and in (3.20) again only one a
*
j enters at each  time t and according with (3.19) for this 

a
*
j, that without lost of generality could considered to be a

*
s, we have that 

a
*
s = 






1

1

s

j

 a
*
j. 

 

As it happens with trend, seasonal factors are not observed but we observe xt which 

includes them. Now one must take into consideration that under the hypothesis that xt 

follows an I (1,0) model it has trend and this trend must be removed in order to take 

observed data as proxy for seasonal factors. In equation (3.20) the transformed data, xt, 



has no trend but has seasonality. The aim now is to change the deterministic seasonal 

factor, say a*s, appearing in (3.20) by a stochastic factor, say st, which in mean follows 

a restriction like (3.19). This implies that st equals mimus 


 

1

1 )(

s

j jstj  plus some 

stochastic perturbation. 

 

With all these considerations  we could write  

 

xt = xt-1 jt

s

j

x 






1

1

 + wt.  (3.21) 

 

In (3.21) xt-1 captures the stochastic I (1,0) trend  which disappear taking first 

differences and then the factor          
1

1


 
s

j jtx   incorporates seasonality. As in the 

previous section, (3.21) is a reduced from model which results from a structural model 

with three equations. One defining xt as the sum of a trend, seasonal factors and a 

residual component, and the other two defining the trend and seasonal factors. These 

last two equations are affected by contemporaneous stochastic shocks, given a 

stochastic nature to trend and seasonal factors. These shocks in the reduced form model 

(3.21) are included in wt. It must be noted that the factor         
1

1


 
s

j jtx  

incorporating seasonality enters in the model with coefficient (root) one and (3.21) is 

also a model with seasonal unit roots. Since the seasonal factor has (s-1) elements there 

are also (s-1) seasonal unit roots. 

 

Equation (3.21) can be formulated as 

 

xt = xt-1 - [(xt-1 - xt-2) + (xt-2 - xt-3) + … + (xt-s+1 - xt-s)] + wt   (3.22) 

 

and cancelling terms we end up with 

 

xt = xt-s + wt,       (3.23) 

 

which is a simpler way to write (3.21). Apparently in (3.23) there is only one unit root 

but since it operates on the lag s it is seen from (3.22) that really there are s unit roots 

one positive refering to trend and (s-1) complex and negative refering to the (s-1) 

independent seasonal factors. 

 

 Both models (3.18) and (3.23) are I (1,0) but the first one with deterministic sea-

sonality (DS) and the second with stochastic seasonality (SS). Therefore it is convinient 

to denote (3.18) as I (1,0) (DS) and (3.23) as I (1,0) (SS). 

 

Denoting by s the seasonal difference operator which is such taht 

 

sxt = (xt - xt-s), 

 

it can be seen from equations (3.22) and (3.23) that 

 

sxt = 




1

0

s

j

 xt-j 



 

which implies that seasonal differences, sxt, equals to the sum of the corresponding s 

consecutive first differences. 

 

Therefore seasonal differencing implies two very different operations. First the data is 

transformed in first differences, eliminating LOL trends,  and then at each point in time 

s consecutive first differences are summed, eliminating seasonality.  Indeed, seasonality 

means cyclical evolution of one-year period and then is clear that transforming the 

observations –previously transformed by first differences to eliminate the trend- by 

sums over the cyclical period which ends at time t one removes the cyclical oscilation 

operating at time t. 

 

From (3.23) it can be seen that by taking seasonal differences in (3.23) one obtains 

 

xt - xt-s = sxt = wt,    (3.24) 

 

which is stationary. This means that in (3.24) the two evolutivity factors -trend and 

seasonallity- present in (3.21) or (3.23) have been eliminated. But it is important to 

realice that with the first differencing application embedded in seasonal differencing we 

have removed the trend and by the summing application the seasonallity. 

 

If in (3.21) one takes first differences only 

 

xt = 





1

1

s

j

jtx + wt     (3.25) 

and it can be seen that xt still has seasonal evolutivity. This is so because xt in (3.25) 

has a unit-root dependence on its own past and this past with xt sums up to complete 

the seasonal cycle ending at t. In other words xt in (3.25) is not stationary, in order to 

get a stationary transformation one needs to sum the dependent variable in (3.25), 

through out the whole yearly cycle ending at t. Then, from (3.25)  

 

t

s

j

jt wx 






1

0

, 

which is stationary. 

