
Profit maximisation 1

Assume now

I L-dimensional vector of prices p = (p1, ..., pL) > 0,
independent from the choices of the firm:
⇒ firm is price taker in input and output markets

I firm maximises profits

I Y is not empty, closed and satisfies free disposal

The firm’s problem can be stated as

maxy p · y PMP
s.t y ∈ Y

or, equivalently

max
y

p · y

s.t F (y) ≤ 0



Profit maximisation 2

If F (.) is differentiable, necessary condition for profit maximisation
are

p = λ∗ ∇F (y∗) λ∗ ≥ 0 FOC-PMP

⇒ y is chosen so that p and ∇F (y∗) are proportional ⇐

If Y is convex, FOC-PMP is not only necessary but also sufficient
for profit maximisation.

More than simply a technical point!!

For instance, Assume L = 2 and good 1 being a net output and 2
a net input. If Y shows CRS or IRS, then y∗1 =∞ when p1

sufficiently large relatively to p2, and y∗1 = 0 otherwise.



Profit maximisation 3

FOC-PMP can be rewritten as follows, for any k , l = 1, .., L and
k 6= l :

pk
pl

=

∂F (y∗)
∂yk

∂F (y∗)
∂yl

= MRTkl FOC-PMP2



Profit function and supply correspondence

Two fundamental functions/correspondences ONLY deriving from
the profit maximising behaviour hypothesis are:

I the profit function
π(p) = p · y∗

which associates to every p the maximum value of p · y;

I the supply correspondence

y(p) = {y ∈ Y : p · y = π(p)}

which associates to every p the profit maximising production
plan y∗.



Properties of the profit and supply
functions/correspondences

I If Y is convex, y(p) is a convex set for all p. If Y is strictly
convex, y(p) is single-valued.

I If Y is convex, then
Y = {y ∈ <L : p · y ≤ π(p) for all p� 0}.

The profit function is a complete description of the
technology.



Properties of the profit and supply
functions/correspondences 2

I π(.) is convex in prices.
Let p′′ = tp + (1− t)p′ for all 0 ≤ t ≤ 1. Then,
π(p′′) ≤ tπ(p) + (1− t)π(p′).



Properties of the profit and supply
functions/correspondences 3

I When π(.) is differentiable, can obtain the
supply correspondence from the profit function, using the
Hotelling’s lemma

∇π(p) = y(p)

or, equivalently,

∂π(p)

∂pi
= yi (p) for i = 1, .., L.

(when i is an input, yi (p) is usually referred to as factor
demand function).

Hotelling’s lemma is simply an application of the envelope theorem
(see previous picture).



Properties of the profit and supply
functions/correspondences 4

I Dy(p) is positive semidefinite.

Because of Hotelling’s lemma, Dy(p) = D2π(p). Since π(.) is
convex, its Hessian matrix must be positive semidefinite, so
that also Dy(p) must be positive semidefinite.

Positive semidefiniteness of Dy(p) implies...



Properties of the profit and supply
functions/correspondences 5

1. the principal-minor determinants are all positive.
↪→ technical requirement for convexity of the supply function

2. Dy(p) is symmetric: cross-substitution effects are symmetric

∂2π(.)

∂p`∂pk
=
∂y`(.)

∂pk
=
∂yk(.)

∂p`
=

∂2π(.)

∂pk∂p`
. for `, k = 1.., L

↪→ very little intuition...

3. law of supply: own-price effects are nonnegative

∂y`(.)

∂p`
≥ 0 for ` = 1.., L.

↪→ optimal amount of output increases as the price with its
price and optimal amount of input decreases with its price



Properties of the profit and supply
functions/correspondences 6

I π(.) is homogenous of degree one
y(p) is homogenous of degree zero
For all t > 0, π(tp) = t π(p) and y(tp) = y(p).

A proportional change of all prices change (optimal) profits by
the same proportion but does not change the (optimal)
production plan.

The relationship between these two results follows from
Hotelling’s lemma, being the factor demands the derivative of
the profit function.



Cost minimisation

A choice of inputs that minimises the cost of producing a given
output is a necessary (but not sufficient) condition for profit
maximisation.

Result on costs of interest because

I often more useful than results on technology, esp. in applied
work

I require only price-taking assumption in input markets

I better accommodate constant or nondecreasing returns to
scale

Focus on single-output technology (restrictive assumption).



