
Choice under Uncertainty

1. Primitives

Finite set A = {a1, . . . , an} of outcomes. A simple gamble (or lottery) is an element of

∆(A), the set of probability distributions over A. We denote the set of simple gambles by Gs
and a typical element of this set by g = (p1 ◦a1, . . . , pn ◦an), where (p1, . . . , pn) is an element

of the unit simplex in Rn; i.e., pi ≥ 0 for i = 1, . . . , n and
∑n

i=1 pi = 1. When pi = 0, we

drop the term pi ◦ ai from the lottery g. The probabilities in this context are objective.

Not all gambles are simple. For example, if A = {−1, 0, 1} and g̃ =
(
1
2
◦ −1, 1

2
◦ 1
)
, then

g =
(
1
2
◦ 0, 1

2
◦ g̃
)

is also a gamble. The gamble g is an example of a compound gamble. We

denote the set of all compound gambles by G and also use g to denote a typical element of

this set. Every compound gamble g uniquely defines a probability distribution (p1, . . . , pn)

over A. Let gs = (p1 ◦ a1, . . . , pn ◦ an). We refer to gs as the simple gamble associated to g.

In the example above, gs =
(
1
4
◦ −1, 1

2
◦ 0, 1

4
◦ 1
)
.

The choice set is the set G of compound gambles.

2. Preferences

As in the consumer theory, we represent preferences over gambles by a binary relation %

on the set G. We make the following assumptions about %.

1. Completeness: % is complete.

2. Transitivity: % is transitive.

The first two properties imply that: (i) the decision maker (agent) is able to compare any

two given gambles; and (ii) the decision maker’s ranking of lotteries is internally consistent.

As in the consumer theory, we say that % is a preference relation if it is both complete and

transitive.

The preference relation % on G induces an order on A, that we also denote by %, as

follows: ai % aj if, and only if, 1 ◦ ai % 1 ◦ aj. In what follows we denote the lottery 1 ◦ ai
by ai, thus erasing any distinction between preferences on G and preferences on A. Since %
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is complete, we can rank all elements of A. Assume, without loss, that a1 % . . . % an.

3. Continuity: for any g ∈ G, there exists α ∈ [0, 1] such that g ∼ (α ◦ a1, (1− α) ◦ an).

4. Monotonicity: (α ◦ a1, (1− α) ◦ an) % (β ◦ a1, (1− β) ◦ an) if, and only if, α ≥ β.

Note that monotonicity implies that a1 � an, which rules out the case a1 ∼ . . . ∼ an.

Also, notice that monotonicity implies that for each gamble g the probability α in the

definition of continuity is uniquely defined1.

5. Substitution: if g = (p1◦g1, . . . , pk◦gk) and h = (p1◦h1, . . . , pk◦hk), where g1, . . . , h
k ∈ G,

then gi ∼ hi for i = 1, . . . , k implies that g ∼ h.

6. Reduction to Simple Gambles: for all g ∈ G, g ∼ gs, the simple gamble associated to g.

As in the consumer theory, the utility function u : G → R represents % if for all g′, g ∈ G,

u(g′) ≥ u(g) if, and only if, g′ % g. We say that u : G → R representing % has the expected

utility property if for all g ∈ G,

u(g) =
n∑

i=1

piu(ai),

where (p1 ◦ a1, . . . , pn ◦ an) is the simple gamble induced by g. We say that u(g) is the

expected utility of the gamble g.

Theorem 1. Suppose % on G satisfies properties (axioms) 1 to 6 above. Then there exists

a utility function u representing % that has the expected utility property.

Proof: For each g ∈ G, let u(g) ∈ [0, 1] be such that g ∼ (u(g) ◦ a1, (1 − u(g)) ◦ an). This

number exists by continuity. Moreover, by monotonicity, u(g) is uniquely defined for every

gamble g. This defines a utility function u : G → R.

We claim that u represents %. Indeed, by transitivity, g′ % g implies that

(u(g′) ◦ a1, (1− u(g′)) ◦ an) % (u(g) ◦ a1, (1− u(g)) ◦ an), (1)

which implies that u(g′) ≥ u(g) by monotonicity. Now observe, by monotonicity, that

u(g′) ≥ u(g) implies that 1 holds. Thus, by transitivity, g′ % g, which proves the claim.