 

 The above equation can be reformulated as 

t

s

h

ht

s

j

jt wxx 










1

1

0

  (3.26) 

 

and using 

 

zt = 






1

0

s

j

jtx   

 

we can write 

 

zt = zt-1 + wt, 

 



which clearly shows that the dependent variable zt in (3.26) has a LOL trend. 

 

  At this stage it is interesting to introduce some aditional notation. Let us 

call B to the lag operator which is such that when applied to xt lags it one period. This 

means that 

 

Bxt = xt-1. 

 

Applying now B to xt-1 one obtains that 

 

B(B xt) = B
2
 xt = xt-2. 

 

In general 

 

B
j
 xt = xt-j. 

 

Using the lag operator 

 

 = (1 –B) 

and 

 

s = (1 – B
s
) = (1 – B) (1 + B + … + B

s-1
), 

 

which shows that the seasonal difference operator is the product of a first difference 

operator and a sum operator over the s consecutive observations ending at time t. This 

last operator can be called seasonal sum and we will denoted by Us-1 (B) such that 

 

Us-1 (B) = (1 + B + B
2
 + … + B

s-1
).   (3.27) 

 

 

 

In model (3.21) there is no systematic growth but just local oscillations in level because, 

as it can be seen from (3.23), the mean of the increments, now  seasonal increments, is 

zero. The fact that in (3.23) the level factor is not the previous value of xt as in model 

(3.3) but the value in the same season of the previous year indicates that the model 

generates local oscillations in level with stochastic seasonallity. 

 

 It is important to note that model (3.18) gives a direct estimation of seasonal 

factors, because they are fixed and have been included in the model. Model (3.23) 

includes a stochastic seasonal scheme but from it one can not get without imposing 

further restrictions an estimation of the seasonal factors. This question is identical to the 

one discussed in the previous sections when studing stochastic trends and as it was said 

there we do not care about it. 

 

 

The main points of the previous discussion are in summary 3.2.A. 



Summary 3.2.A. 

 

STOCHASTIC SEASONALITY: MODELS I (1, 0) (SS) 

 

(a) The future evolution of the factors causing seasonality is uncertain and seasonality 

should, in general, be considered as stochastic. 

      In this case it makes sense to consider seasonality only in models with stochastic 

trends. 

(b) Since the seasonal factors are restricted on their means to sum zero, stochastic 

seasonality can be introduced in model I (1, 0) by including with unit coefficient 

(root) the term        
1

1


 
s

j jtx . 

The resulting model is (3.21) and cancelling terms one gets a simpler formulation: 

                              xt = xt-s + wt .                                    (3.23) 

To make explicit that this model incorporates stochastic seasonality (SS) it will be 

denoted as I (1,0) (SS).  

A model I (1, 0) with deterministic seasonality (DS) like (3.18) will  be  denoted as 

I (1,0) (DS). 

(c) Models I (1, 0) (DS) incorporate an explicit formulation of seasonality and the 

seasonal factors can be estimated directly. Models I(1,0) (SS) incorporate 

seasonality through past values of xt  over the current seasonal cycle with unit 

roots. In this case an estimation of the seasonal factors is not possible without  

aditional and questionable restrictions. 

(d) If a time series is generated by a I (1, 0) (SS) model, their seasonal differences are 

stationary. 

Seasonal differencing includes two different operations: (1) a transformation of data 

in first differences and (2) the sum of s consecutive first differences. The first 

operation eliminates trend and the second seasonality. 

 

 



PUT  HERE  AN  EXAMPLE  ON   UNEMPLOYMENT   DATA,  AS   A  

SERIES I (1,0) (SS). 

 

For systematic growth one could consider the I(1,1) model. This model with 

deterministic seasonality takes the form: 

 

xt= xt-1 + b + 


s

j 1

b
*
j Sjt + wt,    (3.28) 

 

where 




s

j 1

b
*
j = 0 and 

 

therefore for any b
*
j , for instante, b*s, one has that  

b*s= -




1

1

*
s

j

jb . 

 

Model (3.28) can be formulated as 

 

xt - b = 


s

j 1

b
*
j Sjt + wt,    (3.29) 

where the dependent variable (xt-b) is free of trend. In (3.29) at each time  t only one 

b
*
j enters in the equation. 

