
General Equilibrium

1. Exchange Economies

We assume there is a finite number n of goods and the consumption set of each agent is

Rn
+. In what follows, we use superscripts to label agents and subscripts to label goods. So,

for example, xi ∈ Rn
+ denotes a consumption vector for agent i and xik denotes the amount

of good k that agent i consumes.

An exchange economy is a list E = {ui, ei}i∈I , where:

(i) I = {1, . . . , I} is a finite set of agents;

(ii) ui : Rn
+ → R is agent i’s utility function;

(iii) ei ∈ Rn
+ is agent i’s endowment.

We always assume that e =
∑

i∈I e
i � 0, where e is the aggregate endowment vector.

By construction ek is the total amount of good k in the economy. So, e� 0 implies there is

a positive amount of each good in the economy.

Consider an exchange economy E = {ui, ei}i∈I . An allocation is a list x = (x1, . . . , xI),

where xi ∈ Rn
+ is a consumption vector for agent i. An allocation x = (x1, . . . , xI) is feasible

if
∑

i∈I x
i ≤

∑
i∈I e

i. In words, an allocation is feasible if the total consumption of each

good is no greater than its total supply; disposal of goods is not allowed. Note that the set

of feasible allocations only depends on the aggregate endowment vector e =
∑

i∈I e
i. We

denote the set of feasible allocations by F (e).

If x, x are two feasible allocations such that ui(xi) ≥ ui(xi) for all i ∈ I and ui(xi) > ui(xi)

for at least one i ∈ I, we say that x Pareto dominates x. A feasible allocation x is Pareto

efficient/optimal if there exists no feasible allocation x that Pareto dominates x. We refer

to the set of Pareto efficient allocations in an exchange economy as the contract curve.

Definition 1. Let E = {ui, ei}i∈I be an exchange economy. A pair (p∗, x∗), where p∗ � 0 is

a vector of prices and x∗ is an allocation, is a Walrasian equilibrium if:
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( i) for all i ∈ I, x∗i solves

max ui(x)

s.t. p∗ · x ≤ p∗ · ei

x ∈ Rn
+

;

( ii)
∑

i∈I x
∗i =

∑
i∈I e

i.

In words, a pair (p∗, x∗) is a Walrasian equilibrium if x∗ is feasible and each agent i

maximizes his utility given the vector of prices p∗. We say an allocation x∗ is a Walrasian

allocation if there exists p∗ � 0 such that (p∗, x∗) is a Walrasian equilibrium. The set of

Walrasian allocations depends on the initial allocation (e1, . . . , eI) and on the preferences of

each agent. We denote the set of Walrasian allocations by W (E).

There are two important behavioral assumptions in the definition of a Walrasian equi-

librium. The first, the so-called competitive hypothesis, is that agents take prices as given.

In other words, agents believe that their decisions do not have an impact on prices. The

second assumption is that given a vector of prices, agents believe that they can buy and sell

as much as they want of each good, as long as this is possible given their budget constraint.

Also note that the Walrasian theory of markets has nothing to say about the formation of

prices.

2. Existence

The first question we address is the existence of Walrasian equilibria.

Consider an exchange economy E = {ui, ei}i∈I where the utility functions ui are contin-

uous and strictly quasi-concave. By assumption, for every vector of prices p� 0 and every

wealth w ≥ 0, the consumer’s problem

max ui(x)

s.t. p · x ≤ w

x ∈ Rn
+

for agent i has a unique solution. Denote this solution by xi(p, w). Now let

zk(p) =
∑
i∈I

[
xik(p, p · ei)− eik

]
.
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By construction,
∑

i∈I x
i
k(p, p · ei) is the aggregate demand of good k when the vector of

prices is p. Thus, zk(p) is the aggregate excess demand of good k when the vector of prices

is p. To finish, let z : Rn
++ → R be given by z(p) = (z1(p), . . . , zn(p)). Notice that

z(p) =
∑
i∈I

[
xi(p, p · ei)− ei

]
.

The following result is straightforward.

Lemma 1. The pair (p∗, x∗) is a Walrasian equilibrium if, and only if, x∗i = xi(p∗, p∗ · ei)

for all i ∈ I and z(p∗) = 0.

Proof: Suppose (p∗, x∗) is a Walrasian equilibrium. By assumption, x∗i = xi(p∗, p∗ · ei) for

all i ∈ I and ∑
i∈I

x∗i =
∑
i∈I

ei ⇔
∑
i∈I

[
x∗i − ei

]
= z(p∗) = 0.