1Why is that?
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We now prove that u has the expected utility property. By reduction to simple gambles,

we only need to prove this for simple gambles. Let then g = (p1 ◦ a1, . . . , pn ◦ an) and notice

that for each i ∈ {1, . . . , n}, ai ∼ (u(ai) ◦ a1, (1− u(ai)) ◦ an) ≡ qi. By substitution, we then

have that g′ = (p1 ◦ q1, . . . , pn ◦ qn) ∼ g. It is easy to see that

g′s =

((
n∑

i=1

piu(ai)

)
◦ a1,

(
1−

n∑
i=1

piu(ai)

)
◦ an

)
.

Thus, by reduction and transitivity,

g ∼ (u(g) ◦ a1, (1− u(g)) ◦ an) ∼ g′s ∼

((
n∑

i=1

piu(ai)

)
◦ a1,

(
1−

n∑
i=1

piu(ai)

)
◦ an

)
.

Since u(g) is uniquely defined, it must be that u(g) =
∑n

i=1 piu(ai), the desired result.

It is immediate from the proof above that the existence of an utility function u represent-

ing % follows from properties 2 to 4. Since a binary relation is a preference relation if it can

be represented by an utility function, we then have that the completeness of % follows from

transitivity, continuity, and monotonicity. The fact that u has the expected utility property

is a consequence of properties 5 and 6 (together with transitivity).

A decision maker with preferences % over compound gambles is an expected utility max-

imizer if these preferences are represented by a utility function with the expected utility

property and the decision maker chooses the lottery g that maximizes his expected utility.

From now on we work with expected utility maximizers (despite the example below).

Example (Allais Paradox): Suppose that A = {2.5, 0.5, 0}, where each unit is measured

in millions of euros. Consider now the following lotteries:

g1 = 0.5,

g2 =

(
1

10
◦ 2.5,

89

100
◦ 0.5,

1

100
◦ 0

)
,

g3 =

(
11

100
◦ 0.5,

89

100
◦ 0

)
,

g4 =

(
1

10
◦ 2.5,

9

10
◦ 0

)
.
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Most people (when asked) prefer g1 over g2 and g4 over g3. This is not compatible with

expected utility maximization. Indeed, if % is represented by an utility function u with the

expected utility property, then g1 � g2 if, and only if,

u(0.5) >
1

10
u(2.5) +

89

100
u(0.5) +

1

100
u(0),

which is equivalent to

11

100
u(0.5) +

89

100
u(0) >

1

10
u(2.5) +

9

10
u(0).

This, however, implies that g3 � g4. Most people would agree that g3 preferred to g4 is

insane. Since we know that expected utility follows from properties 5 and 6, the relevant

question is whether one takes these properties as having normative content or a positive

content. Most people would go with the second alternative.

Theorem 2. Suppose that u represents % and has the expected utility property. Then v with

the expected utility property represents % if, and only if, there exists α ∈ R and β > 0 such

that v(g) = α + βu(g) for all g ∈ G.

Proof: Sufficiency is obvious. Indeed, if v is such that v(g) = α + βu(g) for every gamble g

with α ∈ R and β > 0, then v has the expected utility property.

In order to prove necessity we just need to consider simple gambles. For this, let A =

{a1, . . . , an}, with a1 % . . . % an, and consider the simple gamble g = (p1 ◦ a1, . . . , pn ◦ an).

Moreover, assume that a1 � an, for otherwise necessity is immediate2.

Since u represent %, we have that u(a1) ≥ . . . ≥ u(an). So, for each i ∈ {1, . . . , n}, there

exists αi ∈ [0, 1] such that u(ai) = αiu(a1) + (1−αi)u(an); αi > 0 since a1 � an. Since u has

the expected utility property, αiu(a1)+(1−αi)u(an) = u(g), where g = (αi◦a1, (1−αi)◦an).

