Introduction Syntax Data Storage Exercises Collect Webpages Conclusions
00000 0000000 00000

Statistical Computing
Lesson 3

Gabriele Rovigatti
Bank of Italy

March 15, 2021

UNVERSTE gl STUD1 ROMA
TOR VERGATA

Gabriele Rovigatti (Bol) Python March 15, 2021 0/19

Introduction

This Course

@ Python basics

General Framework
e Syntax

o Modules / Libraries
o Functions

@ Webscraping

Data Storage
HTML Syntax

Data Collection
Requests Package
Webdriver Package

@ Machine Learning?

Gabriele Rovigatti (Bol) Python March 15, 2021 1/19

Introduction

Today

@ Python basics

General Framework
e Syntax

o Modules / Libraries
o Functions

o Webscraping

Data Storage
HTML Syntax
Data Collection
Requests Package
Webdriver Package

@ Machine Learning?

Gabriele Rovigatti (Bol) Python March 15, 2021 2/19

© W N s W N

Introduction Syntax Data Storage Exercises
©0000 0000000 00000

Arithmetic and Comparison Operators

PP oo o R

#

numeric objects

=10 # 10

+=1 # 11 —-

-=1# 10

% 3 # 1 -— modulo operator:
*x 2 # 100

string objects

animals = 'Cat ' + 'Dog '
animals += 'Monkey' # 'Cat Dog Monkey'

animals_list = ['Cat',

'Dog', 'Monkey']

Collect Webpages Conclusions

' and '.join(animals_list) # 'Cat and Dog and Monkey'

#
a
a
a
a

Arithmetic Comparison
> 10 # False

>= 10 # True

== 10 # True

!= 10 # False

Gabriele Rovigatti (Bol) Python

March 15, 2021

3/19

Introduction Syntax Data Storage Exercises Collect Webpages Conclusions
0®000 0000000 00000

Comparison

Logical

A and B

A or B

not A

(A and (B or C))

Identity Comparison

1 is 1 # True

1 is not '1l' # True

bool(1) # Boolean Logical

1 bool(True) # This works with nearly every object
2 True is bool(1l) # True

© 0 N Otk W N =

- -
o

Gabriele Rovigatti (Bol) Python March 15, 2021 4/19

Syntax
°0

Functions

Functions in Python are defined according to simple rules:

@ The function block begins with def followed by functname and
parameters within brackets

@ The code block within every function starts with a colon (:) and is
indented

@ The statement return(object) exits a function, optionally passing
back an object to the caller

Check whether input is string
def str_check(parlist): # here we define the function: def, name, list parameters
array = list(isinstance(x, str) for x in parlist) #this is indented!

return(array)

print (str_check(['this',2, 'string'])) # call the function with a parameter list

Gabriele Rovigatti (Bol) Python March 15, 2021 5/19

Introduction Syntax Data Storage Exercises Collect Webpages Conclusions
00000 0000000 00000

Fibonacci Series: Define a Function

import sys # mot necessary, just to print the error
FUNCTION DEFINITION ###s
def fibonacci_series(series_length, double_ones=True):
if series_length <= 2: # check whether n > 2. If it is not the case, throw an er
raise ValueError('You must input n > 2!')

sys.exit ()
for loop solution
if double_ones == True:

fibonacci_list = [1, 1] # initiate the list with the predetermined elements
else:

fibonacci_list = [0,1]
for x in range(2,series_length+1):
fibonacci_list.append(fibonacci_list[x-1] + fibonacci_list[x-2])
append the sum of previous two wvalues to the list
return fibonacci_list # return the list as output of the function
ROUTINE
n = int(input("Input a number greater than 2 ")) # read the input number
dl = fibonacci_series(n)
print(dl) # print the resulting list
d2 = fibonacci_series(n,0)
print(d2)

Gabriele Rovigatti (Bol) Python March 15, 2021 6 /19

© 00 N O A W N =

L
o

Introduction Syntax Data Storage Exercises Collect Webpages Conclusions
0000® 0000000 00000

Import Modules

Imports the datetime module into the current namespace
import datetime
datetime.date.today()
Import datetime and adds date and timedelta to the current namespace
from datetime import date, timedelta
date.today()
Rename tmports
import date as my_date
This ts sometimes used, but it is not suggested
from datetime import *

Gabriele Rovigatti (Bol) Python March 15, 2021 7/19

Data Storage
©000000

Data Storage

On the web, data are typically stored in:
e Repositories (servers, GitHub)
o FTP-type repositories
@ Webpages

In turn, these can be public - i.e. freely accessible through urls - or not -
e.g. domains accessible through username/password.