Suppose now that (p∗, x∗) is such that x∗i = xi(p∗, p∗ · ei) for all i ∈ I and z(p∗) = 0. It is

immediate to see that (p∗, x∗) is a Walrasian equilibrium.

The above result shows that the exchange economy E has a Walrasian equilibrium if, and

only if, there exists p∗ � 0 such that z(p ∗ ∗) = 0. Thus, if we can determine conditions

under which the equation z(p) = 0 has a solution in Rn
++, we have conditions under which

E has a Walrasian equilibrium. The following result is useful.

Lemma 2. The function z has the following properties:

( i) z is continuous;

( ii) z is homogenous of degree zero.

Suppose the utility functions ui are also locally non–satiated. Then:

( iii) p · z(p) = 0 for all p� 0.

Suppose now the utility functions ui are strongly increasing. Then:

( iv) if {pm} is a sequence of prices in Rn
++ that converges to p ∈ ∂Rn

++\{0}, then there exists

k ∈ {1, . . . , n} with pk = 0 such that the sequence {zk(pm)} is not bounded above.
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Property (ii) is intuitive. Multiplying the vector of prices p by a positive constant does

not change relative prices, and so does not change the agents’ demands. Thus, if (p∗, x∗) is a

Walrasian equilibrium, then (αp∗, x∗) is also a Walrasian equilibrium for all α > 0. There are

different ways of eliminating this uninteresting multiplicity of equilibria. One is to normalize

prices so that they sum up to one. Another is to set the price of one of the goods to one1.

Property (iv) is also intuitive. To see why, consider what happens when the price of one

of the goods, let us say good 1, converges to zero. Since
∑

i e
i � 0, there exists at least one

agent whose wealth remains bounded away from zero. Since utility functions are strongly

increasing, this agent can increase his utility by increasing the consumption of good 1 as its

price decreases. In the limit, the demand for good 1 is infinite. Notice that if the price of

two or more goods converge to zero, it need not be the case that the demand for all of those

goods increases without bound, as relative price matters. What (iv) says is that the demand

for at least one of the goods with zero price in the limit must increase without bound.

Property (iii) is the so–called Walras’ law. We say the market for good k clears at the

price p � 0 if zk(p) = 0. Walras’ law then implies that if the market for n − 1 goods clear

at the price p, then the market for the remaining good also clears at the price p.

Proof of Lemma 2: The continuity of z follows from the joint continuity of the demand

functions xi(p, w) on p and w. Since the budget set of agent i’s consumer problem with

w = p · ei does not change when we multiply all prices by the same positive constant, we

have that wi(p, p ·ei) = xi(αp, αp ·ei) for all α > 0. Thus, z(αp) = z(p) for all α > 0, i.e., z is

homogenous of degree zero. We now prove (iii). For this, notice that ui locally non–satiated

1We usually refer to this good as the numeraire.
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implies that p · xi(p, p · ei) = p · ei for all i ∈ I. Thus,

p · z(p) =
n∑
k=1

pkzk(p)

=
n∑
k=1

I∑
i=1

pk
[
xik(p, p · ei)− eik

]
=

I∑
i=1

n∑
k=1

pk
[
xik(p, p · ei)− eik

]
=

I∑
i=1

[
p · xi(p, p · ei)− p · ei

]
= 0.

The proof of property (iv) is in Chapter 5 of Jehle & Reny.

We present the next result without proof2.

Theorem 1. Let z : Rn
++ → R be a function satisfying properties ( i) to ( iv) in Lemma 2.

Then there exists p∗ � 0 such that z(p∗) = 0.

The following result is an immediate corollary of Lemma 1 and Theorem 1. It establishes

that under certain conditions, the set W (E) of an exchange economy E is not empty.

Corollary 1. Let E = {ui, ei}i∈I with
∑

i∈I e
i � 0 be such that the functions ui are contin-

uous, strictly quasi–concave, and strongly increasing. Then E has a Walrasian equilibrium.

3. First and Second Fundamental Welfare Theorems

Now, we introduce a notion of equilibrium that allows for more generality on the distri-

bution of wealth among consumers than the (private) endowments we have used so far. In

other words, we are considering the idea that a social planner can unilaterally redistribute

the consumers’ wealth using lump-sum transfers in any way the social planner desires.