Since u represents %, we then have that

ai ∼ (αi ◦ a1, (1− αi) ◦ an). (2)

2You should check this.
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Now observe that v also has the expected utility property and represents %. Thus, by 2,

v(ai) = αiv(a1) + (1−αi)v(an). Hence, for all i ∈ {1, . . . , n} such that ai � an, we have that

u(a1)− u(ai)

u(ai)− u(an)
=

1− αi

αi

=
v(a1)− v(ai)

v(ai)− v(an)
,

which implies that

[u(a1)− u(ai)][v(ai)− v(an)] = [v(a1)− v(ai)][u(ai)− u(an)]. (3)

Since 3 is also satisfied when ai ∼ an and u(a1) > u(an), we then have (omitting the algebra)

that

v(ai) =
u(a1)v(an)− v(a1)u(an)

u(a1)− u(an)
+
v(a1)− v(an)

u(a1)− u(an)
u(ai)

= α + βu(ai),

where β > 0 since v(a1) > v(an).

Therefore, since both v and u have the expected utility property,

v(g) =
n∑

i=1

piv(ai) =
n∑

i=1

pi(α + βu(ai)) = α + β
n∑

i=1

piu(ai) = α + βu(g).

The restriction to finite outcome spaces is done for simplicity. We can extend Theorem

1 to the case where A is infinite, at the cost of some technicalities. In most applications, the

case of interest is when A = R+ and an element of A represents wealth. In this case, we can

represent a simple gamble on A by a cdf F 3. For any simple gamble F , the expected utility

of F is

u(F ) =

∫ ∞
0

u(w)dF (w).

We refer to the function u : R+ → R such that u(w) is the agent’s payoff from the lottery F

that gives w with probability one as the agent’s utility function over wealth. Monotonicity

implies that u is strictly increasing.

3Recall that a cdf in R+ is an increasing and right-continuous function F : R+ → [0, 1] such that F (0) = 0

and F (+∞) = 1.
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3. Attitudes to Risk

Here and in the next two sections, assume that A = R+. Consider an individual with

utility over wealth u. Now let g be a gamble (over final wealth) and denote its expected value

by E[g]. We say the individual is: (i) risk–neutral at g if u(g) = u (E[g]); (ii) risk–averse at

g if u(g) < u (E[g]); (iii) risk–loving at g if u(g) > u (E[g]).

We say the individual is

(i) risk–neutral if u(g) = u (E[g]) for all gambles g;

(ii) risk–averse if u(g) ≤ u (E[g]) for all gambles g and u(g) < u (E[g]) for at least one

non–degenerate gamble4 g;

(iii) risk–loving if u(g) ≥ u (E[g]) for all gambles g and u(g) > u (E[g]) for at least one

non–degenerate gamble g.

It is easy to see that if u is linear (affine) in wealth, i.e., if u(w) = α + βw with α ∈ R

and β > 0, then the individual is risk-neutral. Now, for each w,w′ ∈ A and t ∈ (0, 1), let

g = (t ◦ w, (1− t) ◦ w′). If the individual is risk–averse at g, then

u(tw + (1− t)w′) ≥ tu(w) + (1− t)u(w′).

Thus, if the individual is risk–averse, his utility over wealth is concave and non–linear. It

follows immediately from this that if the individual is risk–loving, his utility over wealth is

convex and non–linear. Since a function can be concave and convex at the same time only

if it is linear, we then have that if the individual is risk–neutral, his utility over wealth is

linear. In other words, the individual is risk-neutral if, and only if, u is linear.

The next result is useful.

Lemma 1 (Jensen’s Inequality). Suppose u : R+ → R is concave. Then, for every cdf F ,∫ ∞
0

u(w)dF (w) ≤ u

(∫ ∞
0

wdF (w)

)
= u (E[F ]) .

4A gamble is non–degenerate if it assigns positive probability to some non-empty interval in R+.
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Notice that Jensen’s inequality reduces to

u(g) =
n∑

i=1

piu(gi) ≤ u

(
n∑

i=1

piwi

)
= u (E[g]) (4)

when F is the cdf associated to the simple gamble g = (p1 ◦ w1, . . . , pn ◦ wn).