Gabriele Rovigatti (Bol) Python March 15, 2021 8/19

Data Storage

O@00000
© SourceForge - Download, .. X | = -
@ hitpsy/sourceforgenet/ x a3 A S = =
sourcefaorge <h Browse Enterprise Blog [CIEIJ Help Loglnor Join
SOLUTIONCENTERS Go Parallel | Resources Newsletters ~ Cloud Storage Providers ~ Business VolIP Providers Intemet Speed Test Call Center Providers

Find, Create, and Publish Open Source software for free
Search from thousands of software titl: m

THEYIEEE ¥ 23,645,384 DOWNLOADS @ 14,819 CODE Cf o 1,967 FO R 602 BUGS TRACKED © MORE DETAILS

Audio & Video
Business & Enterprise Projects Of The Month

Communications Staff Choice Outlook CalDav Synchronizer
Development & | Sync Outlook with Google, SOGo or any other CalDAV / CardDAV server
Home & Education Widows
Games

Graphics
l“" Community Choice NAS4Free

An embedded Storage distribution for Windows, Mac, & UNIX-like systems
Security & Utilties v“

Science & Engineering

System Administration

Editor's Choice

~ e
https://sourceforge.net/projects/outiookcaldavsynchronizer/files/latest/download?source=frontpagegposition=

Gabriele Rovigatti (Bol) Python March 15, 2021 9/19

Data Storage
00®0000

Data Storage

On the web, data are typically stored in:
@ Repositories (servers, GitHub)
o FTP-type repositories
@ Webpages

In turn, these can be public - i.e. freely accessible through urls - or not -
e.g. domains accessible through username/password.

Gabriele Rovigatti (Bol) Python March 15, 2021 10 /19

Data Storage
000@000

FTP server

8 indice di ftpy/ftpzakupki... X |+

ftp://ftp.zakupki. gov.ru/

Indice di ftp://ftp.zakupki.gov.ru/

£, Vai alla cartella superiore

Nome

94z
readmetxt

customer verification
fes_banks
fes_discussion
fes_fas
fes nsi
fes_regions
fes_rules
fes s
ftp01-ECN.strace
offline_rw

| Tecttxt

Cerca
Dimensione
18
8418

w8 & A

Ultima modi

01/02/2017
04/01/2014
24/09/2014
08/02/2017
21/02/2017
15/01/2016
20/01/2017
23/02/2017
12/07/2016
28/07/2015
31/01/2017
11/03/2016
20/02/2017

a
220000
00:00:00
00:00:00
00:00:00
04:00:00
00:00:00
155300
1601:00
00:00:00
00:00:00
175300
00:00:00
1801:00

Gabriele Rovigatti (Bol)

Python

March 15, 2021

11/ 19

Data Storage
0000000

Data Storage

On the web, data are typically stored in:
@ Repositories (servers, GitHub)
o FTP-type repositories
o Webpages

In turn, these can be public - i.e. freely accessible through urls - or not -
e.g. domains accessible through username/password.