Definition 2. Given an exchange economy E = {ui, ei}i∈I, an allocation x∗ and a price

vector p∗ = (p1, . . . , pn) constitute a price equilibrium with transfers if there is an assignment

of wealth levels (w1, . . . , wI) with
∑

i∈I w
i = p∗ · e such that

2Chapter 5 of Jehle & Reny contains a proof.
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( i) for all i ∈ I, x∗i solves

max ui(x)

s.t. p∗ · x ≤ wi

x ∈ Rn
+

;

( ii)
∑

i∈I x
∗i =

∑
i∈I e

i.

We can clearly see that a Walrasian equilibrium is a particular case of a price equilibrium

with transfers, in which the redistribution made by the social planner is null.

Theorem 2 (First Fundamental Welfare Theorem). Consider an exchange economy E =

{ui, ei}i∈I. If the utility functions ui are locally non–satiated, and if (p∗, x∗) is a price equi-

librium with transfers, then the allocation x∗ is Pareto optimal. In particular, any Walrasian

equilibrium allocation is Pareto optimal.

Proof: Suppose that (p∗, x∗) is a price equilibrium with transfers and that the associated

wealth levels are (w1, . . . , wI).

The preference maximization part of the definition of a price equilibrium with transfers

implies that, if ui(xi) > ui(xi∗) then p∗ · xi > wi, which together with local non-satiation of

the utility functions implies the additional property that if ui(xi) ≥ ui(xi∗), then p∗ ·xi ≥ wi.

Now, consider an allocation xi that Pareto dominates xi∗, i.e. ui(xi) ≥ ui(xi∗) for all

i ∈ I and ui(xi) > ui(xi∗) for some i ∈ I. Then, by the argument in the last paragraph, we

must have p∗ · xi ≥ wi for all i ∈ I, and p∗ · xi > wi for some i, and hence
∑

i∈I p
∗ · xi >∑

i∈I w
i =

∑
i∈I p

∗ · ei, contradicting feasibility.

Loosely speaking, the First Fundamental Welfare Theorem (FFWT) implies that any

Walrasian allocation exhausts all gains from trade. The Second Fundamental Welfare The-

orem, which we prove next, is a partial converse of the FFWT. We start with the following

result, which is interesting by itself.

Theorem 3. Let E = {ui, ei}i∈I with
∑

i∈I e
i � 0 be an exchange economy where the

functions ui are continuous, strictly quasi–concave, and strongly increasing. If the initial

allocation ẽ = (e1, . . . , eI) is Pareto efficient, then ẽ is the unique Walrasian equilibrium.
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Proof: We know by Corollary 1 that a Walrasian equilibrium (p∗, x∗) exists. Suppose, by

contradiction, that x∗ 6= ẽ. We know that ui(xi) ≥ ui(ei) for all i ∈ I, since ei is an

element of agent i’s budget set regardless of the vector of prices. Since ẽ is Pareto efficient,

it must then be that ui(x∗i) = ui(ei) for all i ∈ I. Now, let x̂ = (x̂1, . . . , x̂I) be such that

x̂i = λx∗i + (1− λ)ei for all i ∈ I, where λ ∈ (0, 1). Notice that∑
i∈I

x̂i = λ
∑
i∈I

x∗i + (1− λ)
∑
i∈I

ei

= λ
∑
i∈I

ei + (1− λ)
∑
i∈I

ei

=
∑
i∈I

ei,

which implies that x̂ is feasible. Since each ui is strictly quasi-concave, we then have that

ui(x̂i) ≥ min{ui(x∗i), ui(ei)} = ui(ei) for all i ∈ I, where ui(x̂i) > ui(ei) if x∗i 6= ei. Since

x∗ 6= ẽ by assumption, it must be that x∗i 6= ei for at least one i ∈ I. Hence, x̂ Pareto

dominates ẽ, a contradiction. Thus, x∗ = ẽ, and so ẽ is the unique Walrasian allocation.

Theorem 3 tells us that under certain conditions, if the initial allocation in an exchange

economy is Pareto efficient, then the initial allocation is the unique Walrasian allocation. A

natural question to ask is if in general it is the case that exchange economies have a unique

Walrasian allocation. The answer is no.

The Second Fundamental Welfare Theorem (SFWT) is an immediate consequence of the

above result. The SFWT implies that any Pareto efficient allocation is a Walrasian allocation

of an exchange economy we obtain after a suitable redistribution of the agents’ endowment.

