
The consumer’s decision problem

I Let p � 0 and w > 0

I The consumer’s decision problem may be described as

max
x≥0

u(x) s.t. p · x ≤ w UMP

I In words:

choose the preferred consumption bundle
within the set of admissible bundles



UMP

From UMP, two interesting objects:

I optimal consumption bundles: the solution to UMP

I consumer’s maximal utility value: the value function of the
UMP
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The solution to UMP

The solution to the UMP is the Walrasian (or ordinary or market
or Marshallian) demand correspondence (or function): x(p,w)

a rule that assigns optimal consumption vector(s)
to each price-wealth combination

If x(p,w) is single valued, then Walrasian demand function,
otherwise Walrasian demand correspondence



The solution to UMP



Properties of Walrasian demand correspondence
1) homogeneity of degree zero in p and w :

x(p,w) = x(αp, αw) for any α > 0

All is due to the budget set being unaffected by a proportional
changes in prices and income/wealth.
Let
I Bp,w = {x ∈ <L

+ : p · x ≤ w}
I Bαp,αw = {x ∈ <L

+ : αp · x ≤ αw}.
Then

Bp,w = Bαp,αw



Properties of Walrasian demand correspondence (ctd)

2) Walras’s law
w ≡ p · x(p,w)

It follows from local non satiation: if the consumer selects a
consumption bundle x where p · w < w , then there must be
another consumption bundle y , ε-close to x and affordable
(i.e., such that p · w ≤ w) where the consumer can improve
its utility



Properties of Walrasian demand correspondence (ctd)

3) x(p,w) is convex
I if � is convex (i.e. u(x) is quasi-concave), then x(p,w) is a

convex set
I if � is strictly convex (i.e. u(x) is strictly quasi-concave), then

x(p,w) is a single element



Necessary conditions for solution to UMP

If x∗ ∈ x(p,w) is a solution to UMP, then there exists a
Lagrangean multiplier λ such that, for all `,

∂u(x∗)
∂x∗`

≤ λ∗p`(
∂u(x∗)
∂x∗`

− λ∗p`
)
x∗` = 0 FOC-UMP

In matrix notation

∇u(x∗) ≤ λ∗p x∗ · (∇u(x∗)− λ∗p) = 0

FOC-UMP are sufficient for global maximum if

I u(.) is quasiconcave

I ∇u(x) 6= 0 for all x ∈ <L
+ (otherwise, ’bliss’ point)



FOC-UMP



Marginal rate of substitution
FOC-UMP imply that, for any `, k, at an interior solution

∂u(x∗)
∂x∗`

∂u(x∗)
∂x∗k︸ ︷︷ ︸

MRS`,k

=
p`
pk︸︷︷︸

price ratio

I MRS`,k tells how much you want, at the margin, to trade
good ` for good k and keep utility constant.

If above equality not satisfied,

∂u(x∗)
∂x∗`

p`
>

∂u(x∗)
∂x∗k

pk

I The MU per dollar spend on good ` is larger that the MU per
dollar spent on good k : consumer would like to increase
his/her consumption of good ` even more

I Trading commodities ` and k at current prices increases
utility, contradicting the maximality of x∗



Marginal rate of substitution

FOC-UMP imply that, at a corner solution

I ∂u(x∗)
∂x∗k

≤ λpk for those goods such that x∗k = 0

I ∂u(x∗)
∂x∗`

= λp` for those goods such that x∗` > 0

I so that
∂u(x∗)
∂x∗`

p`
= λ >

∂u(x∗)
∂x∗k

pk

The MU per dollar spend on good ` is larger that the MU per
dollar spent on good k : consumer would like to increase
his/her consumption of good ` even more, but he/she cannot!!



Lagrange multiplier in UMP

Lagrange multiplier λ gives the shadow value of the constraint

λ gives the change in (optimal) utility
due to a change in wealth

At an interior solution,

∂u(x∗)
∂w =

∑
`
∂u(x∗)
∂x∗`

∂x∗`
∂w using u(x∗) = u(x(p,w))

=
∑

` λ
∗p`

∂x∗`
∂w using FOC-UMP

= λ∗
∑

` p`
∂x∗`
∂w

= λ∗ by differentiating
Walras’s law



Comparative statics

I Useful to look at how demand x(p,w) changes when w or p
change

I We’ll look at two objects:
I price/wealth effects: the effect on x`(p,w) of a change in p`

or w .
I Engle/offer function: optimal bundle x(p,w) as a function of

w or p`.

I Helpful to have Walrasian demand be continuous and
differentiable. Possible to establish that, when preferences are
continuous, strictly convex, locally nonsatiated on the
consumption set <L

+, the function x(p,w) is continuous for all
(p,w)� 0.



Comparative statics: price effects

I The price offer curve x(p1, . . . , p`, . . . , pL,w) gives the
optimal bundle as a function of p`, for given prices p−` and
wealth w .

I The price effect of pk on the demand for good ` is given by

the derivative ∂x`(p,w)
∂pk

.