 

One way to formulate (3.28) or (3.29) with stochastic seasonality is substituting the 

corresponding  b
*
s coefficient in those equations by 

 

-




1

1

s

j

(xt - b). 

Then  

 

xt = xt-1 + b  -




1

1

s

j

(xt-j - b) + wt.    (3.30) 

 

In (3.30) xt-1 captures the stochastic level factor of the trend, b the determinsitic 

incremental factor and  {- 

s

j 1 (xj - b)} the seasonal factor. 

From (3.30) one gets after a similar manipulation than before 

 

xt = xt-s + s  b + wt,     (3.31) 

 

which is a simpler formulation, in which it is clear that the model is I (1, 1) with 

stochastic seasonality, because the stochastic level factor in (3.31) is a seasonal level 

factor. 

 

The I (2, 0) model with deterministic seasonality can be written as  



xt = xt-1 + (xt-1 - xt-2) + 


s

j 1

b
*
j Sjt + wt,   (3.32) 

or 

xt - xt-1 = 


s

j 1

b
*
j Sjt + wt , 

where the dependent variable [xt - xt-1] is free of trend. 

 

In this case a model with stochastic seasonality takes the form 

 

xt = xt-1 + (xt-1 - xt-2) - 




1

1

s

j

(xt-j - xt-j-1) + wt.   (3.33) 

In (3.33) xt-1 captures the stochastic level factor of the trend, (xt-1 - xt-2) the stochastic 

trend incremental factor and  

 - 

s

j 1 ( xt-j - xt-j-1) the stochastic seasonality. 

 

After some manipulation (3.33) can be written as 

 

xt = xt-1 + (xt-s - xt-s-1) + wt or    (3.34) 

as 

  xt = xt-s + (xt-1 - xt-s-1) + wt .    (3.35) 

 

In both cases we have level and incremental factors which are stochastic and one of 

them is seasonal, indicating that the model generates systematic growth with stochastic 

seasonality. 

 

 In this case neither first differences, xt, nor seasonal differences, s xt, are 

stationary. The stationarity is obtained after applying one regular and one seasonal 

difference, s. 

 

 It is convinient to consider different ways of representing  s. Thus 

 

 s = (1 – B) (1 – B
s
) = 1 – B – (B

s
 – B

s+1
)    (3.36a) 

   = 1 – B
s
 – (B – B

s+1
).    (3.36b) 

 

Also 

 

 s = 
2
 Us-1 (B)  = 

2
 ( 1 + B + B

2
 + … + B

s-1
)  (3.36c) 

   = 
2
 + 

2
 (B + B

2
 + … + B

s-1
) 

   = [1 – L – (1-L)] + 
2
 ( B + B

2
 + … + B

s-1
). (3.36d) 

 

The model for xt takes the form 

 

 s xt = wt.      

 

Using (3.36d) for s the above model is represented according to equation (3.33). 

Using (3.36a) the representation (3.34) is obtained and making use of (3.36b) the 



equation (3.35). Finally, the right hand side term in (3.36c) makes clear the way of 

transforming in this case xt in a stationary variable: applying twice first differences and 

then summing over the seasonal cycle. 

 

In chapter 2 the US monthly time series corresponding to the index of industrial 

production (IIP) was called X8t and its plot is in figure 2.11. The plot quite clearly 

indicates that data shows systematic growth and also this type of behaviour is the one to 

be expected for a time series reflecting industrial production. Therefore for this series it 

can be assumed that the trend has two factors. Figure 2.11 also shows seasonal 

evolutivity. 

 

  In figures 3.4A and 3.4B it can be seen the first and seasonal differences 

of log X8t, respectively. In both cases the mean level does not seem constant indicating 

that in order to obtain an stationary transformation one needs to apply a second 

differencing operation. The plot of  log IIPt also shows seasonal oscillations therefore 

in this case the second difference operation should be seasonal. 

 

In both cases one arrives to  s log IIPt which is plotted inf igure 3.5 where it can be 

seen that this transformation can be taken as stationary. 

  



Figure 3.4A  

 

 

 

 

 

 

 

 

 

Figure 3.4.B. 

