
Choice under uncertainty



Risky alternatives

I Risky alternative are represented by
lotteries over a (sometimes) finite number of possible outcomes C

I When outcomes are finite and in number N, a lottery L is a
list

L = (p1, . . . , pN),

with pn ≥ 0 for all n and
∑

n pn = 1. where pn is the
probability of outcome n to occur.

I outcomes C could be consumption bundles (that is, C = X ),
or other: we’ll normally assume that outcomes are monetary
payoffs.

I outcomes could also be lotteries themselves: compound
lotteries (i.e. lotteries over lotteries) could be transformed in
reduced lotteries



Preference relation

Our consumer:

I faces a set L of alternative lotteries

I has a preference relation � over L which, together with
completeness and transitivity, satisfies
I continuity

a small change in probability does not change the ranking over
lotteries

I independence axiom:
for all L, L′ and L′′ ∈ L and α ∈ (0, 1), then

L � L′ ⇔ αL + (1− α)L′′ � αL′ + (1− α)L′′

unlike with ′′standard′′ goods, mixing L and L′ with L′′ does
not change our ranking over L and L′

I either consume L′′ (and therefore the ranking over L and L′ is
not relevant), or

I consume L and L′ (and therefore L′′ is irrelevant)



Preference relation and expected utility

If the preference relation � on L satisfies continuity and
independence axioms, can assign an utility number un to each
outcome so that

I for every simple lottery L = (p1, . . . , pN) ∈ L, the utility of
the lottery, U(L), is the expected value of the utility of the N
outcomes

U(L) = u1p1 + . . .+ uNpN

↪→ von Neumann-Morgestern (VNM) expected utility function

I for any two lotteries L = (p1, . . . , pN) and L′ = (p′1, . . . , p
′
N),

L � L′ ⇔
∑
n

unpn ≥
∑
n

unp
′
n

I if U(L) represents �, then this also holds for
V (L) = γ + βU(L) (with β > 0).



Allais paradox

I So, is everything fine? Well, not quite

I Often behaviour not consistent with EUT

Take the following example:

I Possible outcomes: c1 = 2, 500, 500; c2 = 500, 000; c3 = 0

I two sets of lotteries:

L1 = (0; 1; 0) and L′1 = (0.1; 0.89; 0.01);
L2 = (0; 0.11; 0.89) and L′2 = (0.1; 0; 0.9);

I now make your choice !!
I L1 or L′1 ??;
I L2 or L′2 ??;



Allais paradox 2

I Most people show that L1 � L′1 and L′2 � L2

I Not consistent with EUT !!
L1 � L′1 implies
u05 > (0.10)u25 + (0.89)u05 + (0.01)u0;
adding (0.89)u0 − (0.01)u05 to both sides, it obtains
(0.11)u05 + (0.89)u0 > (0.10)u25 + (0.90)u0

that is L2 � L′2
I one solution is regret theory : people care not only about what

they win but also about what they could have won !

I ... but this is the subject of another course.



Lotteries over monetary outcomes

I Assume outcomes are given by a continuous variable x ∈ <.

I Lotteries are then described by the cumulative distribution
function F (.) (and the associated density function f (.) where
F (.) =

∫ x
−∞ f (t)dt).

I A preference relation � with the discussed properites over the
set of all possible lotteries ensures that any F (.) (i.e., any
lottery) can be evaluated by an utility function of the VNM
form

I A VNM expected utility function U(.) is then

U(F ) =

∫
u(x)f (x)dx =

∫
u(x)dF (x)

where u(x) is the Bernoulli utility function which assigns
utility to amounts of money.

I Economic attributes of individuals’ attitute toward risk are
captured by the properties of the Bernoulli function u(.)



Risk aversion
A decision maker is risk averse iff∫

u(x) dF (x) ≤ u

(∫
x dF (x)

)
for all F (.) RAD

RAD equivalent to concavity of u(.) (strict concavity with strict
inequality sign)



Risk neutrality

A decision maker is risk neutral iff∫
u(x) dF (x) = u

(∫
x dF (x)

)
for all F (.) RND



Two useful concepts

I the certainty equivalent

I the probability premium



The certainty equivalent

I The certainty equivalent of a lottery F (.), denoted with
c(F , u) is the amount of money which makes the
decision maker indifferent between the money itself
and the lottery F (.).

I Formally

u(c(F , u)) =

∫
u(x) dF (x)

I Risk aversion implies that the certainty equivalent is smaller
than the expected value of the lottery:

risk aversion ⇔ c(F , u) <
∫
x dF (x)



Certainty equivalent and risk aversion



The probability premium

I The probability premium, denoted with π(x , ε, u) is the
excess in winning probability over fair odds that makes
the individual indifferent between the certain outcome x and
a lottery between two equally likely outcomes x + ε and x − ε.

I Formally

u(x) =

(
1

2
+ π(x , ε, u)

)
u(x + ε)

+

(
1

2
− π(x , ε, u)

)
u(x − ε)

I Risk aversion implies that the probability premium is positive

risk aversion ⇔ π(x , ε, u) > 0



Probability premium and risk aversion



Arrow Pratt coefficient of absolute risk aversion rA(.)

I May be useful to provide a measure of risk aversion.

I u′′(x) is a natural candidate; however, its value (but not its
sign) depends on the possible linear transformations of u(.)

I A measure of absolute risk aversion is given by the

Arrow Pratt coefficient of absolute
risk aversion rA(x)

rA(x ; u) = −u′′(x)

u′(x)

I rA(.) provides a measure of the curvature of the Bernoulli
function

I Notice that integrating twice rA(.) it is possibile to recover the
Bernoulli function



rA(.) and certainty equivalent

c(F , u) is lower the higher is rA(.)



rA(.) and probability premium

I Recall the definition of probability premium

u(x) =

(
1

2
+ π(x , ε, u)

)
u(x + ε)

+

(
1

2
− π(x , ε, u)

)
u(x − ε)

I Differentiate twice both sides w.r. to ε and evaluate it at ε = 0

4
∂π

∂ε
|ε=0 u′(x) + u′′(x) = 0 → rA(x) = 4

∂π

∂ε
|ε=0

I rA(x) then gives the rate at which the probability premium
increases with the risk (as measured by ε)