Proof of Jensen’s: We establish Jensen’s inequality in the case where F assigns positive

probability only to a finite subset of R+, in which case it can be represented by a simple

gamble g = (p1 ◦ w1, . . . , pn ◦ wn). Since u is concave, (4) is satisfied when n = 2. Suppose

then, by induction, that (4) is satisfied when n = K, with K ≥ 2. If pK+1 ∈ {0, 1}, (4) is

satisfied when n = K + 1. So assume that pK+1 /∈ {0, 1} and observe that

K+1∑
i=1

piwi =
K∑
i=1

piw + pK+1wK+1 = (1− pK+1)w + pK+1wK+1,

where w =
∑K

i=1 piwi/
∑K

i=1 pi; notice that w is well–defined since
∑K

i=1 pi = 1− pK+1 > 0.

Now observe that

u

(
K+1∑
i=1

piwi

)
≥ (1− pK+1)u(w) + pK+1u(wK+1)

≥
K∑
i=1

piwi + pK+1wK+1,

where the first inequality follows from the concavity of u and the second inequality follows

from the induction hypothesis (why?). Hence, (4) holds when n = K + 1. By induction, (4)

holds for all n ≥ 2.

It is easy to see, by Jensen’s inequality, that if u is concave, then u(g) ≤ u (E[g]) for every

gamble g. Now observe that if u is non–linear, there exists w,w′ ∈ R+ with w 6= w′ and

t ∈ (0, 1) such that u(tw+(1− t)w′) > tu(w)+(1− t)u(w′). Let then g = (t◦w, (1− t)◦w′);

notice that g is a non–degenerate gamble. By construction, u(g) < u (E[g]). Thus, if u is

concave and non–linear, the individual is risk–averse. Therefore, from the discussion before

Jensen’s inequality, the individual is risk–averse if, and only if, his utility over wealth is

concave and non–linear. It is the immediate to see from this that the individual is risk–

loving if, and only if, his utility over wealth is convex and non–linear.
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Example: Consider and individual with utility over wealth u, where u is strictly increasing

and strictly concave; thus, the individual is risk–averse. Let w0 > 0 be the individual’s initial

wealth. There is a probability α ∈ (0, 1) that he loses an amount 0 < L < w0 of his wealth.

The individual can insure himself against this loss. The price of one unit of insurance is ρ.

We assume that insurance is actuarially fair, i.e., ρ = α.

The individual’s expected payoff from contracting an amount x of insurance is

v(x) = αu(w0 − L+ x− ρx) + (1− α)u(w0 − ρx)

= αu(w0 − L+ x− αx) + (1− α)u(w0 − αx).

Indeed, with probability 1 − α he suffers no loss, and so his final wealth is w0 − αx. With

probability α he suffers a loss, and so his final wealth is w0−L+x−αx; the individual pays

for insurance regardless of whether he suffers a loss of not. The problem of the individual

is to choose the amount of insurance x ∈ [0, w0/α] that maximizes v(x). It is easy to show

that v is strictly concave, so that the solution to the individual’s problem is characterized

by its first–order condition. In particular, if there exists x∗ ∈ (0, w0/α) such that v′(x∗) = 0,

then x∗ is the solution. Notice that

v′(x) = (1− α)αu′(w0 − L+ (1− α)x)− α(1− α)u′(w0 − αx).

Since u′ is strictly decreasing, v′(x∗) = 0 if, and only if,

w0 − L+ (1− α)x∗ = w0 − αx∗ ⇔ x∗ = L.

Thus, it is optimal for the individual to insure himself completely against the loss.

4. Risk Aversion

Measuring the Risk of Gambles

Consider an individual with a concave utility function over wealth. For any lottery g, the

certainty equivalent CE of g is the amount of wealth such that u(g) = u(CE). Since u is

strictly increasing and concave, Jensen’s inequality implies that CE ≤ E[g] for every gamble

g. The risk premium of g is the value P such that u(g) = u(E[g]− P ); i.e., P = E[g]−CE.
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The risk premium of a gamble measures how much the (risk–averse) individual is willing to

pay in order to avoid the risk associated with the gamble.

The Arrow-Pratt Measure of Absolute Risk Aversion

Suppose that u is twice differentiable with u′ > 0; since u is concave, u′′ ≤ 0. The

Arrow-Pratt measure of absolute risk aversion is

Ra(w) = −u
′′(w)

u′(w)
.