I Much more on this later...
I For the moment, satisfy yourself with the following

I own-price effect: ∂x`(p,w)
∂p`

I when ∂x`(p,w)
∂p`

> 0, ` is a Giffen good (at the current

price-wealth combination)

I cross-price effect: ∂x`(p,w)
∂pk

I when ∂x`(p,w)
∂pk

> 0, ` and k are substitutes

I when ∂x`(p,w)
∂pk

< 0, ` and k are complements



Comparative statics: price effects



Comparative statics: wealth effects 1

I For given prices p, the Engel function x(p,w) gives the
optimal bundle as a function of wealth, for given prices.

I It can be represented by the wealth expansion path
Ep = {x(p,w) : w > 0}



Comparative statics: wealth effects 2

The wealth effect for commodity ` is given by ∂x`(p,w)
∂w .

I commodity ` is normal at (p,w) if its demand increases with
wealth

∂x`(p,w)
∂w ≥ 0 ⇔ NORMAL GOOD

I commodity ` is inferior at (p,w) if its demand decreases with
wealth

∂x`(p,w)
∂w < 0 ⇔ INFERIOR GOOD



Wealth effect for special preferences

The wealth effect typically depends on the level of w .
However, for some types of preferences, this is not so:

I when preferences are homothetic, the wealth expansion path is
a straight line through the origin
↪→the wealth effect is constant

I when preferences are quasi-linear, the wealth expansion path
is a straight horizontal line
↪→the wealth effect is zero



Engel function for homothetic preferences



Engel function for quasi-linear preferences



UMP

From UMP, two interesting objects:

I optimal consumption bundles: the solution to UMP

↪→ consumer’s maximal utility value: the value function of the
UMP



The indirect utility function

The value function of the UMP is called the indirect utility
function v(p,w)

v(p,w) = u(x∗) = u(x(p,w))

Properties of the indirect utility function:

1. homogeneous of degree zero in p and w

v(p,w) = v(αp, αw) for any α > 0

2. strictly increasing in w and non increasing in p`

3. continuous in p and w

4. quasi-convex: the set {v(p,w) : v(p,w) ≤ v̄} is convex for
any v̄

the lower contour set is convex



Quasi-convexity of v(p,w)



Price indifference curves



Inverting the indirect utility function

Since strictly increasing and continuous in w , can invert v(p,w) to
give the minimum level of income necessary to reach a given level
of utility.

Formally, this may be stated as the ...



The expenditure minimisation problem

The consumer’s decision problem may also be described as

min
x≥0

p · x s.t.:u ≥ u EMP

In words,

- choose the least-cost consumption bundle
which ensures utility u

EMP is the dual problem of UMP

- it reverses the role of the objective function and of the constraint



The expenditure minimisation problem



Relationship between EMP e UMP

Strict relationship between EMP e UMP
For a given p

I if x∗ solves UMP for w̃ , then x∗ solves EMP for u = u(x∗): at
x∗, total expenditure is p · x∗ = w̃

I if x∗ solves EMP for ũ, then x∗ solves UMP when p · x∗ = w ;
at x∗, utility is ũ



Moving around objects



EMP

From EMP, two interesting objects:

I optimal consumption bundles: the solution to EMP

I consumer’s minimal expenditure: the value function of the
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Necessary conditions for solution to EMP

I The set of optimal commodity vector in EMP is h(p, u) and is
known as Hicksian (or compensated) demand correspondence
(or function)

I If h∗ ∈ h(p, u) is a solution to EMP, then there exists a
Lagrangean multiplier λ such that

p ≥ λ∇u(h∗) h∗ · (p − λ∇u(h∗)) = 0



Hicksian demand



Why “compensated”??



Properties of Hicksian demand correspondence

Properties of Hicksian demand correspondence are

1. homogeneity of degree zero in p:

h(αp, u) = h(p, u) for any α > 0

2. no excess utility: for any x ∈ h(p, u), then u(x) = u

3. h(p, u) is convex
I if � is convex (i.e. u(x) is quasi-concave), then h(p, u) is a

convex set
I if � is strictly convex (i.e. u(x) is strictly quasi-concave), then

h(p, u) is a single element



Compensated law of demand

For all p′ and p′′ � 0,

(p′′ − p′) · [h(p′′, u)− h(p′, u)] ≤ 0

⇒ own-price effects are non positive

Always true for Hicksian demand but not necessarily the case for
Walrasian demand



Law of demand for Walrasian demand



Law of demand for Hicksian demand



Relationship between Walrasian and Hicksian demand

Clear relationship between Walrasian and Hicksian demand
correspondence

x(p,w) = x(p, e(p, u)) = h(p, u)

and
h(p, u) = h(p, v(p,w)) = x(p,w)

These relationships have an operational content
↪→ how to obtain one type of demand from the other



Moving around objects



EMP

From EMP, two interesting objects:

I optimal consumption bundles: the solution to EMP

↪→ consumer’s minimal expenditure: the value function of the
EMP



The expenditure function

The value function of the EMP is called the expenditure function
e(p, u).
If denote with x∗ any solution to EMP, then

e(p, u) = p · x∗

Properties of the expenditure function (analogous to those of the
indirect utility function)

