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Arithmetic and Comparison Operators

PP oo o R

#

numeric objects

=10 # 10

+=1 # 11 —-

-=1# 10

% 3 # 1 -— modulo operator:
*x 2 # 100

string objects

animals = 'Cat ' + 'Dog '
animals += 'Monkey' # 'Cat Dog Monkey'

animals_list = ['Cat',

'Dog', 'Monkey']

Collect Webpages Conclusions

' and '.join(animals_list) # 'Cat and Dog and Monkey'

#
a
a
a
a

Arithmetic Comparison
> 10 # False

>= 10 # True

== 10 # True

!= 10 # False
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Comparison

# Logical

A and B

A or B

not A

(A and (B or C))

# Identity Comparison

1 is 1 # True

1 is not '1l' # True

bool(1) # Boolean Logical

1 bool(True) # This works with nearly every object
2 True is bool(1l) # True
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Functions

Functions in Python are defined according to simple rules:

@ The function block begins with def followed by functname and
parameters within brackets

@ The code block within every function starts with a colon (:) and is
indented

@ The statement return(object) exits a function, optionally passing
back an object to the caller

Check whether input is string
def str_check(parlist): # here we define the function: def, name, list parameters
array = list(isinstance(x, str) for x in parlist) #this is indented!

return(array)

print (str_check(['this',2, 'string'])) # call the function with a parameter list
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Fibonacci Series: Define a Function

import sys # mot necessary, just to print the error
### FUNCTION DEFINITION ###s
def fibonacci_series(series_length, double_ones=True):
if series_length <= 2: # check whether n > 2. If it is not the case, throw an er
raise ValueError('You must input n > 2!')

sys.exit ()
# for loop solution
if double_ones == True:

fibonacci_list = [1, 1] # initiate the list with the predetermined elements
else:

fibonacci_list = [0,1]
for x in range(2,series_length+1):
fibonacci_list.append(fibonacci_list[x-1] + fibonacci_list[x-2])
# append the sum of previous two wvalues to the list
return fibonacci_list # return the list as output of the function
### ROUTINE ###
n = int(input("Input a number greater than 2 ")) # read the input number
dl = fibonacci_series(n)
print(dl) # print the resulting list
d2 = fibonacci_series(n,0)
print(d2)
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Import Modules

# Imports the datetime module into the current namespace
import datetime
datetime.date.today()
# Import datetime and adds date and timedelta to the current namespace
from datetime import date, timedelta
date.today()
# Rename tmports
import date as my_date
# This ts sometimes used, but it is not suggested
from datetime import *
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Data Storage

On the web, data are typically stored in:
e Repositories (servers, GitHub)
o FTP-type repositories
@ Webpages

In turn, these can be public - i.e. freely accessible through urls - or not -
e.g. domains accessible through username/password.

Gabriele Rovigatti (Bol) Python March 15, 2021 8/19



Data Storage

O@00000
© SourceForge - Download, .. X | = -
@ hitpsy/sourceforgenet/ x a3 A S = =
sourcefaorge <h Browse Enterprise Blog [CIEIJ Help Loglnor Join
SOLUTIONCENTERS Go Parallel | Resources Newsletters ~ Cloud Storage Providers ~ Business VolIP Providers  Intemet Speed Test  Call Center Providers

Find, Create, and Publish Open Source software for free
Search from thousands of software titl: m

THEYIEEE ¥ 23,645,384 DOWNLOADS @ 14,819 CODE Cf o 1,967 FO R 602 BUGS TRACKED © MORE DETAILS

Audio & Video
Business & Enterprise Projects Of The Month

Communications Staff Choice Outlook CalDav Synchronizer
Development & | Sync Outlook with Google, SOGo or any other CalDAV / CardDAV server
Home & Education Widows
Games

Graphics
l“" Community Choice NAS4Free

An embedded Storage distribution for Windows, Mac, & UNIX-like systems
Security & Utilties v“

Science & Engineering

System Administration

Editor's Choice

~ e
https://sourceforge.net/projects/outiookcaldavsynchronizer/files/latest/download?source=frontpagegposition=

Gabriele Rovigatti (Bol) Python March 15, 2021 9/19



Data Storage
00®0000

Data Storage

On the web, data are typically stored in:
@ Repositories (servers, GitHub)
o FTP-type repositories
@ Webpages

In turn, these can be public - i.e. freely accessible through urls - or not -
e.g. domains accessible through username/password.
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FTP server
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Data Storage

On the web, data are typically stored in:
@ Repositories (servers, GitHub)
o FTP-type repositories
o Webpages

In turn, these can be public - i.e. freely accessible through urls - or not -
e.g. domains accessible through username/password.

Gabriele Rovigatti (Bol) Python March 15, 2021 12/19



Data Storage
0000000

Website - text information
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Extract data from the internet

There are several ways to extract data from websites:
e Download structured databases (.csv,.x/sx,.xml)

o API (Application Programming Interface)
@ Scrape webpages:

o Tabular data

o Text

All these methods can be implemented by hand, or automated through
codes in Python.
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Exercises

@ Write a Python script to concatenate following dictionaries to create

a new one
o dictl = {1:10, 2:20}
o dict2 = {3:30, 4:40}
o dict3 = {5:50, 6:60}

@ Write a Python script to generate and print a dictionary that contains
the square of numbers between 1 and n (n=int (input ("Input a
number ")) allows you to input integers). n = 10

o Write a Python program to sum all the items in the previous
dictionary

@ Write a Python program to map two lists into a dictionary

e colors = ['red’, 'green’, 'blue’]
o value = ['#FF0000’,'#008000’, '#0000FF']

@ Write a Python program to store all elements of an iterable (e.g., the
string "python for webscraping”) as keys, and as values the number of
times they appear.
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“Bonus” exercise: the Fibonacci Series

Write a Python script to generate and print a list that contains the
Fibonacci series of numbers between 1 and n, where n is given as input
when the code starts. Features of Fibonacci series:

O the first two numbers of the series are [1,1] and are predetermined;!

