
Introduction Syntax Data Storage Exercises Collect Webpages Conclusions

Statistical Computing
Lesson 3

Gabriele Rovigatti

Bank of Italy

March 15, 2021

Gabriele Rovigatti (BoI) Python March 15, 2021 0 / 19

Introduction Syntax Data Storage Exercises Collect Webpages Conclusions

This Course

Python basics
General Framework
Syntax
Modules / Libraries
Functions

Webscraping
Data Storage
HTML Syntax
Data Collection
Requests Package
Webdriver Package

Machine Learning?

Gabriele Rovigatti (BoI) Python March 15, 2021 1 / 19

Introduction Syntax Data Storage Exercises Collect Webpages Conclusions

Today

Python basics
General Framework
Syntax
Modules / Libraries
Functions

Webscraping
Data Storage
HTML Syntax
Data Collection
Requests Package
Webdriver Package

Machine Learning?

Gabriele Rovigatti (BoI) Python March 15, 2021 2 / 19

Introduction Syntax Data Storage Exercises Collect Webpages Conclusions

Arithmetic and Comparison Operators

1 # numeric objects
2 a = 10 # 10
3 a += 1 # 11 --
4 a -= 1 # 10
5 a % 3 # 1 -- modulo operator:
6 a ** 2 # 100
7

8 # string objects
9 animals = 'Cat ' + 'Dog '

10 animals += 'Monkey' # 'Cat Dog Monkey'
11 animals_list = ['Cat', 'Dog', 'Monkey']
12 ' and '.join(animals_list) # 'Cat and Dog and Monkey'
13

14 # Arithmetic Comparison
15 a > 10 # False
16 a >= 10 # True
17 a == 10 # True
18 a != 10 # False

Gabriele Rovigatti (BoI) Python March 15, 2021 3 / 19

Introduction Syntax Data Storage Exercises Collect Webpages Conclusions

Comparison

1 # Logical
2 A and B
3 A or B
4 not A
5 (A and (B or C))
6

7 # Identity Comparison
8 1 is 1 # True
9 1 is not '1' # True

10 bool(1) # Boolean Logical
11 bool(True) # This works with nearly every object
12 True is bool(1) # True

Gabriele Rovigatti (BoI) Python March 15, 2021 4 / 19

Introduction Syntax Data Storage Exercises Collect Webpages Conclusions

Functions

Functions in Python are defined according to simple rules:
The function block begins with def followed by functname and
parameters within brackets
The code block within every function starts with a colon (:) and is
indented
The statement return(object) exits a function, optionally passing
back an object to the caller

Check whether input is string
def str_check(parlist): # here we define the function: def, name, list parameters

array = list(isinstance(x, str) for x in parlist) #this is indented!
return(array)

print(str_check(['this',2,'string'])) # call the function with a parameter list

Gabriele Rovigatti (BoI) Python March 15, 2021 5 / 19

Introduction Syntax Data Storage Exercises Collect Webpages Conclusions

Fibonacci Series: Define a Function

import sys # not necessary, just to print the error
FUNCTION DEFINITION ###s
def fibonacci_series(series_length, double_ones=True):

if series_length <= 2: # check whether n > 2. If it is not the case, throw an error and quit
raise ValueError('You must input n > 2!')
sys.exit()

for loop solution
if double_ones == True:

fibonacci_list = [1, 1] # initiate the list with the predetermined elements
else:

fibonacci_list = [0,1]
for x in range(2,series_length+1):

fibonacci_list.append(fibonacci_list[x-1] + fibonacci_list[x-2])
append the sum of previous two values to the list

return fibonacci_list # return the list as output of the function
ROUTINE
n = int(input("Input a number greater than 2 ")) # read the input number
d1 = fibonacci_series(n)
print(d1) # print the resulting list
d2 = fibonacci_series(n,0)
print(d2)

Gabriele Rovigatti (BoI) Python March 15, 2021 6 / 19

Introduction Syntax Data Storage Exercises Collect Webpages Conclusions

Import Modules

1 # Imports the datetime module into the current namespace
2 import datetime
3 datetime.date.today()
4 # Import datetime and adds date and timedelta to the current namespace
5 from datetime import date, timedelta
6 date.today()
7 # Rename imports
8 import date as my_date
9 # This is sometimes used, but it is not suggested

10 from datetime import *

Gabriele Rovigatti (BoI) Python March 15, 2021 7 / 19

Introduction Syntax Data Storage Exercises Collect Webpages Conclusions

Data Storage

On the web, data are typically stored in:

Repositories (servers, GitHub)

FTP-type repositories

Webpages

In turn, these can be public - i.e. freely accessible through urls - or not -
e.g. domains accessible through username/password.