Consider two individuals, 1 and 2, with utilities over wealth u and v, respectively, and

suppose that for all w ≥ 0,

R1
a(w) = −u

′′(w)

u′(w)
> R2

a(w) = −v
′′(w)

v′(w)
. (5)

For simplicity assume that v(w) ≥ 0 for all w ≥ 0. Hence, we can define h : [0,+∞)→ R

to be such that h(x) = u(v−1(x)). Notice that

h′(x) =
u′(v−1(x))

v′(v−1(x))
> 0

and that

h′′(x) ∝ u′′(v−1(x))− v′′(v−1(x))
u′(v−1(x))

v′(v−1(x))

∝ −R1
a(w) +R2

a(w) < 0

by 5. Therefore, h is strictly increasing and strictly concave.

Now let F be a cdf and define ŵ1 and ŵ2 be such that

u(ŵ1) =

∫ ∞
0

u(w)dF (w),

v(ŵ2) =

∫ ∞
0

v(w)dF (w);

ŵ1 is the certainty equivalent for 1 of the gamble defined by F and ŵ2 is the certainty

equivalent for 2 of the same gamble. Since h(v(w)) = u(w),

u(ŵ1) =

∫ ∞
0

h(v(w))dF (w) < h

(∫ ∞
0

v(w)dF (w)

)
= h(v(ŵ2)) = u(ŵ2),
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where the inequality follows from Jensen’s inequality. Thus, since u is strictly increasing,

ŵ2 > ŵ1. Consequently, for every gamble g, the risk premium of g is greater for 1 than for 2.

In other words, 1 is more risk–averse than 2. In particular, if 1 and 2 have the same wealth,

then 2 accepts any gamble that 1 accepts, and 1 rejects any gamble than 2 rejects.

Example (DARA): We say an individual has decreasing absolute risk–aversion (DARA)

if his utility over wealth is such that Ra(w) is strictly decreasing in w.

Consider an individual with DARA who must decide how much of his initial wealth

w0 > 0 he allocates to a risky asset. The asset has n possible rates of return, r1 to rn, with

probability of ri equal to pi ∈ (0, 1).

Let u be the individual’s utility over wealth and assume u′′ < 0. Now let β be the

amount of wealth he allocates to the risky asset. The individual’s final wealth is then

w0 − β + (1 + ri)β = w0 + βri with probability pi. Thus, the problem of the individual is to

choose β ∈ [0, w0] that maximizes

v(β) =
n∑

i=1

piu(w0 + βri).

It is easy to see that u′′ < 0 implies that v′′ < 0. So, the solution to the individual’s

problem is unique and is characterized by its first-order condition. Denote by β∗ the optimal

choice of β. Notice that

v′(β) =
n∑

i=1

piriu
′(w0 + βri).

Thus,

v′(0) =
n∑

i=1

piriu
′(w0) = u′(w0)E[r],

where E[r] is the expected return of the asset. Hence, E[r] > 0 is sufficient for β∗ > 0; in

fact, E[r] > 0 is also necessary for β∗ > 0 (prove this). Now observe that

v′(w0) =
n∑

i=1

piriu
′((1 + ri)w0),

and that a necessary and sufficient condition for β∗ < w0 is that v′(w0) < 0. A necessary

condition for v′(w) < 0 is that ri < 0 for at least one i. In what follows, assume that β∗ is

interior.
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By assumption, β∗ is the unique solution to v′(β∗) = 0. This equation defines β∗ implicitly

as a function of w (and of the rates of return ri as well). By the Implicit Function Theorem,

we have that β∗ is differentiable and that

dβ∗

dw
=
−
∑n

i=1 piriu
′′(w + β∗ri)∑n

i=1 pir
2
i u
′′(w + β∗ri)

.

The denominator of dβ∗/dw is negative. Thus dβ∗/dw > 0, i.e., the risky asset is a normal

good, if the numerator is negative as well. Now notice that

−
n∑

i=1

piriu
′′(w + β∗ri) =

n∑
i=1

piu
′(w + β∗ri)Ra(w + β∗ri)ri.