 



Figure 3.5 

 

 

 

 

 

 



Alternatively looking at figure 3.4A  one could considered that a model with constant 

mean and deterministic seasonality could serve as a first approximation. In this case 

 

 log IIPt = b + 




1

1

s

j

b
*
j S

*
jt + wt ,             (3.37) 

implying that log IIPt is given by model (3.28). The coefficients in (3.37) can be 

estimated, as shown in chapter 2, using the restriction that the sum of the b
*
j coefficients 

is zero. Then the coefficients *ˆ
jb  give an estimation of the seasonal factors of  log IIPt 

under the assumption that they are fixed. Those coefficients are given in figure 3.6. 

 

THE CORRESPONDING COEFFICIENTS FOR log IIPt CAN BE DERIVED 

FROM PARAMETERS  *ˆ
jb   AS FOLLOWS. 

 

From the above results one could ask which model (3.28) or (3.34) could be better for 

log IIPt. It has been discussed already the interest of the stochastic formulations for 

trend and seasonal factors and also their limitations. On the whole and mainly for 

forecasting proposes the stochastic formulations could be in many cases preferable, but 

when the length of the time series is short, less than five years say, the alternative of 

deterministic seasonality is advisable. In the next chapter it will be commented how one 

can find evidence that the deterministic approach could be more unsatisfactory than the 

stochastic one or how it is possible to detect if the deterministic formulation is a valid 

approximation for a given time series. This will be done looking at the properties of the 

corresponding wt residuals in each case. 

 

The most interesting models for economic time series allowing for deterministic or 

stochastic trends or seasonalities are collected in table 3.2. and the main points of the 

last part of this section are in summary 3.2.B. 

 

 



Summary 3.2.B. 

 

STOCHASTIC  SEASONALITY: MODELS I (1, 1) (SS) AND I (2,0) (SS). 

 

(a) For models I (1,1) stochastic seasonality (SS) can be introduced by including with 

unit coefficient (root) the term [ )(
1

1
bx jt

s

j
 



 ]. 

 

The resulting model is (3.30) and canceling terms one gets a simpler formulation  

                                xt = xt-s + s  b + wt.                                   (3.31).  

This model can be denoted I (1,1) (SS). 

 

(b) For models I (2,0) stochastic seasonality can be introduced by including the term [

)( 1

1

1 




 jtjt

s

j
xx ]. 

The resulting model is (3.33) and simpler formulations of it are  

                                xt = xt-1 + (xt-s – xt-s-1) + wt or                     (3.34) 

                                xt = xt-s + (xt-1 – xt-s-1) + wt .                        (3.35) 

 This model can be denoted as I (2,0) (SS). 

 

In this case neither first differences, xt, or seasonal differences, s xt, are stationary. 

Stationarity is obtained applying one regular and one seasonal difference. More 

precisely applying twice first differences and then summing over the seasonal cycle. 

 

An example of data for which model I (2,0) (SS) could be appropiate is the index of 

industrial production for US. See figures 2.11, 3.4A, 3.4B and 3.5. 

 

(c) At least for forecasting purposes stochastic seasonal formulations are in many cases 

preferable to deterministic schemes. 

 

But for short time series, less than five years, deterministic schemes are advisable. 

Evidence in favour of stochastic seasonality with respect deterministic seasonality can 

be obtained analyzing the residuals of the corresponding models, as it will be seen in the 

next chapter. 





Table 3.2    MODELS FOR ECONOMIC TIME SERIES WITH TREND AND SEASONALITY.  
TREND 

I (d,m) 

TREND PLUS DETERMINISTIC SEASONALITY 

(DS) 

TREND PLUS STOCHASTIC SEASONALITY 

(SS) 

A. DETERMINISTIC TRENDS 

A.1.  (1)  WITH  LOCAL   OSCILLATIONS   IN   

LEVEL I (0, 1
s
) without seasonality. Models (2.29) or 

(2.37) 

 

 

A.2. WITH SYSTEMATIC GROWTH without 

seasonality: 

           (3) Without segmentation I (0, 2). Model (2.5). 

 

           

          (5) With segmentation I (0, 2
s
). Model (2.33). 

 

(2) Local oscillations in level with deterministic 

seasonality:  

Like models (1) but enlarged with 
*

1

1

*

jt

s

j

j Sa




 

 

(4) Systematic growth without segmentation and with 

deterministic seasonality: I (0,2) (DS). Model (2.47). 