Gabriele Rovigatti (BoI) Python March 15, 2021 8 / 19

Introduction Syntax Data Storage Exercises Collect Webpages Conclusions

Github repository

Gabriele Rovigatti (BoI) Python March 15, 2021 9 / 19

Introduction Syntax Data Storage Exercises Collect Webpages Conclusions

Data Storage

On the web, data are typically stored in:

Repositories (servers, GitHub)

FTP-type repositories

Webpages

In turn, these can be public - i.e. freely accessible through urls - or not -
e.g. domains accessible through username/password.

Gabriele Rovigatti (BoI) Python March 15, 2021 10 / 19

Introduction Syntax Data Storage Exercises Collect Webpages Conclusions

FTP server

Gabriele Rovigatti (BoI) Python March 15, 2021 11 / 19

Introduction Syntax Data Storage Exercises Collect Webpages Conclusions

Data Storage

On the web, data are typically stored in:

Repositories (servers, GitHub)

FTP-type repositories

Webpages

In turn, these can be public - i.e. freely accessible through urls - or not -
e.g. domains accessible through username/password.

Gabriele Rovigatti (BoI) Python March 15, 2021 12 / 19

Introduction Syntax Data Storage Exercises Collect Webpages Conclusions

Website - text information

Gabriele Rovigatti (BoI) Python March 15, 2021 13 / 19

Introduction Syntax Data Storage Exercises Collect Webpages Conclusions

Extract data from the internet

There are several ways to extract data from websites:
Download structured databases (.csv,.xlsx,.xml) export report

API (Application Programming Interface) API

Scrape webpages:
Tabular data tab data

Text text data

All these methods can be implemented by hand, or automated through
codes in Python.

Gabriele Rovigatti (BoI) Python March 15, 2021 14 / 19

Introduction Syntax Data Storage Exercises Collect Webpages Conclusions

Exercises

Write a Python script to concatenate following dictionaries to create
a new one solution

dict1 = {1:10, 2:20}
dict2 = {3:30, 4:40}
dict3 = {5:50, 6:60}

Write a Python script to generate and print a dictionary that contains
the square of numbers between 1 and n (n=int(input("Input a
number ")) allows you to input integers). n = 10 solution

Write a Python program to sum all the items in the previous
dictionary solution

Write a Python program to map two lists into a dictionary solution

colors = [’red’, ’green’, ’blue’]
value = [’#FF0000’,’#008000’, ’#0000FF’]

Write a Python program to store all elements of an iterable (e.g., the
string ”python for webscraping”) as keys, and as values the number of
times they appear. solution

Gabriele Rovigatti (BoI) Python March 15, 2021 15 / 19

Introduction Syntax Data Storage Exercises Collect Webpages Conclusions

“Bonus” exercise: the Fibonacci Series

Write a Python script to generate and print a list that contains the
Fibonacci series of numbers between 1 and n, where n is given as input
when the code starts. Features of Fibonacci series:

1 the first two numbers of the series are [1,1] and are predetermined;1
2 the sequence Fn is defined by the recurrence equation:

Fn = Fn−1 + Fn−2

The solution is straightforward: we follow the rule with an exception!

1Some use [0,1], it is a matter of definition.
Gabriele Rovigatti (BoI) Python March 15, 2021 16 / 19

Introduction Syntax Data Storage Exercises Collect Webpages Conclusions

Fibonacci Series: (One of the) Solutions

import sys # not necessary, just to print the error
n = int(input("Input a number greater than 2 ")) # read the input number
if n <= 2: # check whether n > 2. If it is not the case, throw an error and quit

raise ValueError('You must input n > 2!')
sys.exit()

for loop solution
d1 = [1, 1] # initiate the list with the predetermined elements
for x in range(2,n+1):

d1.append(d1[x-1] + d1[x-2]) # append the sum of previous two values to the list
print(d1) # print the resulting list

Gabriele Rovigatti (BoI) Python March 15, 2021 17 / 19

Introduction Syntax Data Storage Exercises Collect Webpages Conclusions

Exercises - Mandatory

Write a function called CipCiop that takes a number and
If the number is divisible by 3, it should return “Cip”;
If it is divisible by 5, it should return “Ciop”;
If it is divisible by both 3 and 5, it should return “CipCiop”;
Otherwise, it should return the original number.