1. homogeneous of degree 1 in p: e(αp, u) = αe(p, u) for any
α > 0

2. strictly increasing in u and non decreasing in p`

3. continuous in p and u

4. concave in p



Concavity of the expenditure function

I Most important property of the expenditure function is the
concavity in prices

I Intuition: Let x solve EMP when prices are p and welath is w
If p1 changes and x doesn’t
I total expenditure varies linearly with p1

I this “passive” total expenditure has to be higher than (or equal
to) total expenditure with optimal behaviour (as from e(p, u))

p · x(p,w) ≥ p · x(p,w) = e(p, u)



Concavity of the expenditure function



Relationship between expenditure and indirect utility
functions

The relation between the solutions of the UMP and the EMP
implies that

e(p, v(p,w)) = w and v(p, e(p, u)) = u

Further consequence is that, for a given price vector

e(p, u) and v(p,w) are inverses to one another

In other words, can solve

I w = e(p, u) for u to have the indirect utility fct v(p,w)

I u = v(p,w) for w to have the expenditure fct e(p, u)



Moving around objects



Relationships between objects

On further existing relationships between the different objects
studied so far

I Hicksian demand and expenditure function

I Hicksian demand and Walrasian demand

I Walrasian demand and indirect utility function
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Hicksian demand and expenditure function

Easy to go from Hicksian demand to the expenditure function:

p · h(p, u) = e(p, u)

But equally easy to do the opposite:

h(p, u) = ∇pe(p, u) SHEPARD’S LEMMA

that is

h`(p, u) = ∂e(p,u)
∂p`

for all `



Moving around objects (more)



Shepard’s lemma 1

Notice that

∇pe(.) = ∇p[p · h(.)] by the defn of e(.)

= h(p, u) + [p Dph(.)]T by the chain rule

= h(.) using p = λ∇u(h(.))
+ λ[∇u(h(.)) Dph(.)]T from FOC-UMP

= h(p, u) differenting w. r. to p
constraint in EMP
u(h(p, u)) = u



Shepard’s lemma 2

In words,

a change in prices has two effects on optimal total expenditure

I h(p, u) direct effect holding demand fixed

I [p Dph(p, u)] indirect effect due to the induced change in
demand holding prices fixed

The second indirect effect cancels out since bundles always
minimise costs



Price derivatives of Hicksian demand

I The relationship between Hicksian demand and expenditure
function has consequences on the matrix of price derivatives
of Hicksian demand.

I Let Dph(p, u) denote the L× L matrix of first price derivative
of Hicksian demands. Then

1. Dph(p, u) = D2
pe(p, u)

2. Dph(p, u) is symmetric
3. Dph(p, u) is negative semi-definite

A matrix is Negative Semi-definite if the determinants of all of its

principal submatrices are alternate in sign, starting with a negative

(with the allowance here of 0 determinants replacing one or more of

the positive or negative values)

I 1. and 2. are natural consequences of the Shepard’s lemma;

I 3. follows from the concavity of e(p, u) and implies the
compensated law of demand



Relationships between objects

On the existing relationships between the different objects studied
so far

I Hicksian demand and expenditure function

↪→ Hicksian and Walrasian demand

I Walrasian demand and indirect utility function



Hicksian and Walrasian demand

h(.) not observable, so?

Can obtain its derivatives from the observable x(p,w) using the

⇒Slutsky equation⇐

∂h`(p, u)

∂pk
=
∂x`(p,w)

∂pk
+
∂x`(p,w)

∂w
xk(p,w)

Easy to obtain, simply differentiating w.r.to pk the equality

h`(p, u) = x`(p, e(p, u))

and using Shepard’s lemma.



Consequences of Slutksy equation 1

Some important consequences of Slutksy equation

I Hicksian demand ”steeper” than Walrasian demand when
commodities are normal

I matrix Dp h(p, u) observable

Dp h(p, u) = S(p,w) =

 S11 . . . SL1
...

. . .
...

S1L . . . SLL





Consequences of Slutksy equation 2

Some important consequences of Slutksy equation

I law of demand not valid for Walrasian demand. Rearranging
Slutsky eqn as

∂x`(p,w)

∂p`︸ ︷︷ ︸ =
∂h`(p, u)

∂p`︸ ︷︷ ︸ −
∂x`(p,w)

∂w
x`(p,w)︸ ︷︷ ︸

(+/−) (−) (+)for normal goods
(−)for inferior goods

If good ` is “highly”inferior, 2nd term outplays first term and
∂x`(p,w)
∂p`

becomes positive

a Giffen good must be inferior, but not viceversa



Relationships between objects

On the existing relationships between the different objects studied
so far

I Hicksian demand and expenditure function

I Hicksian and Walrasian demand

↪→ Walrasian demand and indirect utility function



Roys’ identity

Easy to go from Walrasian demand to the indirect utility function

v(p,w) = u(x∗) = u(x(p,w),w)

But (almost) equally easy to do the opposite. For all `,

x`(p,w) = −
∂v(p,w)
∂p`

∂v(p,w)
∂w

ROY’S IDENTITY

Easy to obtain, simply differentiating w.r.to p` the equality
v(p, e(p, u)) = u



Moving around objects (more)