 

(6) Systematic growth with segmentation and 

deterministic seasonality I (0, 2
s
) (DS) 

Like model  (5) but enlarged with 
*

1

1

*

jt

s

j

j Sa




 

 

B. STOCHASTIC TRENDS. 

B.1. (7) WITH LOCAL OSCILLATIONS IN LEVEL 

without  seasonality I (1, 0). Model (3.3) 

 

B.2.SYSTEMATIC GROWTH WITH 

DETERMINISTIC MEAN GROWTH  without 

seasonality: 

       (10) Without segmentation I (1, 1). Model (3.9). 

 

        

 

       (13) With segmentation I (1, 1
s
). Model (3.15). 

 

 

 

 

B.3. (16) SYSTEMATIC GROWTH FULLY 

STOCHASTIC without seasonality. I (2, 0). Model 

(3.13). 

(8) Local oscillations in level with deterministic 

seasonality I (1, 0) (DS). Model (3.18). 

 

 

 

 

(11) Systematic growth with deterministic mean growth 

without segmentation and with deterministic seasonality. 

I (1,1) (DS). Model (3.28). 

 

(14) Systematic growth with segmented mean growth 

and with deterministic seasonality I (1, 1) (DS).  

Like model (13) enlarged with 
*

1

1

*

ht

s

h

h Sb




 

(17) Systematic growth fully stochastic with 

deterministic seasonality: I (2, 0) (DS). Model (3.32). 

 

(9) Local oscillations in level with stochastic seasonality 

I (1, 0) (SS). Model (3.21) or (3.23). 

 

 

 

 

(12) Systemtic growth with deterministic mean growth 

without  segmentation  and  with   stochastic seasonality 

I (1, 1) (SS). Model (3.30) or (3.31). 

 

(15) Systematic growth with segmented mean growth 

and stochastic seasonality I (1, 1
s
) (SS).  

Like model (3.15) but substituting xt-1 by xt-s. 

 

 

(18) Systematic growth fully stochastic with stochastic 

seasonality: I (2, 0) (SS). Model (3.33) or (3.34) or 

(3.35). 



3.3. REMOVING TRENDS AND SEASONALITY. 

 

In section 3.1. stochastic trends based on unit roots were discussed. They imply that a 

model explaining xt includes the previous level, and perhaps also the previous increment 

of xt, with coefficient values of one. Then it becomes obvious that by differencing once 

or twice the trend disapperars. Thus the trend in a model I (1, 0), see equation (3.3), 

disappears after differencing once and the same happens with models I (1, 1) as in 

equation (3.9). This is so because in both cases the models contain only one unit root. 

For models I (2, 0), i.e. with two roots, like model (3.13), the trend is eliminated after 

two differences. In general for models I (d, m), d  0 and m = 0 or 1, after differencing d 

times the trend is removed. This is so by construction. In fact unit-root trends were 

proposed after observing that in many instances differencing non-stationary data, once 

or twice, the resulting time series could be considered as stationary. Then the original 

data is a fortiori characterized by unit-root dependency of its own past. Consequently 

proposing unit-root formulations for non-stationary time series as it has been done in 

previous sections, implies that stationarity is necessarily obtained by differencing. 

 

For deterministic trends like I (0, 2) 

 

xt = a + bt + wt (3.38) 

 

after differencing the following expression 

 

xt = b + (wt - wt-1) (3.39) 

 

is obtained  and in xt there is not  a  trend any more.  In general  for  models I (0, m), 

m 2, after differencing (m-1) times the trend disapperars. So it can be stated that 

differencing also remove trends in models I (o, m). Nevertheless I (0, m) models include 

a specific formulation of trends different from unit roots and certainly the optimal way 

to remove the trend in them is not by differencing, but by estimating the trend 

coefficients through a regression and taking the residuals as the deviations of xt from the 

trend, which by definition constitute the stationary transformation of xt. Thus in case of 

model (3.38) estimating the parameters a and b the trend is removed as 

 

                                  xt - a - bt = wt .        (3.40) 

 

In this case the differenced data, ignoring the mean b, is (wt – wt-1), i.e. the first 

differences of the wt residuals, which constitute the proper stationary transformation of 

xt. It will be seen later that transformed data of this type - (wt – wt-1)- have undesirable 

statistical properties. In particular they cannot be formulated in terms of a convergent 

sequence of its own past values plus a random shock. 