Since Ra(w) is strictly decreasing in w, ri > 0 implies that Ra(w)ri > Ra(w + β∗ri)ri and

ri < 0 implies that Ra(w)ri > Ra(w + β∗ri)ri. Thus, since at least one ri is different from

zero (otherwise E[r] = 0), we have that

−
n∑

i=1

piriu
′′(w + β∗ri) <

n∑
i=1

piriu
′(w + β∗ri)Ra(w) = 0,

by the first-order condition. Hence, DARA implies the risky asset is normal.

5. Stochastic Dominance

First, let us understand better what the integral∫ ∞
0

u(w)dF (w) (6)

means. If the cdf F has a density f , i.e., if there exists f : R+ → R+ such that

F (w) =

∫ w

0

f(s)ds

for all w ≥ 0, then ∫ ∞
0

u(w)dF (w) =

∫ ∞
0

u(w)f(w)dw.

If F is the cdf associated with the simple lottery (p1 ◦ w1, . . . , pn ◦ wn), then∫ ∞
0

u(w)dF (w) =
n∑

i=1

piu(wi) =
n∑

i=1

[F (wi)− F (wi−1)]u(wi),
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where we adopt the convention that F (w0) = 0.

The integral (6) is well–defined for any cdf F , whether it has a density of not. It has the

property that if u = I(a,b], the characteristic function of the interval (a, b], then∫ ∞
0

u(w)dF (w) = F (b)− F (a) = Pr{a < w ≤ b}. (7)

In fact, property (7) completely determines the integral (6) in the following sense. For any

two cdfs F and G, write F ≡ G if F (b)− F (a) = G(b)−G(a) for all 0 ≤ a < b <∞. Then,

F ≡ G implies that ∫ ∞
0

u(w)dF (w) =

∫ ∞
0

u(w)dG(w)

for every (integrable) function u : R+ → R.

In what follows we refer to the probability distribution on R+ induced by the cdf F as

(the distribution) F . The integral (6) is the expected value of the random variable u given

the distribution F .

First-Order Stochastic Dominance

The distribution F first-order stochastically dominates the distribution G, F %fosd G, if

for all increasing u : R+ → R, we have that∫ ∞
0

u(w)dF (w) ≥
∫ ∞
0

u(w)dG(w).

Then, given two (simple) lotteries F and G, any expected utility maximizer prefers F over

G if F %fosd G. It is possible to show that if F ∼fosd G, then F ≡ G.

Lemma 2. F %fosd G if, and only if, F (w) ≤ G(w) for all w ≥ 0.

Proof: Necessity. For each w ≥ 0, let u = I(w,+∞). Then u is increasing, and so

1− F (w) =

∫ ∞
0

u(w)dF (w) ≥
∫ ∞
0

u(w)dG(w) = 1−G(w),

which implies the desired result.

Sufficiency. We prove sufficiency for discrete cdfs. Let F be the cdf associated to the

gamble (p1 ◦w1, . . . , pn ◦wn) and G be the cdf associated to the gamble (q1 ◦w′1, . . . , qm ◦w′m).
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Without loss, we can assume that m = n and wi = w′i for all i ∈ {1, . . . , n}. Moreover, let

w1 ≤ . . . ≤ wn.

Now observe that if H is the cdf associated to (r1 ◦ w1, . . . , rn ◦ wn), then

n∑
i=1

riu(wi) =
n∑

i=1

[H(wi)−H(wi−1)]u(wi)

= u(wn) +
n−1∑
i=1

H(wi)u(wi)−
n∑

i=2

H(wi−1)u(wi)

= u(wn)−
n−1∑
i=1

H(wi)[u(wi+1)− u(wi)].

Hence,

n∑
i=1

piu(wi)−
n∑

i=1

qiu(wi) =
n−1∑
i=1

[G(wi)− F (wi)]︸ ︷︷ ︸
≥0

[u(wi+1)− u(wi)]︸ ︷︷ ︸
≥0

≥ 0.

An immediate corollary of Lemma 2 is that F %fosd G implies that E[F ] ≥ E[G]. The

converse is not true.