Gabriele Rovigatti (Bol) Python March 15, 2021 12/19

Data Storage
0000000

Website - text information

/b HRS729-112th Congres.. X | +

congress.gov/bill/1121

-bill/67292r=1

[

Cerca

w8 & A

Legisiation Congressional Record Commitees Members

sinin
CONGRESS.GOV
Quick Q Advanced Q Browse ‘Search Took Resources Help Contact
Al Logisaton s, e, et care “
o a1 o print subscive @share/Save Pive Fesdbacc
10FszzmEsUTS
H.R.6729 - To save at least $10,000,000,000 by some and pping
Government programs.
1120 Congress (2011201
B
Wore on i Bl
Sponsor: s, Cuberson, John Ay [RTXT)(iroducsd OUD12010) Constuions Autsiy
ctement
Commitees: House - Overshtand Government Refor Appropisions s
Latest Action: 019112013 e o s Aproriatons |
. Subject — Policy Are:
GavemmentOporats and
summary (1) | Toxi(t) | Acions(6) | Tites (1) Amendimenis 0 || Cosponsors (9 Comitioes 2) | Relaed it 2)
‘Summary: H.R.6729 — 112th Congress (2011-2012) A1l Bil information (Except Text

[Listen to this page) B>

Thers is one summary for R 6728. B summariss are authorsd by CRS.

Gabriele Rovigatti (Bol)

Python

March 15, 2021

13 /19

Data Storage
0000000

Extract data from the internet

There are several ways to extract data from websites:
e Download structured databases (.csv,.x/sx,.xml)

o API (Application Programming Interface)
@ Scrape webpages:

o Tabular data

o Text

All these methods can be implemented by hand, or automated through
codes in Python.

Gabriele Rovigatti (Bol) Python March 15, 2021 14 /19

Exercises
©0000

Exercises

@ Write a Python script to concatenate following dictionaries to create

a new one
o dictl = {1:10, 2:20}
o dict2 = {3:30, 4:40}
o dict3 = {5:50, 6:60}

@ Write a Python script to generate and print a dictionary that contains
the square of numbers between 1 and n (n=int (input ("Input a
number ")) allows you to input integers). n = 10

o Write a Python program to sum all the items in the previous
dictionary

@ Write a Python program to map two lists into a dictionary

e colors = ['red’, 'green’, 'blue’]
o value = ['#FF0000’,'#008000’, '#0000FF']

@ Write a Python program to store all elements of an iterable (e.g., the
string "python for webscraping”) as keys, and as values the number of
times they appear.

Gabriele Rovigatti (Bol) Python March 15, 2021 15 /19

Exercises
0®000

“Bonus” exercise: the Fibonacci Series

Write a Python script to generate and print a list that contains the
Fibonacci series of numbers between 1 and n, where n is given as input
when the code starts. Features of Fibonacci series:

O the first two numbers of the series are [1,1] and are predetermined;!

@ the sequence F, is defined by the recurrence equation:
Fn =Ffp-1+ Fn—2

The solution is straightforward: we follow the rule with an exception!

!Some use [0,1], it is a matter of definition.

Gabriele Rovigatti (Bol) Python March 15, 2021 16 / 19

Introduction Syntax Data Storage Exercises Collect Webpages Conclusions
00000 0000000 00@00

Fibonacci Series: (One of the) Solutions

import sys # not necessary, just to print the error
n = int(input("Input a number greater than 2 ")) # read the input n
if n <= 2: # check whether n > 2. If it is mot the case, throw an e
raise ValueError('You must input n > 2!')
sys.exit()
for loop solution
dl = [1, 1] # initiate the list with the predetermined elements
for x in range(2,n+1):
dl.append(dl[x-1] + d1[x-2]) # append the sum of previous two v
print(dl) # print the resulting list

Gabriele Rovigatti (Bol) Python March 15, 2021 17 /19

Exercises
00080

Exercises - Mandatory

@ Write a function called CipCiop that takes a number and
If the number is divisible by 3, it should return “Cip";

If it is divisible by 5, it should return “Ciop”;

If it is divisible by both 3 and 5, it should return “CipCiop”;
Otherwise, it should return the original number.

@ Write a function that takes as input an integer (called /imit) and
prints all the prime numbers between 0 and limit.

@ Program a Rock-Paper-Scissors game, with the input() method
(twice!), comparing the plays and printing the winner. (Yes, it is the
same exercise for which you have the solutions, | will check your code.
Try not to copy!)

Gabriele Rovigatti (Bol) Python March 15, 2021 18 /19

Exercises
0000e@

Exercises - Complimentary

@ Write a program that takes two lists as input and returns the common
elements between the two lists. Make sure your program works on
two lists of different sizes.