 

Similar results are obtained when differencing other I (o, m) models. The conclusion is 

that by differencing, polynomial trends are removed, but the proper way of doing it is 

by regression analysis and consequently after differencing in those cases one obtains a 

transformed time series with bad properties. 

 

Models with segmented trends or segmented means of the type I (o, m
s
), m > o, capture 

a non-linear trend and the proper way to remove the trend is by applying the 



corresponding regression and taken the residuals. In those cases, for instance model 

(2.31) with just one break at time t
*  

which we write here again 

 

                xt = a + bt + a1 1t + b1 1t + wt,         (3.41) 

 

applying first differences most of the trend is removed but not all and these remaining 

trends parts could distort the posterior analysis. Applying first differences to (3.41) one 

gets 

 

xt = b + a1 D1t + b1 1t + (wt - wt-1).        (3.42) 

 

These differenced data contain, appart from the constant mean b, a residual (wt - wt-1) 

with the bad properties mentioned before and the remainings of the original trend given 

by 

 

a1 D1t + b1 1t,             (3.43) 

 

where D1t takes value one at observation t
*
 and zero otherwise and 1t has already been 

defined and takes value one from t
*
 onwards and zero otherwise. 

 

For models I (d, m), d  0 and m>1, after differencing d times one still has a polynomial 

trend with m factors. The proper way to remove trend in this case is by differencing d 

times and run the appropiate regression on 
d
 xt in order to eliminate the remaining 

deterministic trend. In this case trend can be eliminated by differencing [d + (m-1)] 

times, but doing that one ends up with residuals with the undesirable properties 

mentioned above. 

 

Finally for models I (d, m
s
), d  0 and  m> 0, the trend is adequately removed by 

differencing first and then running the corresponding regression on 
d
 xt. If in this case 

[d + (m-1)] differences are applied the trend is not fully removed and the residuals also 

have the inconvenient of containing elements similar to those in (3.43). 

 

In table 3.3 we summarize the above discussion showing the appropiate trend removing 

procedure for each model and comment on the effects of removing it by differencing. 

These results indicate that for linear models, i.e. with no segmentation in them, by 

differencing one removes trends even when in the cases which include deterministic 

components the resulting transformed data have not desirable properties for  subsequent 

analysis. 

 

Differencing in the case of models with segmentation one obtains residuals with the 

above properties and besides they also include a remaining part of the trend. 

 

In order to discuss how to remove seasonality consider first a time series which has 

seasonal evolutivity but no trend. In this case if seasonality is deterministic a possible 

model is 

 

xt = 


s

j

ja
1

*
Sjt  + wt        (3.44) 

 



and we remove it by running regression (3.44) and taken the residuals. This correspond 

to the general principle that deterministic components are remove by regression 

methods. If in the case under consideration seasonality is stochastic a model for xt is 

 

xt = 





1

1

s

j

jtx  + wt,            (3.45) 

 

therefore replacing xt by the sum of xt values corresponding to the seasonal cycle ending 

at t seasonality is removed. Thus from (3.45) 

 








1

0

s

j

jtx  = Us-1 (B) xt = wt.            (3.46) 

 

Therefore the unit-root stochastic seasonality is removed by summing over the seasonal 

cycle. 

 

Seasonal sums also removed seasonality in models with determinsitic seasonality but 

then the resulting transformed data has bad properties. To ilustrate this result take model 

(3.44) for s = 2. Then a
*
2 = -a

*
1 and 

 

xt = a
*
1 S1t – a

*
1 S2t + wt 

 

and summing over the seasonal cycle 

 

                                  U1 (B) xt = (1 + B) xt = wt + wt-1.  (3.47) 

 

The transformed variable  (1 + L) xt in (3.47) has no seasonality but is composed by a 

scheme of residuals wt  with seasonal unit roots and, as we will see later, this type of 

structure has bad properties for subsequent analysis. 

 

 In general  time series with seasonality will also have trends. In those cases one 

needs to remove trend and seasonality. If both components are stochastic one needs to 

apply d times first differences and then a seasonal sum on the difference data. But this 

procedure is equivalent to apply (d-1) first or regular differences and one aditional 

seasonal difference. When trend or seasonality follow deterministic schemes applying 

regular and seasonal differences one removes them but end up with a transformed time 

series with bad properties. The question is that if trend and seasonality are fully 

deterministic one should apply the appropiate regression to eliminate both elements. For 

the general model I (d, m
s
) with seasonality, deterministic or stochastic, one should 

apply first  the appropiate differences and then run the corresponding regression on the 

difference data. See table 3.3. for a summary. 