@ the sequence F, is defined by the recurrence equation:
Fn =Ffp-1+ Fn—2

The solution is straightforward: we follow the rule with an exception!

!Some use [0,1], it is a matter of definition.
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Fibonacci Series: (One of the) Solutions

import sys # not necessary, just to print the error
n = int(input("Input a number greater than 2 ")) # read the input n
if n <= 2: # check whether n > 2. If it is mot the case, throw an e
raise ValueError('You must input n > 2!')
sys.exit()
# for loop solution
dl = [1, 1] # initiate the list with the predetermined elements
for x in range(2,n+1):
dl.append(dl[x-1] + d1[x-2]) # append the sum of previous two v
print(dl) # print the resulting list
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Exercises - Mandatory

@ Write a function called CipCiop that takes a number and
If the number is divisible by 3, it should return “Cip";

If it is divisible by 5, it should return “Ciop”;

If it is divisible by both 3 and 5, it should return “CipCiop”;
Otherwise, it should return the original number.

@ Write a function that takes as input an integer (called /imit) and
prints all the prime numbers between 0 and limit.

@ Program a Rock-Paper-Scissors game, with the input() method
(twice!), comparing the plays and printing the winner. (Yes, it is the
same exercise for which you have the solutions, | will check your code.
Try not to copy!)
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Exercises - Complimentary

@ Write a program that takes two lists as input and returns the common
elements between the two lists. Make sure your program works on
two lists of different sizes.

@ Write a one-line python code that takes a numeric list as input and
returns the even elements of the list; in one line.
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Solution 2 - 1

*

define the lists to be compared
a=1[1,1,2,3,5,8, 13, 21, 34, 55, 89]
b=1[1, 2, 3, 4,5, 6,7,8,9, 10, 11, 12, 13]
# for loop, if, and, or solution
import sys
def 1s_overlap(A4,B):
if not isinstance(A,list) or not isinstance(B, list): # check that both inputs are lists
sys.exit("both inputs must be lists!")
res = []
for e in set(A): # for every unique elment in A
if e in B and B not in res: # if A element is in B and not already in res
res.append(e)
return(res)
res = ls_overlap(a,b)
print(res)
# use "set()" and "intersection()"
res = list(set(a).intersection(set(b)))
print(res)
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Solution 2 - 2

# define the list
ls_a = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
# one-line solution: list comprehension, for, in and modulus
res = [x for x in 1s_a if x % 2 == 0]
print(res)
# for loop, in, ©f and append
res = []
for a in 1ls_a:

if a % 2 == 0:

res.append(a)

print(res)
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Solution 1

# initiate the dictionaries

dictl = {1:10, 2:20}

dict2 = {3:30, 4:40}

dict3 = {5:50,6:60}

# not really the expected output! #

new_dict = {1 : dictl, 2:dict2, 3:dict3}

print(new_dict) # {1: {1: 10, 2: 20}, 2: {3: 30, 4: 40}, 3: {5: 50, 6: 60}}
# Good job, Flavio and Elizaveta!

dict0 = {**dictl,**dict2,**dict3}

print(dict0)

# list comprehension

solutionl = {}

{solutionl.update(x) for x in [dictl,dict2,dict3]}
print(solutionl) # {1: 10, 2: 20, 3: 30, 4: 40, 5: 50, 6: 60}
# for loop

solution2 = {}

for d in (dictl, dict2, dict3): solution2.update(d)
print(solution2) # {1: 10, 2: 20, 3: 30, 4: 40, 5: 50, 6: 60}
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Solution 2

# read the input number

n = int(input("Input a number "))

# dictionary comprehension solution
dc = {x : x*x for x in range(l,n+1)}

print(dc)

# for loop solution

d1 = dict()

for x in range(i,n+1):
difx] = x*x

print(d1)
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Solution 3

dc = {x : x*x for x in range(1,11)}
# for loop solution
total = 0
for x in dc.values():
total += x
print(total)
# sum() method
total_sum = sum(dc.values())
print(total_sum)

Gabriele Rovigatti (Bol) Python March 15, 2021 24 /19



Solution 4

colors = ['red', 'green', 'blue']
values = ['#FF0000', '#008000', '#0000FF']
# for solution
d={}
for i in range(len(colors)):
dlcolors[il] = valuesl[i]
print(d)
# dict() and zip() solution
color_dict = dict(zip(colors, values))
print (color_dict)
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Solution 5

sample = 'python for webscraping'
string_dict = {}
for letter in sample:
string_dict[letter] = string_dict.get(letter, 0) + 1
print(string_dict)
# input your own sentence
sentence = str(input("Write your sentence"))
string_dict = {}
for letter in sentence:
string_dict[letter] = string dict.get(letter, 0) + 1
print (string_dict)
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