@ Write a one-line python code that takes a numeric list as input and
returns the even elements of the list; in one line.

Gabriele Rovigatti (Bol) Python March 15, 2021 19 /19

Solution 2 - 1

*

define the lists to be compared
a=1[1,1,2,3,5,8, 13, 21, 34, 55, 89]
b=1[1, 2, 3, 4,5, 6,7,8,9, 10, 11, 12, 13]
for loop, if, and, or solution
import sys
def 1s_overlap(A4,B):
if not isinstance(A,list) or not isinstance(B, list): # check that both inputs are lists
sys.exit("both inputs must be lists!")
res = []
for e in set(A): # for every unique elment in A
if e in B and B not in res: # if A element is in B and not already in res
res.append(e)
return(res)
res = ls_overlap(a,b)
print(res)
use "set()" and "intersection()"
res = list(set(a).intersection(set(b)))
print(res)

Gabriele Rovigatti (Bol) Python March 15, 2021

20 / 19

Solution 2 - 2

define the list
ls_a = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
one-line solution: list comprehension, for, in and modulus
res = [x for x in 1s_a if x % 2 == 0]
print(res)
for loop, in, ©f and append
res = []
for a in 1ls_a:

if a % 2 == 0:

res.append(a)

print(res)

Gabriele Rovigatti (Bol) Python March 15, 2021 21 /19

Solution 1

initiate the dictionaries

dictl = {1:10, 2:20}

dict2 = {3:30, 4:40}

dict3 = {5:50,6:60}

not really the expected output!

new_dict = {1 : dictl, 2:dict2, 3:dict3}

print(new_dict) # {1: {1: 10, 2: 20}, 2: {3: 30, 4: 40}, 3: {5: 50, 6: 60}}
Good job, Flavio and Elizaveta!

dict0 = {**dictl,**dict2,**dict3}

print(dict0)

list comprehension

solutionl = {}

{solutionl.update(x) for x in [dictl,dict2,dict3]}
print(solutionl) # {1: 10, 2: 20, 3: 30, 4: 40, 5: 50, 6: 60}
for loop

solution2 = {}

for d in (dictl, dict2, dict3): solution2.update(d)
print(solution2) # {1: 10, 2: 20, 3: 30, 4: 40, 5: 50, 6: 60}

Gabriele Rovigatti (Bol) Python March 15, 2021

22 /19

Solution 2

read the input number

n = int(input("Input a number "))

dictionary comprehension solution
dc = {x : x*x for x in range(l,n+1)}

print(dc)

for loop solution

d1 = dict()

for x in range(i,n+1):
difx] = x*x

print(d1)

Gabriele Rovigatti (Bol) Python March 15, 2021 23 /19

Solution 3

dc = {x : x*x for x in range(1,11)}
for loop solution
total = 0
for x in dc.values():
total += x
print(total)
sum() method
total_sum = sum(dc.values())
print(total_sum)

Gabriele Rovigatti (Bol) Python March 15, 2021 24 /19

Solution 4

colors = ['red', 'green', 'blue']
values = ['#FF0000', '#008000', '#0000FF']
for solution
d={}
for i in range(len(colors)):
dlcolors[il] = valuesl[i]
print(d)
dict() and zip() solution
color_dict = dict(zip(colors, values))
print (color_dict)

Gabriele Rovigatti (Bol) Python March 15, 2021 25 /19

Solution 5

sample = 'python for webscraping'
string_dict = {}
for letter in sample:
string_dict[letter] = string_dict.get(letter, 0) + 1
print(string_dict)
input your own sentence
sentence = str(input("Write your sentence"))
string_dict = {}
for letter in sentence:
string_dict[letter] = string dict.get(letter, 0) + 1
print (string_dict)

Gabriele Rovigatti (Bol) Python March 15, 2021 26 /19

	Introduction
	Syntax
	Operators
	Functions
	Imports

	Data Storage
	Storage Types

	Exercises
	Exercises

	Collect Webpages
	Requests

	Conclusions
	Appendix