The SFWT is an useful result since determining the set of Pareto efficient allocations is

simpler than determining the set of Walrasian allocations.

Theorem 4 (Second Fundamental Welfare Theorem). Let E = {ui, ei}i∈I with
∑

i∈I e
i � 0

be an exchange economy where the functions ui are continuous, strictly quasi–concave, and

strongly increasing. Suppose that x = (x1, . . . , xI) is a Pareto efficient allocation. If we

redistribute the initial endowments in E in such a way that x is the new vector of endowments,

then x in a Walrasian allocation in E ′ = {ui, xi}i∈I.
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We can relax the assumption of strict quasi–concave utility functions in the SFWT if we

restrict attention to interior Pareto efficient allocations - an allocation x is interior if xi � 0

for all i ∈ I. The proof relies on the Separating Hyperplane Theorem3.

4. Production Economies

An economy with production is a list E = ({ui, ei}i∈I , {Y j}j∈J , {(θi1, . . . , θiJ)}i∈I), where:

(i) I = {1, . . . , I} is the set of agents;

(ii) ui : Rn
+ → R and ei ∈ Rn

+ are agent i’s utility function and endowment, respectively;

(iii) J = {1, . . . , J} is the set of firms;

(iv) Y j ⊆ Rn is firm j’s production technology;

(v) θij ∈ [0, 1] is agent i’s share of firm j, where
∑

i∈I θi,j = 1 for all j ∈ J .

An allocation is a pair (x, y), where x = (x1, . . . , xI) is such that xi ∈ Rn
+ is agent i’s

consumption vector and y = (y1, . . . , yJ) is such that yj ∈ Y j is firm j’s production plan.

An allocation (x, y) is feasible if
∑

i∈I x
i =

∑
i∈I e

i +
∑

j∈J y
j. A feasible allocation (x, y) is

Pareto efficient if there exists no feasible allocation (x′, y′) such that ui(x′i) ≥ ui(xi) for all

i ∈ I, with strict inequality for at least one i ∈ I.

A list (p∗, x∗, y∗), where p∗ � 0 is a vector of prices and (x∗, y∗) is an allocation, is a

Walrasian equilibrium if:

(i) for each j ∈ J , p∗ · yj ≤ p∗ · y∗j for all yj ∈ Y j;

(ii) for each i ∈ I, x∗i solves

max ui(x)

s.t. p∗ · x ≤ p∗ · ei +
∑

j∈J θijp
∗ · y∗j

x ∈ Rn
+

;

(iii)
∑

i∈I x
∗i =

∑
i∈I e

i +
∑

j∈J y
∗j.

In words, a list (p∗, x∗, y∗) is a Walrasian equilibrium if (x∗, y∗) is a feasible allocation,

each firm maximizes profits given the vector of prices p∗, and each agent maximizes his utility

3See Chapter 16 in Mas-Colell, Whinston & Green for a proof of this result, and its appendix for a brief

discussion on the Separating Hyperplane Theorem.
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given the vector of prices p∗ and the profits p∗ · y∗j of each firm j.

As in exchange economies, it is possible to establish a counterpart of Corollary 1 on the

existence of Walrasian allocations for economies with production. Likewsie, the First and

Second Fundamental Welfare Theorems (with a few modifications) also hold for economies

with productions4.

5. First-Order Conditions for Pareto Optimality

Throughout this section, we consider a production economy with additional assumptions

about differentiability of utility and production functions. More precisely, we assume that:

(i) Each utility function ui : Rn
+ → R is twice continuously differentiable and satisfy

∇ui(xi)� 0 at all xi. Normalize ui(0) = 0.

(ii) Firm j’s production set is Y j = {y ∈ Rn : F j(y) ≤ 0}, where F j : Rn → R is twice

continuously differentiable, F j(0) ≤ 0, and ∇F j(yj)� 0 for all yj ∈ Rn.