Cost minimisation problem

To minimise costs, a firm solves the problem

min
z

w · z CMP

s.t q ≤ f (z)

Necessary condition for z(q,w) to be the solution to CMP are, for
some λ ≥ 0 and for ` = 1, .., L− 1,

w` ≥ λ
∂f (z∗)

∂z`
(with = when z∗` > 0) FOC-CMP

or, equivalently,

w ≥ λ∇f (z∗) and [w− λ∇f (z∗)] · z∗ = 0

If f (.) is quasi-concave, these conditions are also sufficient for cost
minimization.



Cost minimisation problem 2

In case of interior solutions, FOC-CMP can be re-written as
follows, for `, k = 1, .., L and ` 6= k ,

w`
wk

=

∂f (z∗` ,z
∗
k )

∂z`
∂f (z∗` ,z

∗
k )

∂zk

= MTRS`k (FOC-CMP2)

which is clearly a special case of the condition FOC-PMP2 for
profit maximisation and which has a nice graphical interpretation.



FOC-CMP



From CMP

Two fundamental functions/correspondences deriving from cost
minimisation problem:

I the conditional factor demand correspondence

z(q,w)

which associates to every q and w the cost minimising input
demand

I the cost function

c(q,w) = w · z(q,w)

which associates to every q and w the minimum production
cost



Properties of cost fct and conditional demand factor fct 1

I c(.) is concave in w.



Properties of cost fct and conditional demand factor fct 2

I If the sets {z > 0 : f (z) ≥ q} are convex for every q, then
Y = {(−z, q) : w · z ≥ c(w, q) for all w > 0}.
The cost function is a complete description of the technology.



Properties of cost fct and conditional demand factor fct 3

I When c(.) is differentiable, can obtain the conditional factor
demand correspondence from the cost function, using

∇wc(w, q) = z(w, q) Shepard’s lemma

or, equivalently,

∂c(w, q)

∂wi
= z∗i (w, q) for i = 1, .., L.

Similarly to Hotelling’s lemma, Shepard’s lemma is simply an
application of the envelope theorem (see previous picture).



Properties of cost fct and conditional demand factor fct 4

I Dwz(w, q) is symmetric negative semidefinite.
Because of Shepard’s lemma,Dwz(w, q) = D2c(w, q).

Since c(.) is concave in w, its Hessiam matrix must negative
semidefinite, so that also Dwz(w, q) must be negative
semidefinite.

Negative semidefiniteness of Dwz(w, q) implies...



Properties of cost fct and conditional demand factor fct 4

1. the principal-minor determinants have alternate sign, starting
from negative.
↪→ technical requirement for concavity of the cost function

2. Dwz(w, q) is symmetric:

∂2c(.)

∂w`∂wk
=
∂z`(.)

∂wk
=
∂zk(.)

∂w`
=

∂2c(.)

∂wk∂w`
.

↪→ very little intuition...

3. the conditional factor demand are (weakly) downward sloping:

∂zi (.)

∂wi
=
∂2c(.)

∂wi
≤ 0 for i = 1.., L.

↪→ law of demand for inputs...



Properties of cost fct and conditional demand factor fct 5

I c(.) is homogeneous of degree one in w:

c(q, αw) = α c(q,w);

I z(q,w) is homogeneous of degree zero in w:

z(q, αw) = z(q,w)

I An equally proportional change of all input prices causes an
equal change in total cost but not a change in factor demands.

I These two results depend on the Shepard’s lemma, being the
conditional factor demands the derivative of the cost function.



Properties of cost fct and conditional demand factor fct 6

I c(.) is nondecreasing in w: if w′ > w, then c(q,w′) ≥ c(q,w).

The total cost of producing q can only increase when at least
one of the input prices increases.

This again depends from the Shepard’s lemma, since
∂c(w,q)
∂wi

= z∗i (w, q) ≥ 0.



Using the cost function

I Using the cost function, we can rewrite the profit
maximisation problem as follows

max
q≥0

p · q− c(w,q)

I Since input are optimally chosen, focus is now on the choice of
output only !!!

I When the technology is single-output, condition necessary for
q∗ to be optimal is

p − ∂c(w, q∗)

∂q
≤ 0 with strict equality if q∗ > 0



Competitive firms 1

The following figures describe the optimal behaviour of a
competitive firm under different technological conditions.
Let

I 1 output

I p > 0 and w� 0

I C (q) = c(q,w);

I AC (q) = C (q)/q;

I C ′(q) = dC (q)/dq



Competitive firms and strictly decreasing returns to scale
(convex)



Competitive firms and constant returns to scale (convex)



Competitive firms and non convex technology



Competitive firms and strictly convex variable costs with
nonsunk setup costs



Competitive firms and constant returns variable costs with
nonsunk setup costs



Competitive firms and strictly convex variable costs with
sunk setup costs