 

 In conclusion, the general rules for removing the types of trends and seasonality 

discussed in previous sections are: 

 

a). Trend and seasonality are fully stochastic with unit roots. 

 The stationary transformation is obtained by differencing, noting that if 

seasonality is present one of the differences must be seasonal. 

 



b). Trend and seasonality are fully deterministic. 

 The stationary transformation is obtained by running the corresponding 

regression and taking the residuals. 

 

c). Trend and seasonality have stochastic unit-root properties and deterministic 

components. 

 The stationary transformation is obtained by differencing first and then running 

the appropriate regression and taking the residuals. 

 



Table 3.3 

REMOVING TRENDS AND SEASONALITY. DIFFERENCING. 

 

MODEL PROCEDURE AND COMMENTS 

(a) I (d,m), d  0 and m= 0 or 1 

 

 

(b) I (d,m) (SS), d  0 and m = 0 or 1 

 

 

(c) I (d, m) (DS), d  0 and m = 0 or 1 

The optimal way of removing trend is by differencing d times.  

Examples: Models (3.3), (3.9) and (3.13). 

 

Proceed as case (a) but one of the differences must be seasonal. 

Examples models (3.23), (3.31) and (3.34). 

 

Proceed as case (a) and then with 
d
 xt run a regression to remove the 

deterministic seasonality. 

Examples: models (3.18) and (3.32). 

(d) I (0, m), m  2 

 

 

 

 

 

(e) I (0, m) (DS), m  2 

The optimal way of removing trend is by running for xt the appropiate 

regression and take the residuals. 

Example: model (2.5) 

Differencing (m-1) times also removes trend but leaving residuals with 

undesirable statistical properties. 

 

Proceed as case (d) but now the regression should include seasonal 

dummies. 

Applying (m-1) differences, one of them seasonal, trend and seasonality 

are removed but leaving residuals with undesirable properties. 

 



Table 3.3 (Continuation) 

REMOVING TRENDS AND SEASONALITY. DIFFERENCING. 

 

MODEL PROCEDURE AND COMMENTS 

(f)I (0, m
s
), m > 0 

 

 

 

 

 

 

(g) I (0, m
s
) (DS), m > 0 

The optimal way of removing trend is by running for xt the appropiate 

regression and take the residuals. 

Example: Model (2.33). 

Differencing leaves residuals with similar properties as case (d) and 

also, and this is much worst, these residuals contain part of the trend 

which is not fully removed by differencing. 

 

Proceed as in case (f) but now the regression should include seasonal 

dummies. 

Applying differences, one of them seasonal, has all the inconvenients 

mentioned in case (f) 

(h)I (d, m), d  0 and m > 1 

 

 

 

 

 

(i)I (d, m) (SS), d  0 and m > 1 

 

 

(j) I (d, m) (DS), d  0 and m > 1 

The proper way of removing trend is by differencing d times and 

running for 
d
 xt a regression to eliminate the deterministic trend. 

Applying [d +(m-1)] differences eliminates trend but leaving residuals 

with undesirable properties. 

 

 

Similar comments to (h) apply here, but now one of the differences is 

seasonal. 

 

The proper way of removing trend and seasonality is by differencing d 

times and running for 
d
xt an appropiate regression to eliminate trend 

and seasonality. 

 



Table 3.3 (Continuation) 

REMOVING TRENDS AND SEASONALITY. DIFFERENCING. 

 

MODEL PROCEDURE AND COMMENTS 

(k) I (d, m
s
), d  0 and m> 0 

 

 

 

 

 

 

(l) I (d, m
s
), (SS), d  0 and m > 0 

 

 

(m) I (d, m
s
) (DS), d  0 and m > 0 

 

 

The proper way of removing trend is by differencing d times and 

running for 
d
xt an appropiate regression to eliminate the deterministic 

trend. Appling [d + (m-1)] differences, one of them seasonal, eliminates 

trend and seasonality but leaving a transformed time series with bad 

properties for subsequent analysis. 

Similar comments to case (h) apply here. 

 

Similar comments to case (i) apply here. 

 

 

Similar comments to case (j) apply here. 

 

 

 