An allocation

(x, y) = (x1, . . . , xI , y1, . . . , yJ) ∈ RnI
+ × RnJ

is Pareto optimal if it solves the following problem:

max u1(x11, . . . , x
1
n)

s.t. ui(xi1, . . . , x
i
n) ≥ ui, i = 1, . . . , I, (1)∑

i x
i
k ≤

∑
i e
i
k +

∑
j y

j
k, k = 1, . . . , n, (2)

F j(yj1, . . . , y
j
n) ≤ 0, j = 1, . . . , J. (3)

Given the assumptions in ( i) above, we can focus attention on nonnegative utility levels

ui ≥ 0 for all i. Thus, finding a Pareto optimal allocation is equivalent to trying to maximize

consumer 1’s utility subject to (1) some minimal utility level for consumer i ≥ 2, (2) the

resource constraint in the economy, and (3) the production feasibility constraint.

Moreover, the assumptions in ( i) and ( ii) imply that all the constraints in the maxi-

mization problem above are binding at a solution. Let (δ1, . . . , δI) ≥ 0, (µ1, . . . , µn) ≥ 0 and

(γ1, . . . , γJ) ≥ 0 be the Lagrange multipliers associated with constraints (1), (2) and (3), and

4See Chapter 5 in Jehle & Reny for the proof of all these results.
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define δ1 = 1. We can thus write the Lagrangean

maxx,y

I∑
i=1

δiu
i(xi) +

n∑
k=1

µk

[∑
i

eik +
∑
j

yjk −
∑
i

xik

]
−

J∑
j=1

γjF
j(yj)

and compute the first-order (Kuhn-Tucker) necessary conditions

xik : δi
∂ui

∂xik
− µk

≤ 0 if xik = 0

= 0 if xik > 0

,

yjk : µk − γj
∂F j

∂yjk
= 0

for all i, j, k.

Now, let us assume that an interior solution (xi � 0 for all i) is obtained. We can then

use the first-order conditions above to characterize the equilibrium of this economy by means

of three types of ratio conditions:

∂ui/∂xik
∂ui/∂xik′

=
∂ui

′
/∂xi

′

k

∂ui′/∂xi
′
k′

for all i, i′, k, k′,

∂F j/∂yjk
∂F j/∂yjk′

=
∂F j′/∂yj

′

k

∂F j′/∂yj
′

k′

for all j, j′, k, k′,

∂ui/∂xik
∂ui/∂xik′

=
∂F j/∂yjk
∂F j/∂yjk′

for all i, j, k, k′.

5.1. First-Order Conditions and the First Fundamental Welfare Theorem

If we further impose that ui is quasiconcave for every i and that F j(·) is convex for

every j, then (x∗, y∗, p) is a price equilibrium with transfers with associated wealth levels

wi = p · ei +
∑

j∈J θijp · y∗j if and only the first-order conditions for the decentralized budget

constrained maximization problems

maxxi≥0 ui(xi)

s.t. p · xi ≤ wi

and the profit maximization problems

maxyj p · yj

s.t. F j(yj) ≤ 0

10



are satisfied.

Let αi and βj denote the Lagrange multipliers for each problem. The first-order conditions

evaluated at the optimum (x∗, y∗) are

xik :
∂ui

∂xik
− αipk

≤ 0 if xik = 0

= 0 if xik > 0

,

yjk : pk − βj
∂F j

∂yjk
= 0

for all i, j, k. Letting µk = pk, δi = 1
αi

, and γj = βj, we obtain the first-order conditions

characterizing a Pareto optimum allocation and can conclude that (x∗, y∗) is Pareto optimum

if and only if it is a price equilibrium with transfers with respect to some price vector

p = (p1, . . . , pn).

5.2. First-Order Conditions and the Second Fundamental Welfare Theorem

Let us strengthen now our assumptions about preferences by requiring that every ui is

concave. An utilitarian social planner would then choose the allocation that solves

maxx,y
∑I

i=1 λiu
i(xi1, . . . , x

i
n)

s.t.
∑I

i=1 x
i
k ≤

∑I
i=1 e

i
k +

∑J
j=1 y

j
k, k = 1, . . . , n,

F j(yj1, . . . , y
j
n) ≤ 0, j = 1, . . . , J,

where λi > 0 for all i. Once again, let (ψ1, . . . , ψn) and (η1, . . . , ηJ) denote the Lagrange

multipliers for the problem above. The necessary and sufficient first-order conditions for this

problem are

xik : λi
∂ui

∂xik
− ψk

≤ 0 if xik = 0

= 0 if xik > 0

,

yjk : ψk − ηj
∂F j

∂yjk
= 0.

Letting δi = λi
λ1

, µk = ψk

λ1
, and γj =

ηj
λ1

, we obtain the first-order conditions for a Pareto

optimum allocation.
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