Example (Upward Probabilistic Shift): Consider the following two-stage lottery. First,

draw w according to the cdf G. Once w is drawn, draw z according to the cdf Hw with

Hw(0) = 0. The final wealth is w′ = w+z. Denote the distribution implied by the two-stage

lottery by F . The cdf of F is

F (w′) = Pr{w + z ≤ w′} = Pr{z ≤ w′ − w} =

∫ ∞
0

Hw(w′ − w)dG(w)

and we say that F is an upward probabilistic shift of G. Since Hw(z) = 0 if z ≤ 0 and

Hw(z) ≤ 1 for all z, we have that

F (w′) ≤
∫ w′

0

Hw(w′ − w)dG(w) ≤
∫ w′

0

dG(w) = G(w′).

Thus, F %fosd G. It is possible to show (but quite difficult) that if F %fosd G, then F is an

upward probabilistic shift of G.
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Second-Order Stochastic Dominance

The distribution F second-order stochastically dominates G, F %sosd G, if for all concave

u : R+ → R, ∫ ∞
0

u(w)dF (w) ≥
∫ ∞
0

u(w)dG(w).

Then, given two (simple) lotteries F and G, any risk–averse expected utility maximizer

weakly prefers F over G if F %sosd G. Notice that if F %sosd G, then V ar(F ) ≤ V ar(G).

The converse is not true, though5.

Example (Mean–Preserving Spread): Consider the following two-stage lottery. First,

draw w according to G. Once w is drawn, obtain z from Hw (defined on R) such that

E[Hw] = 0 and Hw(−w) = 0 for all w. The final wealth is w′ = w + z. Denote the

distribution implied by the two-stage lottery by F . The cdf of F is

F (w′) = Pr{w + z ≤ w′} = Pr{z ≤ w′ − w} =

∫ ∞
0

Hw(w′ − w)dG(w).

We say that F is a mean-preserving spread of G.

In what follows, assume G has a density and Hw has a density for all w, and denote the

densities of G and Hw by g and hw, respectively. Then

F (w′) =

∫ ∞
0

Hw(w′ − w)g(w)dw

=

∫ ∞
0

(∫ w′−w

−w
hw(s)ds

)
g(w)dw

=

∫ w′−w

−w

(∫ ∞
0

hw(s)g(w)dw

)
ds

=

∫ w′

0

(∫ ∞
0

hw(s− w)g(w)dw

)
ds

where the second equality follows from the fact that Hw(−w) = 0, the third equality follows

from Fubini’s theorem, and the last equality follows from the change of variable s 7→ s− w.

Thus, F has a density, which is given by

f(s) =

∫ ∞
0

hw(s− w)g(w)dw.

5See the papers by Rothschild and Stiglitz for a more detailed explanation of why one shouldn’t compare

the risk of two distributions by their variances.
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Hence, ∫ ∞
0

u(w′)dF (w′) =

∫ ∞
0

u(w′)f(w′)dw′

=

∫ ∞
0

(∫ ∞
0

hw(w′ − w)g(w)dw

)
u(w′)dw′

=

∫ ∞
0

(∫ ∞
0

u(w′)hw(w′ − w)dw′
)
g(w)dw

=

∫ ∞
0

(∫ ∞
−w

u(w + z)hw(z)dz

)
g(w)dw

=

∫ ∞
0

(∫ ∞
−w

u(w + z)dHw(z)

)
dG(w),

where the third equality follows from Fubini and the fourth equality follows from the change

of variable w′ 7→ z + w.

First, notice that∫ ∞
0

w′dF (w′) =

∫ ∞
0

(∫ ∞
−w

(w + z)dHw(z)

)
dG(w) =

∫ ∞
0

wdG(w).

Thus (confirming intuition), E[F ] = E[G]. Now observe that if u is concave, then Jensen’s

inequality implies that∫ ∞
0

(∫ ∞
−w

u(w + z)dHw(z)

)
dG(w) ≤

∫ ∞
0

u

(∫ ∞
−w

(w + z)dHw(z)

)
dG(w)

=

∫ ∞
0

u(w)dG(w).

Thus, G %sosd F . The converse is also true (but also quite difficult to prove): if G %sosd F ,

then F is a mean-preserving spread of G.
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