Write a function that takes as input an integer (called limit) and
prints all the prime numbers between 0 and limit.
Program a Rock-Paper-Scissors game, with the input() method
(twice!), comparing the plays and printing the winner. (Yes, it is the
same exercise for which you have the solutions, I will check your code.
Try not to copy!)

Gabriele Rovigatti (BoI) Python March 15, 2021 18 / 19

Introduction Syntax Data Storage Exercises Collect Webpages Conclusions

Exercises - Complimentary

Write a program that takes two lists as input and returns the common
elements between the two lists. Make sure your program works on
two lists of different sizes. Solution

Write a one-line python code that takes a numeric list as input and
returns the even elements of the list; in one line. Solution

Gabriele Rovigatti (BoI) Python March 15, 2021 19 / 19

Solution 2 - 1

define the lists to be compared
a = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
b = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
for loop, if, and, or solution
import sys
def ls_overlap(A,B):

if not isinstance(A,list) or not isinstance(B, list): # check that both inputs are lists
sys.exit("both inputs must be lists!")

res = []
for e in set(A): # for every unique elment in A

if e in B and B not in res: # if A element is in B and not already in res
res.append(e)

return(res)
res = ls_overlap(a,b)
print(res)
use "set()" and "intersection()"
res = list(set(a).intersection(set(b)))
print(res)

back

Gabriele Rovigatti (BoI) Python March 15, 2021 20 / 19

Solution 2 - 2

define the list
ls_a = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
one-line solution: list comprehension, for, in and modulus
res = [x for x in ls_a if x % 2 == 0]
print(res)
for loop, in, if and append
res = []
for a in ls_a:

if a % 2 == 0:
res.append(a)

print(res)

back

Gabriele Rovigatti (BoI) Python March 15, 2021 21 / 19

Solution 1

initiate the dictionaries
dict1 = {1:10, 2:20}
dict2 = {3:30, 4:40}
dict3 = {5:50,6:60}
not really the expected output!
new_dict = {1 : dict1, 2:dict2, 3:dict3}
print(new_dict) # {1: {1: 10, 2: 20}, 2: {3: 30, 4: 40}, 3: {5: 50, 6: 60}}
Good job, Flavio and Elizaveta!
dict0 = {**dict1,**dict2,**dict3}
print(dict0)
list comprehension
solution1 = {}
{solution1.update(x) for x in [dict1,dict2,dict3]}
print(solution1) # {1: 10, 2: 20, 3: 30, 4: 40, 5: 50, 6: 60}
for loop
solution2 = {}
for d in (dict1, dict2, dict3): solution2.update(d)
print(solution2) # {1: 10, 2: 20, 3: 30, 4: 40, 5: 50, 6: 60}

back

Gabriele Rovigatti (BoI) Python March 15, 2021 22 / 19

Solution 2

read the input number
n = int(input("Input a number "))
dictionary comprehension solution
dc = {x : x*x for x in range(1,n+1)}
print(dc)
for loop solution
d1 = dict()
for x in range(1,n+1):

d1[x] = x*x
print(d1)

back

Gabriele Rovigatti (BoI) Python March 15, 2021 23 / 19

Solution 3

dc = {x : x*x for x in range(1,11)}
for loop solution
total = 0
for x in dc.values():

total += x
print(total)
sum() method
total_sum = sum(dc.values())
print(total_sum)

back

Gabriele Rovigatti (BoI) Python March 15, 2021 24 / 19

Solution 4

colors = ['red', 'green', 'blue']
values = ['#FF0000','#008000', '#0000FF']
for solution
d = {}
for i in range(len(colors)):

d[colors[i]] = values[i]
print(d)
dict() and zip() solution
color_dict = dict(zip(colors, values))
print(color_dict)

back

Gabriele Rovigatti (BoI) Python March 15, 2021 25 / 19

Solution 5

sample = 'python for webscraping'
string_dict = {}
for letter in sample:

string_dict[letter] = string_dict.get(letter, 0) + 1
print(string_dict)
input your own sentence
sentence = str(input("Write your sentence"))
string_dict = {}
for letter in sentence:

string_dict[letter] = string_dict.get(letter, 0) + 1
print(string_dict)

back

Gabriele Rovigatti (BoI) Python March 15, 2021 26 / 19

	Introduction
	Syntax
	Operators
	Functions
	Imports

	Data Storage
	Storage Types

	Exercises
	Exercises

	Collect Webpages
	Requests

	Conclusions
	Appendix

